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1 Background

Understanding the functional implications of different gene transcripts is an active area
of research. It is believed that gene isoforms play an important role in many biological
processes, and that the diversity of transcripts yielded from individual genes is a major
contributor of the increased complexity of higher vertebrates [9, 13]. In humans, it is
estimated that a gene on average has 6.3 isoforms, of which a subset (3.9) are protein-
coding [6]. Gene isoform usage is often tissue-specific and differential usage have been
implicated in development and many diseases, especially cancer [2, 8, 9, 10, 14].

Although isoform switching is often hypothesized as an important feature in cancers,
historically few studies that characterize differential gene expression do so with isoform
resolution [13]. It is suggested that analyses of RNA-seq data at the isoform level are less
frequent due to limitations in experimental technologies combined with dedicated down-
stream computational tools that are designed for counts at the gene level [7, 1]. However,
methods have emerged and proved useful in identifying isoform switching, showcasing ex-
pression shifts between cell types that were previously masked by standard analyses [7].

A study profiling approx. 5000 cancer patients from TGCA [3], covering 12 solid cancer
types, identified common isoform switches with potential functional consequences from
bulk RNA-seq data [13] (Figure 1). In particular, several pan-cancer isoform switches
were identified, most frequently loss of DNA sequence encoding protein domains, that
showed efficacy as biomarkers for predicting patient survival independent of cancer type.
Although the methods described offer a mechanism for identifying isoform switches, they
fail to provide the resolution at the cellular level to fully characterize differential transcript
usage or estimate the potential impact of switches.

The identification of broad, pan-cancer classes of isoform groups (gain or loss of protein
domains or signal peptides, loss of protein coding sequence, and changes in propensity
for nonsense-mediated decay) may suggest a more general biological mechanisms which
are worth characterizing functionally. For example, a previously uncharacterized isoform
switch in AKT1 was identified as a pan-cancer isoform by [13], which is of interest because
AKT1 has been described previously in cancer signaling in melanoma [5].

In contrast, narrower studies have described the specific role of certain isoforms in
cancer, but fail to provide insight towards more general mechanisms or place the charac-
terization in the context of complex cellular tissues [4, 15]. One of such cases is an isoform
switch for ALK which has been previously described to be conversed across melanoma
patients, producing a truncated protein and exciting proliferation in vitro [15] (Figure
2). These broad spectrum and specific characterizations of differential transcript usage
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Figure 1: Illustration of isoform switches in cancer [13]. A.) An isoform switch. Under
different conditions (healthy vs. tumor), isoforms are differentially expressed. B.) Ex-
ample computation of expression quantification. When expression is quantified at the
gene-level, isoforms that are unique to each condition may go undetected. C.) Example
statistical testing of isoform fractions between samples.

in melanoma provide an interesting use case to lay out a spatial mapping of genes in
complex tissues.

2 Hypothesis of the present study

I hypothesize that genes exhibit cell type isoform specificity in metastatic melanoma.
I propose to use combined spatial and high-throughput single-cell RNA-seq to create a
transcriptional map of these complex metastatic tissues at isoform resolution. The goal
of this analysis is to 1) identify isoforms which distinguish a spectrum of cancerous cells,
and 2) understand the spatial relationship of these cells in their heterogenous context
along with functional implications. I hope to identify key differentially expressed iso-
forms which may be masked at the gene level, providing new insight into the complexity
of the transcriptional landscape in metastatic melanoma. The analysis will have two
primary stages. The first is to build a spatially resolved transcriptional landscape via
combined RNA-seq and identify differentially expressed isoforms. The second is probe
the functional significance of cell type isoform specificity derived in phase one by using
recently developed experimental methods for isoform screens [11].

