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Introduction 
RNA-seq provides valuable insight into the expression profiles that drive cell-, tissue-, and 

phenotype-specific functions. A common approach to interpreting RNA-seq is to identify genes 
with different expression levels in different phenotypes. However, it is often challenging to make 
functional conclusions about the resulting significantly differentially-expressed genes (DEGs).1 
While the differential expression may be related to the observed phenotype, the method does 
not inherently define the connection and it excludes functionally-relevant transcripts that are not 
significantly differentially expressed.  

Pathway gene set enrichment analysis calculates the overrepresentation of genes in the 
same functional pathway among the DEGs, but these results are limited by existing pathway or 
function annotations in databases. They also don’t account for the functional context, comprised 
of the other genes and proteins expressed in the sample. To fully understand how differential 
expression of a particular gene contributes to a correlated phenotype, its functional data must 
also be considered. This can include a variety of data types, such as translation kinetics (since 
the active molecule is often the protein), regulation by transcription factors, and complex 
formation or other physical interactions. 
 In this proposal, I present a functionally-driven, network-based workflow to 1) identify 
modules of genes or proteins that correlate with the phenotype of interest, and 2) determine the 
functional role of the differentially-expressed modules. The goal of this method is to integrate 
gene expression data with other ancillary data (i.e., protein quantification, transcription factor 
binding motifs, and protein interaction networks) to expand the search space of candidate 
differentially-expressed genes beyond the traditional definition, and to offer a more context-
specific functional role for these genes. 
 In accordance with these dual goals, the workflow has two stages. First, rather than 
identifying DEGs, I propose to identify differentially-expressed modules (DEMs) from co-
expressed genes/proteins and from interacting proteins. The multilevel approach accounts for 
the functional potential of genes at the transcript, protein, and protein complex levels. Second, 
the functional role of the DEMs is determined through network topology analysis of the 
subnetworks representing the constituent genes’ relationships at the two main levels of 
functional interactions: protein-DNA (approximated through transcription factor binding activity) 
and protein-protein. 
 This workflow can be applied in any experiment where varied data types are available, but I 
specifically propose an application in human brain tissue to understand the etiology of 
psychiatric disorders — namely, schizophrenia. This method is particularly well suited for human 
brain tissue because the brain has highly complex regulatory and functional programs. Prior 
RNA-seq-based studies of schizophrenia have pointed to a heterogeneous set of genes that 
haven’t been functionally resolved, so a new method could be beneficial.2,3,4 
 
Aim 1: Construct an integrated transcriptomic-proteomic co-expression network 

Differential expression of both transcripts and proteins in schizophrenia can offer clues 
about the genetic basis of the disease. One common approach to identify modules of candidate 
genes is to construct co-expression network, with the assumption that co-expressed genes 
often act in shared pathways. 
Integrating transcript and protein 
expression into these networks will 
allow them to capture the way that a 
given gene’s transcript and protein 
might be regulated differently and have 
distinct functions in the context of the 
disease. 
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1.1: Data generation via RNA-seq and mass spectrometry 
Existing databases don’t contain both RNA-seq and mass spectrometry measurements for 

controls and individuals with schizophrenia. There are resources with one of the data types, but 
in order to accurately compare transcript and protein expression, they should be measured in 
samples from the same subject. I propose carrying out RNA-seq and mass spectrometry on 
postmortem samples of the dorsolateral prefrontal cortex (DLPFC). This region of the brain has 
been previously shown to be dysregulated in schizophrenia.5 Samples should be collected from 
comparable numbers of cases and controls (at least 20 biological replicates each). 

