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Introduction and Motivation 

 

Glioblastoma (GBM) is the most common form of brain cancer in adults. It is highly malignant, 

and generally has a poor prognosis despite aggressive treatment1. Targeted therapy has proved 

to be challenging because GBM displays remarkable tumor heterogeneity, both between 

patients with the same tumor type, and between cells within a tumor2. The first type of 

heterogeneity is starting to be addressed, as whole-genome sequencing and transcriptional 

profiling have revealed several clinically-distinct GBM subtypes3. The second type is more 

difficult due to current limitations of single-cell technologies. However, a recent study suggests 

that all subtypes share the same basic developmental hierarchy, meaning that most differences 

can be attributed to signature genetic events and the tumor microenvironment4. Therefore, 

developing methods to characterize this shared hierarchy and determine how certain cell 

subpopulations contribute to tumor development is of great interest.  

 

One of the primary goals of this proposal is to understand the mechanism of tumor propagation 

at single-cell resolution. There is strong evidence that glioblastomas contain a subpopulation of 

cells that resemble neural stem cells5. Since higher-grade tumors have larger pools of these 

undifferentiated cells and exhibit enhanced proliferation, these stem-like cells are thought to 

drive tumor propagation and contribute to therapeutic resistance6. Previous studies have used 

next-generation sequencing techniques to compare these stem-like tumor-propagating cells 

(TPCs) to differentiated glioblastoma cells (DGCs). This led to the identification of a set of 

transcription factors (TFs) that reprogram differentiated cells into a stem-like state when 

induced7. A significant limitation of this approach is that both types of cells were isolated and 

grown within a specific medium as to preserve their current state. More work is necessary to 

understand how these subpopulations interact and change within a heterogeneous population 

over the course of development. 

 

Cell lineage tracing is a method of identifying the relationships between individual cells in a 

population at different stages of development. Homing guide RNAs (hgRNAs) are the latest 

advancement in using genome editing technologies such as CRISPR/Cas9 to reconstruct such 

lineages8,9. The basic idea is to generate a unique barcode in each cell that it will pass on to all 

its descendants by introducing diverse mutations in small regions of DNA that do not affect cell 

viability. These barcodes can then be computationally aligned and clustered to reconstruct a 

developmental hierarchy. The advantage of using hgRNAs over other modern genome editing-

based techniques is that by introducing a PAM sequence into the endogenous locus of your 

guide RNA, the Cas9:gRNA complex will continually target its own locus. This vastly increases 

the number and diversity of new mutations that can be introduced in one barcode, making it 

feasible to track an entire population of cells over several weeks. 
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Here I propose to combine a hgRNA lineage tracing system and single-cell RNA-seq at 

regularly spaced time points to characterize the role of TPCs and DGCs within GBM spherical 

cultures. Although it is unclear how well gliomaspheres recapitulate the heterogenous tumor 

environment, this experiment will establish a basic framework for how these subpopulations of 

cells interact and change over time. Being able to link transcriptional signatures to a cell’s role in 

the developmental hierarchy may provide clues about the mechanisms responsible for 

unchecked proliferation and tumor development. If there is some feature that is predictive of 

how a cell’s descendants will behave, then that may be a potential marker for new therapeutic 

strategies to eliminate TPCs in glioblastoma. Lastly, the success of this experiment will have 

resulted in the creation of a robust system that can be adapted to investigate other healthy and 

diseased cell populations, possibly under various drug conditions or using different types of 

single-cell sequencing assays. 

 

 

 

Specific Aim 1: Introduce a functional hgRNA system into GBM cells. 

