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Introduction 

Recent innovation in single-cell RNA-seq analyses has allowed for unprecedented 
insight into the developmental trajectory of multiple organs 1–3. Cell-state transition prediction 
algorithms have been able to provide developmental trajectories of the prefrontal cortex at 
single cell resolution4. However, the potential of these novel methodologies has not been 
exploited in the study of the aging human brain and associated neurological disorders. The 
aging brain serves as an ideal application of cell state transition inference algorithms because of 
its limited cell proliferation capacity, which might be restricted to the dentate gyrus of the 
hippocampus if at all present 5,6. Consequently, changes in the cell-state trajectory of neurons or 
glial cells in the adult brain can reflect physiological or pathological transitions secondary to 
aging or neurological disease, respectively.  

Studying cell state transitions of the aging human brain can shed light on the 
pathophysiology of neurodegeneration. Alzheimer’s disease (AD) is a progressive 
neurodegenerative condition resulting in dementia and memory loss. Pathologically it is 
characterized by accumulation of misfolded proteins tau and amyloid-beta 7–9 . Mouse models 
have allowed for a better understanding of the effect of these toxic proteins on neuronal 
populations, such as activation of apoptotic pathways 10–12. However, how neurons go from a 
healthy state to a diseased state throughout the course of the disease remains unknown. In 
addition, mouse studies have shown the potential role of glial cell activation in AD 2,13. However, 
the sequence of activation and cell state transitions of glial cells remains unknown in human 
brains. Histological examination of neurodegenerative processes such as AD, show that not all 
neurons or glial cells are involved by the toxic protein aggregates 8. It follows that random 
sampling of single cells from a brain region could provide RNA-seq data to map out a continuum 
of pathological transition states.  

Consequently, I propose to use cell-state trajectory mapping analysis to 1) identify the 
physiological cell transitions that occur during aging, and 2) determine the pathological 
deviations that occur in Alzheimer’s disease across different cell types. The goal of this analysis 
is to discover key differentially expressed genes enriched in the transition to the pathological 
state, which might provide for new venues of therapeutic intervention.  

In accordance with these aims, the analysis will have two stages. First, I propose to build 
a reference single-cell trajectory of aging brain cells using published algorithms that leverage 
graph abstractions to preserve global topology and allow for disconnected structures. This 
graph can be used to statistically determine control cell type marker genes. Then, using a 
similar approach I could re-cluster with brain cells from AD patients and statistically compare 
disease trajectories to control trajectories by using the marker genes previously discovered to 
guide cell identification. I could then further test for diverging disease genes by testing for 
differentially expressed genes across different diseased paths.  

Aim1: Single-cell state trajectories in the aging brain  

 To interpret the cell state transitions that one might observe in disease, it is imperative to 
first understand the transitions in normal aging. Identification of marker genes, genes that are 
enriched at a branch point compared to others, are essential to characterize specific cell 
lineages and their developmental paths. These genes can be discovered statistically through 
single-cell trajectory construction. These marker genes can then be used as references for 
deviations in the disease state. Due to the fast pace of algorithmic development of single cell 
trajectory inference algorithm, there are robust and efficient approaches for single cell RNA-seq 
data 14.  



 
 
1.1: Data generation via single cell RNA-seq of brain cells. 

Previous single cell RNA-sequencing studies on human brain cells tend to be small, 
contain only a subpopulation of brain cells, and/or processed via different methodologies 4,15. 
Consequently, it is necessary to generate new single cell RNA-seq data from human brains 
spanning several ages.   

There are many parameters to consider for obtaining a representative sample that would 
capture the inherent heterogeneity from individual to individual. The first parameter to consider 
is the location of the brain to study. Focusing the analysis on the pre-frontal cortex, Broadmann 
Area 9, will provide a region without active neurogenesis and no AD pathology in cognitively 
normal individuals. An area of interest in the field of aging and AD is the hippocampus due to its 
role in memory formation. However, there is still debate on whether this area undergoes 
neurogenesis in adulthood 5,6. Neurogenesis in adulthood might make it difficult to interpret 
single cell trajectories in that region since how neurogenesis in adulthood affects the 
transcriptome of neuronal populations remains unknown. To have stable trajectories, cells in 
this analysis should be in a relative quiescent stable state. In addition, the hippocampus is the 
first region of the brain to be affected in AD 8. Consequently, even cognitively normal, aged 
individuals might have some tau pathology burden in this region, confounding our downstream 
analysis. Thus, using the prefrontal cortex is a better region for this study. The samples should 
come from fresh frozen brain tissue of individuals that died of causes unrelated to brain 
pathology such as accidents, non-neurological disease, or abortion for the fetal tissue. This will 
be accomplished with appropriate IRB approval and collaborations with neuropathologists.   