Paired-end RNA-seq will be carried out for each sample with the Illumina HiSeq Ribo-Zero 
protocol. The reads will be processed with previously described RNA-seq quality control and 
analysis workflows, with the added intermediate step of surrogate variable analysis to correct for 
covariates (e.g., age, sex, ethnicity, batch effects).6,7 Gene expression will be quantified in 
normalized transcripts per million. 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) will be used to quantify 
protein abundance under a standard tryptic digest protocol. The data will be searched against 
UniProt’s annotated Swiss-Prot database for protein identification and analyzed with MaxQuant 
for label-free quantification and normalization.8,9 

There are two main limitations to this experimental design. First, postmortem samples are 
subject to RNA degradation, and reflect the diversity of the individuals they came from. Second, 
brain tissue samples are heterogeneous and may obscure cell type-specific changes in 
expression.10 An alternative is hiPSC-derived neural progenitor cells and neurons, but they are 
difficult to grow in large numbers and it is still unknown whether they recapitulate cellular 
phenotypes of schizophrenia.11 To ensure the accuracy of the postmortem model, the 
expression profiles for control samples can be compared to known expression profiles for the 
DLPFC as a positive control.12,13,14 Additionally, the cell-type composition across samples can 
be compared to ensure similarity by using cell-type deconvolution methods. 
 

1.2: Merge transcript and protein quantification data in correlation network 
 While prior studies have constructed separate transcript and protein co-expression 
networks and looked for overlap between modules, I propose that the transcript and protein 
networks are integrated so that joint modules can be calculated.15 Pearson coefficients are often 
used to correlate transcriptomic and proteomic expression data.16 Therefore, I propose using 
weighted gene correlation network analysis (WGCNA), which uses a default Pearson correlation 
method.17 The input will be a file containing the normalized expression level for each gene and 
protein in the sample. The output will be a weighted network with nodes for each gene and 
protein, and edges with weights corresponding to the power-transformed correlation in 
expression between the two nodes they connect. The network will only include nodes that 
exceed a minimum expression level and edges that exceed a minimum correlation level. 
 This network can be used to correlate the abundances of a particular transcript and its 
protein product based on the weight of the edge connecting them. Past studies have shown 
that, especially in the brain, the correlation between transcript expression and protein 
expression for a given gene is relatively low (around 0.5).18 A gene’s transcript and protein 
expression levels will be defined as highly correlated if their edge weight meets a threshold such 
that they share a set percentage of neighbors. For these genes, the transcript and protein nodes 
can be collapsed into one composite node representing the gene. 
 After this step, the network will have three types of nodes: transcript, protein, and 
composite (highly-correlated transcript + protein). Each type of edge represents a different 
hypothetical functional relationship: transcript to transcript nodes may be transcriptional 
regulation by ncRNAs, transcripts to protein nodes may be transcription factor-mediated 
regulation of expression (or conversely, translational regulation), and protein to protein nodes 
may be enzyme-substrate interactions.  



1.3: Define co-expressed modules and correlate with phenotype 
 Modules can be defined in a weighted gene correlation network using WGCNA’s built-in 
hierarchical clustering algorithm. The accuracy and reproducibility of the modules can be 
ensured through various module preservation statistics that measure connectivity (e.g., 
correlation of intramodular connectivity) and density (e.g., cluster coefficient) of a module.19 As a 
negative control, these metrics will be calculated for 1000 randomly permuted gene sets, and 
the Z score of the module’s metric can be determined based on this null distribution. The genes 
comprising the module can also be tested for enrichment of Gene Ontology (GO) terms or cell 
type-specific signatures. This serves as a weak positive control since we expect to see some 
enrichment of broad functionality among co-expressed genes. 

Each module in the integrated network is defined by an eigengene — the first principal 
component of the module expression matrix — that serves as an expression profile for the 
constituent genes. The next step is to correlate the module eigengenes with the phenotypes of 
interest. Because the eigengenes in the integrated network incorporate both genomic and 
proteomic data, they may offer improved insight into modules with different activity in cases and 
controls. To determine the significance of the correlation between each eigengene and the two 
phenotypes, I will use a t-test to compare the distribution of correlations of the eigengene with 
samples of each phenotype. (For more phenotypes, an ANOVA test would be appropriate.) As a 
negative control, I will permute the sample labels and measure the correlation of each 
eigengene with the now-arbitrarily labeled phenotypes.  
 