 

The purpose of the first aim is to construct a system that will enable lineage tracing in a 

heterogenous population of glioblastoma cells. To this end, I will introduce a functional hgRNA 

locus into GBM cells via lentiviral integration. Like a typical single guide RNA (sgRNA), a 

hgRNA requires a 16-18 nucleotide spacer and a scaffold in order for Cas9 to induce a double-
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stranded break at its target site. However, unlike most sgRNAs, a functional hgRNA must also 

contain a protospacer adjacent motif (PAM) sequence that directs Cas9 to cleave its own locus, 

in addition to any separate target sites8,9. To engineer this, I will mutate the sequence just 

downstream of the of the spacer to the required ‘NGG’ motif, as well the nucleotides that 

hybridize to this sequence in the scaffold, as to not affect the secondary structure. 

 

It will be very important to demonstrate that the hgRNA system is functional. To show that the 

hgRNA can target its own locus, I will introduce a Cas9 under the control of an inducible 

promoter into cells along with a hgRNA locus and a separate target site. After inducing Cas9 

and sequencing these regions, both sites should show evidence of cutting and repair in the form 

of NHEJ-mediated insertions and deletions. An important control for this experiment is to repeat 

the procedure with a normal sgRNA in place of the hgRNA to ensure that there is no homing 

activity without the introduced PAM sequence.  

 

Previous studies have shown that a hgRNA will cease targeting its own loci when its spacer is 

truncated to a length shorter than 16-18 nucleotides8. Since it is crucial that this system can 

generate sequence diversity across an experimental time course of several weeks, I will add a 

50-nucleotide stuffer sequence between the TSS and the spacer of the hgRNA locus to prevent 

this type of truncation. As the hgRNA locus goes through multiple rounds of targeted double-

stranded breaks and accumulates sequence deletions, the stuffer will slowly become a part of 

the spacer. There is evidence that adding a 50-nucleotide stuffer somehow slows down the rate 

of the entire system, allowing the hgRNA to generate sequence diversity at least 14 days 

following Cas9 induction, unless the PAM is mutated8. 

 

The final requirement for a hgRNA system is that it must be possible to consistently read out the 

spacer sequence as a cellular barcode in the primary assay, which is single-cell RNA-seq in this 

case. To do this, I will design reverse transcription (RT) primers for the hgRNA locus regions 

flanking the spacer, as to not interfere with the homing activity. The left primer will be located 

downstream of the TSS inside the stuffer sequence, which be preserved as is unless an 

extreme amount of spacer truncation occurs. Because it is not feasible to amplify the entire 

hgRNA locus, the right primer will be located within the hgRNA scaffold sequence, in a region 

shown to be tolerant of insertions8. 

 

Specific Aim 2: Generate transcriptional profiles of individual GBM cells. 

 

The overarching goal of the second aim is to characterize individual glioblastoma cells at 

specific timepoints in the developmental hierarchy. Although there are many experimental 

options, my approach will be to generate transcriptional profiles of GBM cells using single-cell 

RNA-seq. I am planning to do scRNA-seq as opposed to other modern single-cell assays, such 

as BS-seq or ATAC-seq, because the transcriptome arguably gives the most complete picture 

of all the processes occurring in the cell. However, because epigenetic marks and open/closed 

chromatin regions are believed to play key roles in maintaining cell lineages, it would make 

sense to combine the hgRNA system with these assays in future studies. Another important 

consideration is the selection of timepoints. Since GBM cells are typically passaged every three 
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days, that will also be when I take samples for scRNA-seq. The procedure will be performed 

over a period of two weeks, throughout which the hgRNA system should be active.  

 

At each timepoint, I will use the Smart-seq2 protocol as previously described10 to generate 

transcriptional profiles for 96 individual cells. I plan to use Smart-seq2 as opposed to other 

widely-used scRNA-seq protocols because it currently results in the best coverage of full-length 

transcripts due to its template switching strategy. I don’t anticipate needing to profile thousands 

of cells to reconstruct a developmental hierarchy, but if there is evidence that rare cell 

subpopulations make unique contributions to tumor propagation, I will switch to the Drop-seq 

protocol to increase the number of cells11. To ensure that the scRNA-seq protocol does not 

result in any significant biases, I will also perform bulk RNA-seq on the same samples and run a 

basic correlation analysis to compare it to pooled scRNA-seq data. 