3 Specific aims

3.1 Data generation via combined spatial and high-throughput
single-cell RNA-seq

Single-cell RNA sequencing (scRNA-seq) technologies have become popular tool for sys-
tematically identifying cell populations, providing the ability to quantify cell to cell het-
erogeneity. The growth of interest in this area has led to the development of many
sequencing technologies which each offer unique tradeoffs, primarily in cost, through-
put, and resolution. While high-throughput assays (Drop-seq, 10x Genomics, inDrops)
can identify rare cell types often missed with lower coverage, they produce 3’-end reads
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Figure 2: Novel ALK isoform promotes proliferation in vitro and tumorigenesis in vivo
in mice [15]. De novo alternative transcription start site in intron 19 leads to ALKATI

isoform that promotes cell proliferation in vitro (a) and tumorigenesis in vivo (c).

which are gathered in pre-processing to generate counts at the gene-level. In contrast,
SMART-Seq scRNA-seq is a full-length scRNA-seq method, which allows for isoform
quantification, but is much lower throughput. Spatial method like MERFISH offer an
additional dimension to single cell analysis, but are often coupled with droplet-based
methods because they are biased towards the probes used and much lower throughput.
As a result, there is much debate over what technology is ”best”, with high-thoughput
methods generally falling in favor over SMART-seq.

A recent study from Booeshaghi et al.[10] suggested an integrative approach to using
these technologies which identified isoform cell type specificity. The authors surveyed
cells from mouse primary motor cortex (MOp) via scRNA-seq, collecting reads from both
6,160 SMART-Seq cells and 90,031 10x Genomics Chromium cells. While the 10x data
were stronger in identifying rare cell types, the SMART-Seq data had higher sensitiv-
ity and was capable of identifying isoform-specific markers in dozens of cell types. In
addition, the authors refined gene-level analysis via MERFISH spatial scRNA-seq by ex-
trapolating SMART-Seq isoform quantification, systematically identifying differentially
expressed genes in the MERFISH data and checking whether these genes showed unique
isoform markers identified by SMART-Seq analysis.

The above offers a powerful method for creating a detailed isoform atlas in tissues.
I will apply a variant of this method, analyzing reads from approximately 500,000 10x
Chromium cells and approximately 50,000 SMART-seq cells. The increase in the number
of cells compared to the above is due to the diversity of tumors which are surveyed in my
study. Tissue selection is important for this atlas, so I plan to procure human melanoma
tumors that span a range of clinically relevant backgrounds as previously described in
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[12]. Pairing genotypic information with these tumors will allow for the identification
of specific oncogene mutations. Following the rapidly translational workflow outlined in
[12], I will process tumor tissues immediately after surgical procurement and generate
single-cell suspensions. I will use FAC sorting to isolate immune and nonimmune cells
via CD45+/CD45- gate. Then I will prepare the libraries for both 10x and SMART-seq
protocols. The aim of the droplet-based approach is to help characterize low abundance
transcripts, so I will target a sequencing depth of 120,000 reads per cell.

3.2 Creation of isoform atlas and extrapolating spatial speci-
ficity

As described in [15], I will use both genetic and trasncriptional states to distinguish
between cell types within melanoma tumors. I will quantify gene/isofrom reads using
the kallisto suite [1]. To infer large-scale CNVs, I will average gene expression counts
over stretches of 100 genes within chromosomes to identify aneuploidy, and thus classisfy
cells as malignant. This classification will leverage the many reads provided by the
droplet based method to best determine malignant vs non-malignant. Following standard
preprocessing and quality filtering of reads, I will select the top 5000 most variable genes
(isoforms) and perform dimensionality reduction via UMAP on the first 50 truncated
singular value decomposition (SVG) components. As previously described [15], I would
expect to see cells classified as malignant to form distinct clusters for each tumor which
suggests distinct transcriptional profiles per tumor. However, I expect the expression
profiles of non-malignant cells to cluster by cell type and not by tumor.