The ages of the subjects should include key neurodevelopmental landmarks. Namely, 
this project aims to obtain brains at prenatal, childhood (ages 2-10), adolescence (ages 12-19), 
adulthood (ages 25-50), and aged ( ages 80+) 16. By the time the human brain reaches 25 years 
of age most of the brain is myelinated and cortical 
development is finalized. Consequently, it is 
expected that single cell trajectory reconstructions 
would fix on these stable adult/aged brain cell 
populations. Single cell and bulk RNA seq studies 
have indicated that some transcriptional changes 
occur in aging 2,13,17,18. By including aged brains on 
this cohort, I will be able to capture normal 
variations within adult brain cell populations that 
might be undergoing physiological aging 
processes.  

While the ages above capture the natural 
aging variation, it is necessary to attempt to 
capture the person to person variability 
as much as possible. A recent study 
tried to assess the burden of somatic 
mutation through aging in single neurons 19. In this study they sampled 2-6 subjects on each 
age category. With this sample size they were able to capture enough of the individual variability 
to observe trends with age. Since I aim to capture a wider group of cell types, setting a sample 
size of 5 individuals per group might be enough, for a total sample size of 25 subjects. To 
process the samples, I propose to use an approach similar to sci-RNA-seq3 (figure 1) which has 
been shown to allow for the profiling of 2 million cells in a single experiment through the use of 
combinatorial indexing 1. In this experiment 61 mouse embryos staged between 9.5 and 13.5 
days of gestation were used. They were able to keep information about the mouse of origin of 
each cell through the combinatorial indexing. I aim to obtain around 20,000 cells per individual, 
which would be in line with previous cell numbers in mice and human single cell trajectory 
analyses, yet it would provide unprecedented resolution in adult human cortex studies1,4,13,20. 
For the overall total of 500,000 cells, I propose to obtain ~20,000 reads per cell so allow for 

Figure 1 Schematic of Sci-seq3 approach adapted from Cao et al. 2019 



 
 
detection of small transcription variations. To perform all these in a single experiment it would 
require the use of around 5 lanes in a Novaseq S4 flow cell, which produces around 2,250 
million reads per lane. It would cost around $45,000-$50,000, which corresponds to around $10 
per cell. The cost could be optimized by conducting pilot studies and assessing sample 
variability, to possibly reduce the total number of samples needed.   

1.2: Single-cell trajectory analysis of aging cells using PAGA 

The past few years has seen an explosion in the development of algorithms for single-
cell trajectory inference from single-cell RNA-seq data14,21,22. A recent review compared the pros 
and cons of methods popular in the scientific community and designed recommendations for 
choosing an algorithm depending on the proposed plan of study, such as whether gaps in the 
trajectory were expected, and whether global topology should be preserved14. Single-cell RNA 
sequencing studies suffer from biases secondary to sampling. Differences in cell abundances 
might be secondary to which part of the tissue one is sequencing. As a result, it is expected that 
the inferred trajectories might have gaps. To allow for these discontinuities and yet robustly 
preserve global transcriptional relationships, I propose to use PArtition-based Graph Abstraction 
(PAGA), which provides a graph-like map of the arising data manifold, based on connectivity 
estimation of manifold partitions 22. In brief, after standard preprocessing and quality filtering of 
reads, PAGA extracts highly variable genes for graph construction. The graph is built by 
constructing a symmetrized kNN-like graph using an approximate nearest neighbor search as 
described in UMAP, using Euclidean distance as the distance metric 23. The graph is weighed 
using adaptive Gaussian kernels. One of the advantages of using PAGA is that it naturally 
allows for graph partitioning via a Louvain algorithm implementation, which can allow for data 
exploration a different resolution, from tissue, to cell types, to subtypes 1,22. The portioning 
above can then be used to generate graphs using the test statistic quantifying the ratio of the 
number of inter-edges between clusters, normalized with the number of interedges expected 
under random assignments of edges 22. Once a suitable graph is built, pseudotime estimation is 
done by adjusting for possible disconnected graphs as described in  24  and implemented in 
PAGA via random walk estimation. The PAGA graph can then be used to initialize established 
manifold learning and graph drawing algorithms such as UMAP for visualizations of single-cell 
embeddings. Notice that, pseudotime accuracy can be assessed since age information is 
readily available for each cell due to the combinatorial indexing from sci-RNA-seq.  

