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Leveraging European GWAS Results to Enhance Risk Assessment in Admixed 
Populations 

 

Background 

Polygenic risk scores have broad implications for early intervention in genetic 
diseases like breast cancer, diabetes, inflammatory bowel disease, and obesity. 
Disease prediction using polygenic risk scores has improved with the collection of more 
genome-wide association studies (GWAS). Khera et al. have leveraged GWAS data to 
estimate up to 5-fold increased risk for coronary artery disease in some individuals, 
including patients for whom non-genetic risk factors failed to identify increased risk1. 
Clinical implementation of polygenic risk scores could better inform practitioners when 
to recommend screening, preventative medicine, or lifestyle changes to patients. 

Larger GWAS studies can identify less common genetic variants and have more 
statistical power. Study size becomes especially important in populations with more 
heterogeneous ancestry, such as African or Latin American populations, which are also 
at greater risk for contraction of and complications resulting from some disease such as 
adult-onset or type II diabetes2. These admixed populations are often scientifically 
underrepresented and medically underserved3. An often-acknowledged issue of current 
polygenic risk scores is the overrepresentation of European ancestry in available GWAS 
data1,3,4. Bentley et al. review potential barriers to improving GWAS diversity, which 
include low ethnic diversity in science, European bias in technology development, and 
mistrust in the scientific community due to historical exploitation3. While polygenic risk 
scores may become a highly valuable clinical tool, they would further widen health 
disparities if research focusing on admixed population is not prioritized. 

Polygenic risk scores based on a European population have limited 
transferability, but public GWAS data for other populations encompass far fewer 
individuals than studies focusing on Europeans. The scale of GWAS data required for 
admixed populations such that the predictive power of polygenic risk scores would be 
comparable to the currently most successful European ancestry predictive models is 
unclear. While sufficient data remain unavailable for many groups, a large European 
study might improve accuracy when leveraged alongside a small study to make 
predictions for an underrepresented population. Grinde et al. recently investigated the 
portability of European GWAS polygenic risk estimation to Hispanic populations and 
found that large European studies outperform smaller Latin American studies for some 
traits4. The proposed study would attempt to predict phenotypes using both European 
ancestry and matched-ancestry polygenic risk scores and estimate the quantity of data 
needed such that European GWAS summary statistics would no longer be useful for 
prediction in admixed populations. 



Objectives and Significance 

The proposed study addresses the pervasive underrepresentation of medically 
underserved admixed populations in GWAS research and the difficult problem of 
polygenic risk score portability. The proposed study would investigate risk estimation for 
type II diabetes, a well-studied and highly polygenic disease. Because admixed African 
and Latin American communities in the United States are both medically underserved 
and disproportionately affected by type II diabetes, this study would particularly highlight 
the need for continued research on admixed populations to reduce systemic health 
disparities. 

 The proposed study aims to evaluate polygenic risk scores based on large 
European GWAS summary statistics and summary statistics from smaller, matched-
ancestry GWASs by building disease status classifiers. The results would indicate the 
degree of generalizability of effect size estimates based on large European GWASs for 
underrepresented groups and the magnitude of the gap between prediction accuracy for 
patients of different genetic backgrounds. This study would further estimate the volume 
of data necessary to predict risk for admixed African and Latin American patients to the 
current standard for European patients. Success in this research area would help 
decrease the gap in risk assessment accuracy between European and non-European 
populations while large GWAS studies of non-European populations remain scarce. 

 

Aim 1 

The proposed study would evaluate predictive power for polygenic risk scores 
calculated from either large European GWAS data compared to scores calculated from 
small studies where ancestry is more appropriate for the subject population. I would 
construct polygenic risk scores for underrepresented populations based on both small, 
matched ancestry GWAS studies and European ancestry studies. I would then train 
machine learning models to predict type II diabetes status using each and both 
polygenic risk scores for each population and compare their performances. 