Similarly with the SMART-seq data, I would assign cell types and malignant vs non-
malignant classification. However, next I would perform differential expression between
the two classes to identify cell specific isoforms. For each gene/isoform, I will perform
a t-test between the malignant and non-malignant classes, as well as between different
tumor types, using a significance level of 0.05 and performing Bonferroni correction on
all p-value. To identify isoform enrichment that is typically masked, I will also perform
this analysis at the gene level by aggregating isoform counts and performing the same
tests. I expect that many isoform will not be specific, but I hope to verify both previ-
ously described isoform switches, like in ALK and AKT1, as well as unique switches to
malignant melanoma.

Next I will perform MERFISH spatial single-cell RNA-seq on paired tissues from the
high-throughput methods. Due to the lack and length of probes required for MERFISH,
it is not ideal for profiling isoforms directly; however, [10] showed that meaningful spatial
analysis can be made by extrapolating the isoform-level results from SMART-seq to
refine the spatial map (Figure 3). Briefly, if specific isoform expression is observed in
the SMART-seq data for a particular tissue (for example a single isoform or small set
of isoforms), then spatial quantification of the corresponding gene by MERFISH can be
refined to spatial quantification of that isoform. In addition, by performing MERFISH
following SMART-seq isoform analysis, probes can be designed to detect specific isofroms
directly. Although the design of probes in theory just requires a distinct sequence, the
technology is not capable of assaying most isoforms [10], and therefore the extrapolation
procedure is relevant.
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Figure 3: Spatial refinement and extrapolation of isoform expression [10]. If SMART-Seq
quantifications reveal that an isoform is uniquely expressed (a, b), then spatial quantifi-
cations at the gene-level (via MERFISH) can be refined.

3.3 Functional characterization of cell type isoform specificity

Elucidating the biological impact of different isoform usage is very difficult and yet es-
sential for understanding the significance of their observed diversity in humans. A recent
method for screening isoforms, pgFARM (paired guide RNAs for alternative exon re-
moval) [11], is a promising approach for probing this functional significance since it can
manipulate isoforms independent of gene inactivation. Briefly, guide RNAs which are
designed to unique flank an exon are delivered simultaneously into cells, causing the exon
to be excised and the effective skipping of the exon. I propose screening the previously
described isoform of ALK, ALKATI [15], as well as novel isoforms identified in Aim 2 in
an in vivo tumorigenicity assay in mice.

Briefly, using pgFARM I will recapitulate the results from [15] which showed ALKATI

promotes tumorigenesis in mice. I will use the mouse melanocyte (Melan-a) cells line
described in [15], but I will deliver deliver pgRNA with CRISPR-Cas9 to introduce the
alternative transcription initiation site distinctive of ALKATI . I will screen the cells via
PCR, and then subcutaneously and bilaterally inject the cells into 6-8 week old mice
(n=8). Tumor sizes will be measured as previously described with callipers every 2 to
7 days for a period of up to 100 days. An empty vector will be used as a negative
control and the WT will be used as a positive control. I expect the ALKATI to promote
tumorgenesis. This will serve as a proof of concept for using pgFARM to screen isoforms
specific to malignant melanoma. I will repeat the screen for other malignant cell-specific
isoforms identified via the differential analysis in Aim 2 and quantify the functional effect
on metastasis. I will use Analysis of variance (ANOVA) to test the significance of the
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particular isoform.
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Jané-Valbuena, Charles H Yoon, Orit Rozenblatt-Rosen, Alex K Shalek, Aviv Regev,
and Levi A Garraway. Dissecting the multicellular ecosystem of metastatic melanoma
by single-cell RNA-seq. Science, 352(6282):189–196, April 2016.

[13] Kristoffer Vitting-Seerup and Albin Sandelin. The landscape of isoform switches in
human cancers. Mol. Cancer Res., 15(9):1206–1220, September 2017.

[14] Sebastien M Weyn-Vanhentenryck, Huijuan Feng, Dmytro Ustianenko, Rachel
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