Aim 2: Identify differentially-expressed interaction modules 

One shortcoming of co-expression networks 
is that they assume functionally-similar genes 
involved in a phenotype are correlated to each 
other and to the phenotype. However, this 
overlooks genes that might not be significantly 
correlated by themselves, but instead are part of 
a multimeric interaction that is correlated. The 
interaction can then be perturbed by differential 
expression of any of its subunits.20 

 
2.1: Define an expression-constrained protein-protein interaction network 

 First, we need to identify the proteins that could be interacting in the DLPFC. This 
information can be extracted from protein-protein interaction (PPI) databases. Even if we limit 
our search to databases that exclusively contain observed interactions (rather than predicted 
interactions), there are still many publically available databases, and I will use STRING as a 
starting network of all possible human PPIs.21 From this basis, I will prune the network to only 
include proteins that were identified at an abundance exceeding a set threshold in any of the 
samples. I will also remove any protein with expression level that is uncorrelated with its 
transcript expression level because the goal is to gain insight into the effects of differential gene 
expression. The resulting PPI network will be specific to the expression constraints of the 
samples in this study. This is a relatively conservative approach that will eliminate many nodes 
and edges from the network (including nodes for which a transcript was detected, but no 
protein), and although it may introduce some bias against proteins that are difficult to quantify by 
LC-MS/MS, it is a high-confidence way to eliminate any interactions that are not tissue-specific.  
 

2.2: Identify genes in differentially-expressed interaction modules 
The goal of integrating the PPI data is to identify genes that play an important functional 

role in the phenotype, but aren’t significantly differentially expressed between cases and 
controls. One method to identify these genes is to adjust differential expression p-values to 
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account for interactions.22 This approach relies on two main constraints: 1) the change in a 
gene’s differential expression p-value should be minimized, and 2) genes with strongly 
interacting protein products should have similar significances of differential expression. 
Considering these parameters, the algorithm minimizes an energy function that models the 
distribution of the significance of differential expression across the interaction network. I propose 
using this algorithm to recalculate p-values for every protein in the co-expression pathway. 

The result is a network in which the significant differential expression converges on 
modules of interconnected proteins that initially had non-significant differential expression. To 
test the correlation of these modules with the phenotype, I propose to take the geometric mean 
of the normalized TPM count for these genes for each sample, and test this module 
measurement for differential expression between the cases and controls. The geometric mean 
introduces some bias for the module’s expression to be driven lower by the underexpression of 
any one component, but this may be acceptable for our biological question because in a 
multimeric interaction, decreased abundance of one monomer is stoichiometrically more likely to 
change the multimer’s function than an increase in the abundance of one monomer. 

The algorithm’s authors also acknowledge a risk for inflating the p-values of highly 
connected nodes in the interaction network. Even though they show that highly connected 
subnetworks that are unrelated to a phenotype are not enriched for significance in that 
phenotype, this concern can be addressed in the current application of the algorithm with the 
negative control of permuting the phenotype labels on the samples and re-calculating the 
differential expression of the interaction modules between the now-arbitrarily-labeled cases and 
controls. I expect to see non-significant differential expression in these tests. 
 
Aim 3: Infer transcription factor-mediated regulation driving phenotypic correlation 
 With this expanded set of candidate DEMs that may be implicated in schizophrenia (based 
on co-expression and PPIs), the next step is to identify the functional role that they might play in 
the disease etiology. One potential explanation of some of the co-expression relationships that 
are correlated with the phenotype is that they reflect transcription factors regulating expression 
of their disease-associated targets (specifically via the edges between protein and gene nodes).  
 

3.1: Predict regulatory networks based on expressed TFs and sequence motifs 
 In order to construct a putative network that accurately represents the specific regulatory 
state of the samples, I propose using an algorithm that integrates the different types of data 
(gene expression, protein expression, protein interaction) to inform the regulatory network. This 
can be accomplished with the PANDA algorithm, which employs a message-passing approach 
to integrate networks and predict condition-specific regulatory activity.23 The inputs will be a list 
of TFs expressed in any of these samples, target motifs for these TFs (from JASPAR), gene 
expression matrix, and PPI network.24 The output will be a directed, weighted network with TFs 
and genes as nodes, and edges going from TF node to regulated gene node. 