 

Making sense of single-cell RNA-seq data can be more challenging than it is with bulk RNA-seq 

due to cell-to-cell variability and the sparse nature of each transcriptome. To account for some 

of these known confounders, I will use the PAGODA package12 to normalize variance based on 

a negative binomial model and adjust for the dropout of low-abundance transcripts. After 

processing the data, I will identify cell subpopulations through unsupervised clustering. One 

commonly-used approach to cluster single cells is hierarchical agglomerative clustering 

because it doesn’t require a predefined number of clusters or depend on random initializations 

like k-means clustering. Using the implementation from the python scikit-learn library, I will run 

hierarchical clustering on the set of cells from each timepoint. 

 

Since I expect to see two major cell subpopulations in my data -- TPCs and DGCs -- I will use 

the resulting dendrograms to identify the two largest clusters at each time point, removing any 

major outliers. There are a few ways to validate that these two clusters correspond to TPCs and 

DGCs using transcriptional profiles. One approach would be to check if the set of TFs that 

reprogram cells into a stem-like state are upregulated in one cluster. Another method would be 

to perform differential gene expression analysis using PAGODA12 and looking for enriched GO 

terms that obviously correspond to one of the two cell types. Assuming that I am able to label 

the clusters at each timepoint, it will also be important to check that the clusters are consistent 

across development. One way to do this would be to calculate UPGMA (Unweighted Pair Group 

Method with Arithmetic Mean) values for each cluster compared to a pooled set of the data. A 

high value would indicate that a cluster at a particular timepoint has a unique transcriptional 

signature, indicative of either experimental error or some biologically significant phenomenon.  

 

Specific Aim 3: Reconstruct a GBM developmental hierarchy from barcode sequences. 

 

The purpose of the final aim is to reconstruct a general developmental hierarchy for 

glioblastoma using the barcode sequences retrieved from each individual cell. If the hgRNA 

system remains active for two weeks, every GBM cell sequenced should have a spacer region 

with a unique combination of insertions and deletions due to the randomness of the NHEJ repair 

pathway. Since these indels are passed down all a cell’s descendants, it is possible to use 
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temporal information to pinpoint when an event occurred, which can then be used to place each 

cell at the correct location in the developmental lineage. 

 

Because the experimental procedure calls for profiling 96 cells at all eight of the developmental 

timepoints, a method to systematically determine the insertions and deletions in each barcode is 

necessary. I will write a simple script that compares each barcode to the original spacer 

sequence using a local alignment with gap penalty strategy. On average, I would expect that 

barcodes from later timepoints are further from the original sequence. There may be some 

cases where the barcode is so far from the original sequence that it is impossible to deconvolute 

the mixture of insertions and deletions that occurred. If this is the case, I will write a script that 

iterates through each timepoint to find intermediate barcodes that provide information about the 

order and location of events. Finally, I will write a script that creates the hierarchy by linking 

barcodes from adjacent timepoints with the greatest similarity, and removes any ambiguous 

cases. 

 

Once the developmental hierarchy is complete, I will start to generate statistics to find 

biologically significant trends. Relevant questions include: how the sizes of subpopulations 

change over time, which subpopulations tend to have more descendants, how often 

descendants become a different cell type, etc. After that, I can begin to look at the associated 

transcriptional profiles to determine if expression of certain genes correspond to a cell’s role in 

the hierarchy, or how expression of key transcription factors fluctuates. However, the most 

important question I hope to answer through this experiment is whether there are factors that 

predict the proliferative activity of a stem-like TPC and its descendants. To do this, I will identify 

the TPCs with the most stem-like descendants in the hierarchy and do differential gene 

expression analysis to compare these cells to all other TPCs. I hypothesize that there may be 

some transcriptional signature that causes some TPC to drive tumor propagation, and if so, this 

could be used as a potential biomarker for glioblastoma therapeutics. 
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