Once the trajectory map is built, it is possible to discover marker genes of developmental 
and aging brain cell populations. Besides using already well-known cell type markers 1,4, I 
propose to implement a statistical framework similar to Chen et al 21 to discover diverging and 
transition genes. In this proposal, I define diverging genes as those that are expressed more at 
a particular branch, while transition genes are those that are enriched at particular timepoints 
along a branch.  

To detect diverging genes, for each pair of diverging branches Bi and Bj, and for each 
gene E in those branches, the gene expression values can be normalized to range from 0 to 1. 
For a gene to be considered it needs to have a log2 fold change greater than a specific 
threshold, which Chen et al. chose to be 0.25 to enrich for highly variable genes.  For each pair 
of gene expression Ei from Bi, and gene expression Ej from Bj, a Mann-Whitney U test can be 
performed to test hypotheses: Ho: Ei=Ej; Ha: Ei≠Ej. Since in this analysis it is expected to have 

large enough samples of cells across most branches, the U statistic of the Mann-Whitney test 

Figure 2.Example of transition and divergent genes from Chen et al 2019 



 
 
can be approximated with a normal distribution by standardizing the U statistic to a Z score. This 
standardization will allow each U statistic to be comparable across different datasets. Fold 
change enrichment can be reported for the branches that have few cells (<20 cells per branch). 
Then genes with a z-score or fold change greater than a specific threshold are considered as 
diverging genes and enriched for a branch. The recommended threshold by Cao et al. is 2.  

To detect transition genes, each gene expression for gene E for a branch Bi is scaled 
from 0 to 1. I can then calculate the log2 fold change in mean gene expressions of the first 20% 
and the last 80% of the cells based on the inferred pseudotime (and/or the known age 
categories), along Bi. If the difference is greater than a specified threshold (recommended to be 
0.25), the Spearkman’s rank correlation between inferred pseudotime and gene expression can 
be calculated for all the cells along the branch. Genes with Spearman’s coefficients above a 
threshold (recommended 0.4) can be labeled as transition genes.  

Overall, the identification of the diverging and transitions genes will serve as markers to 
label normal developing and aging populations. This analysis might provide novel marker genes 
of human brain cells, possibly illuminating new biology of aging and senescence. Paths 
characterized by these genes can then be compared for deviations along disease states as 
described below.  

Aim 2: Single-cell trajectories in the diseased brain.  

 Alzheimer’s disease is characterized by a highly stereotyped pathological progression, 
which makes it an ideal test case for trajectory analysis. AD pathology starts with the 
accumulation of tau in the enthorhinal cortex of the temporal lobe, and then progresses slowly to 
synapticaly connected regions in the limbic system, only reaching the prefrontal cortex in the 
later stages disease 8,9. The pathological progression is classified by the Braak stage and 
CERAD score, which measure progression of tau pathology and amyloid beta distribution 
respectively. It has been shown that tau progression is the most correlated measure to clinical 
severity 9. This slow progression results in the latest affected regions such as the prefrontal 
cortex to have sparse involvement, not all neuron or glial cells are affected by the pathology, as 
can be seen by histological evaluation. As a result, sampling from the prefrontal cortex of 
advanced AD cases (Braak stage 6) will result in a mixture of normal and diseased cells, which 
can then be separated by trajectory inference analysis.  