It may be beneficial to validate a random subset of the TFs for which regulatory activity is 
predicted. In this experimental system (postmortem tissue), I will only be able to validate the 
binding of the TFs, but not the effect on gene expression. If primary samples from the controls 
and individuals with schizophrenia are available, this predicted regulatory network can be 
verified with ChIP-seq. This will require access to antibodies for all TFs predicted to be involved 
in the network, and following a standard ChIP-seq protocol, I will identify the genomic loci where 
each TF is bound. I may be able to validate the effect on gene expression with a neuronal cell 
line in which the gene is regulated by the same TF. By knocking down TF expression with a 
siRNA and using RT-qPCR to measure expression of the specific target gene, I can confirm the 
predicted regulatory relationship. (Conditions with a scrambled/non-specific siRNA and an 
RNAi-resistant rescue plasmid serve as the negative and positive controls, respectively.) 
 



3.2: Identify overlap between regulatory network and DEMs 
This regulatory network will contain subnetworks of co-regulated genes; to determine 

whether any of these modules are explain any of the co-expressed DEMs, I propose identifying 
modules that overlap with DEMs. Since I don’t necessarily expect complete overlap between 
modules in the two networks, I will count the number of shared edges between pairs of DEMs 
and regulatory modules and rank the pairs by percent overlap. Even though the regulatory 
network is directed, it will be treated as undirected. The significance of the overlap will be 
calculated based on the overlap between each regulatory module and random gene sets of the 
same size as the DEMs. If there are regulatory modules that significantly overlap with the 
DEMs, it may be useful for someone else to take on the task of validating them (since it is 
outside the scope of this project). Identifying this overlap allows us to annotate the nature of 
some of the observed co-expression relationships. 
 
Aim 4: Characterize effects of perturbing functional PPIs 
 The final goal of this proposal is to use interactions from the PPI network to infer the way 
that differential expression of its components would disrupt functional relationships. This can be 
accomplished by measuring the impact of DEMs on flow through the PPI network. 
 

4.1: Map DEMs to functional clusters in PPI network 
  For each DEM, the constituent genes’ products can be located in the PPI network. The PPI 
network can then be clustered with an algorithm like clusterONE, which is specifically tailored to 
identify overlapping clusters in PPI data.25 This will assign each constituent gene product to one 
or more clusters, and the enrichment of DEGs can be measured in each cluster. As described 
previously, the significance of the enrichment can be determined by calculating the enrichment 
of random gene sets of the same size as the DEMs and generating a permutation p-value. 
Then, a simple first-pass assignment of function can be done with GSEA for GO terms or 
pathway gene sets. This will highlight any DEMs or subsets of DEMs that are enriched for 
interactors. Because some of our DEMs were originally derived from the PPI network, we 
expect that those DEMs will be enriched in the individual clusters (although it is not necessarily 
true for all the interaction-derived DEMs, because they were defined based on the p-value 
adjustment algorithm, rather than a cluster definition algorithm).  
 

4.2: Calculate perturbation of information flow in PPI network by DEMs 
 Studies have proposed that random walks are the best way to model flow in a PPI 
network.26,27 Therefore, I propose using a popular network propagation algorithm to identify 
clusters of protein interactions that will be affected by the differential expression of an individual 
protein.28 As its input, this topology-based algorithm requires a weighted network and a subset 
of nodes to assign non-zero scores based on their association with the phenotype in question. 
In this case, the subset of nodes will be the 
proteins in one of the DEMs and from these 
starting points, the algorithm will propagate the 
non-zero schizophrenia association of these 
proteins into the neighboring nodes (proteins that 
the implicated proteins interact with) based on the 
weight of the edge (representing the strength and 
significance of the interaction).  
 
Together, this series of network-based analyses will provide a more sensitive approach to 
identify and understand the function of DEGs in disease. It can be expanded to include other 
types of data (e.g., ncRNA binding targets, using the approach from Aim 3) and experimental 
set-ups (e.g., single-cell sequencing with REAP-seq for quantifying transcripts and proteins).29 
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