2.1: Data generation via single cell RNA-seq 

To minimize variability among samples and ensure generalization of the results, I 
propose to use a similar approach for collecting specimens from AD patients as described in 
Aim 1 section 1.1. Obtaining five samples from prefrontal cortex of pathologically proven AD 
patients will allow for assessment of the person to person variability between patients. However, 
it is not expected to have too much variability between patients since the disease follows a 
highly stereotyped progression which can be further controlled by procuring samples at the 
same Braak stage and CERAD score. Fresh frozen samples will be procured under appropriate 
IRB protocol from neuropathologist collaborators. In this study I propose to focus on late-onset 
AD subjects since sporadic AD is by far the most common form the disease, thus making tissue 
collection more feasible. To avoid batch effects, I propose to sequence the aged matched AD 
samples at the same time as the aging study samples. This modification will add one more lane 
to the study for a total two flow cells needed. In total I aim to sequence around 20,000 cells from 
each AD brain at 20,000 reads per cell. The NovaSeq has a two flow-cell capability, which will 
still allow for the joint sequencing of all the samples on the same experiment. The expected cost 
would be ~$55,000. Generation of this dataset would provide a unique resource to the scientific 
community, as such a large sequencing dataset run uniformly across disease and control 
samples has not been made publicly available to the best of my knowledge.   

2.2: Single cell trajectory of Alzheimer’s disease and comparison with control 
trajectories. 



 
 

To build the single cell trajectory of AD, I propose to re-run the PAGA algorithm with the 
addition of the AD cells. By using this graph, we can easily visualize any possible deviations 
from normal aging cells by incorporating the sample-of-origin information provided by the 
combinatorial indexing. Benchmarking of PAGA for 1.3 million neuronal cells from mice of 10x 
genomics had a run time 90 seconds, for reference t-SNE takes about 10h and UMAP-only 
takes 191 minutes for the same dataset 22. Consequently, re-running the single cell trajectory 
algorithm and data exploration can be performed efficiently with minimal computational costs. 
The clusters can then be labelled and inspected based on the gene markers discovered in the 
previous aim.  

To test the hypothesis of whether the resulting aging graph, G*a, is different to the AD 
graph G*d, I propose to use the continuous measure of agreement used in Wolf et al to assess 
PAGA’s robustness, which is illustrated in figure 3. In brief, this approach first computes the 
overlaps of the partitions labelled on each graph, generating an association matrix. This matrix 
can be normalized with respects to the groups in each graph. By taking the minimum of both 
normalizations, the minimal overlap is obtained for each group pair between graphs. In this way, 
each group in G*a can be associated with a group in G*d. Groups that do not have a 
corresponding association might indicate cell groups that are depleted or newly derived in AD.  

Comparing the paths of the abstracted graphs G*a and G*d can reveal deviations in AD. 
For each shortest path between two leaf nodes in G*d, there is a shortest path between the 
associated nodes in G*a. The fraction of consistent steps between two paths can then be 
computed. To measure the agreement of the topologies between two abstracted graphs, we 
compute the fraction of agreeing steps and the fraction of agreeing paths over all combinations 
of leaf nodes in two given abstracted graphs. A similar approach was used in Wolf et al.  Paths 
that do not have any corresponding agreement in G*a from G*d, can then be interrogated for 
diverging or transition genes as described in Aim 1 section 2.  

 

It is possible that no differences exist between the single cell trajectories of AD and 
normal aging. This result would suggest that cell toxicity in AD might occur at the protein level at 
a time scale that does not perturb the transcriptome of cells. The cells might be suddenly 
overwhelmed and undergo cell death without time to invoke an appropriate transcriptional 
program response. However, previous transcriptomics studies of AD suggest that transcriptional 
changes can be caused by AD pathology 13,17,25. Thus, I expect these changes to be reflected in 
the single cell RNA-seq trajectory reconstruction.  

While the present study aims to uncover novel molecular understanding of aging and 
Alzheimer’s disease, this approach could be broadly used in disease biology. The results of 
these analysis could serve as a framework to expand the field of single-cell state trajectory 
prediction to other areas of inquiry besides development. Using this type of analysis will provide 
a unique resolution to study how a normal cell transitions to a pathological state, which is 
fundamental to design appropriate therapies that delay or prevent disease onset.  

Figure 3 Graph comparisons as 
described in Wolf et al 2019. After 
association matrix comparison, cluster 
24 of top left graph and cluster 5 of the 
bottom left graph are not shared. Thus, 
they are not part of the merged graph 
on the right. 
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