 Ancestry Deconvolution 

 I would first measure ancestry diversity in publicly available African and Latin 
American GWAS studies to determine how well the target population represents the 
validation population. I would utilize the 1000 Genomes Project, supplemented with 
Native American haplotypes from Mao et al., for reference haplotypes5. I would consider 
the Western and Northern European (CEU), Finnish (FIN), British (GBR), Iberian (IBS), 
and Toscani (TSI) as European and Esan (ESN), Gambian (GWD), Luhya (LWK), 
Mende (MSL), and Yoruba (YRI) as African reference populations. I would use the 
SHAPEIT2 algorithm to phase all haplotypes6. As in Martin et al., I would use the Mao 
et al. samples with > 99% Native American ancestry as the Native American reference 
populations7. To improve the accuracy of the inferred ancestry, I would run each LAMP-



LD, RFMIX, and HAPMIX and generate consensus calls as previously described by the 
1000 Genomes Project Consortium.8,9,10,11 

Polygenic Risk Score Construction 

 I would first filter the reference datasets for biallelic single nucleotide 
polymorphisms (SNPs) and remove ambiguous SNPs and variants with lower than 
0.1% minor allele frequency (MAF). In order to obtain weights for constructing polygenic 
risk scores, I would clump summary statistics files to exclude variants in linkage 
disequilibrium. I would vary the source populations in consideration of the ancestral 
makeup of the admixed populations to ensure that they are, as much as possible, 
adequately represented. I would again use second-generation PLINK to construct 
polygenic risk scores for each phenotype and population, using the following p-value 
thresholds to identify the best model: p < 5 ×10−8, p < 1× 10−6, p < 1 ×10−4, p < 1 × 10−3, 
p < 1 x 10-2, p < 5 x 10-2, p < 0.1, p < 0.2, p < 0.3, p < 0.4, p < 0.5, p < 0.75, p <= 1.0. I 
would use principal component analysis to correct for population stratification as 
described in Price et al10. 

 In addition to polygenic risk scores calculated based on European summary 
statistics (PRSEU) and polygenic risk scores calculated based on matched-ancestry 
summary statistics (PRSMA), I would attempt to estimate polygenic risk through a 
weighted average of summary statistics from each (PRSWA). I would include all SNPs 
that passed the MAF filter in both and the p-value threshold in at least one of the target 
populations. I would calculate the log odds ratio of the effect sizes and average them 
between the European and matched-ancestry targets, weighted by the proportion of 
European ancestry present in the matched-ancestry population. 

Predictive Model Training 

 I would use an array of machine learning models to build classifiers to predict 
disease status in independent validation datasets. All three classes of polygenic risk 
scores would be considered as predictors in combination and independently, along with 
traditional clinical risk factors. The non-genetic predictors would explicate likely 
confounding factors and provide a negative control classifier (model 0) that excludes all 
polygenic risk scores and would be useful for comparison to the other models (Table 1). 
Each model design would be used to train popular machine learning algorithms such as 
K-nearest neighbor, random forest, and elastic net. 

Table 1: Proposed disease status classifier designs to be evaluated through this study. 

Model No. Design 
0 Disease Status ~ Age + BMI + Waist : Hip Ratio + … 
1 Disease Status ~ PRSEU + Age + BMI + Waist : Hip Ratio +  … 
2 Disease Status ~ PRSMA + Age + BMI + Waist : Hip Ratio +  … 
3 Disease Status ~ PRSWA + Age + BMI + Waist : Hip Ratio + … 
4 Disease Status ~ PRSEU + PRSMA + PRSWA + Age + BMI + … 

 



Evaluation and Expected Results 

 I would evaluate the disease classifiers based on accuracy and false negative 
rate (FNR) and the height predictive models on mean squared error (MSE). Because 
European ancestry would be present for most Latin American individuals, I expect that 
the best-performing model for Latin American populations would take into account 
European-based polygenic risk either through model 3 or 4 (Table 1). European 
haplotypes would likely capture only a small proportion of genetic variance present in 
African populations due to population bottlenecks in ancestral pre-European groups. I 
thus expect the utility of PRSEU to be lower for prediction in African populations. I would 
also assess imputation accuracy for each population using leave-one-out validation. 

 

Aim 2 

The proposed study would attempt to estimate the quantity of GWAS data from an 
admixed population required to make a potential clinical impact comparable to that of 
current European polygenic risk scores. I would simulate GWAS, genotype arrays for 
European and non-European populations of different sizes. I would then calculate “true” 
and “estimated” polygenic risk based on each simulated population and use predictive 
models as above. I would finally estimate the prediction improvement with increased 
European and matched ancestry datasets. 

 Literature Review 

 I would first perform a literature review of polygenic scoring studies by searching 
the databases PubMed and bioRxiv since 2017 and combining these recent data with 
the literature review results reported by Duncan et al13. I would record the ethnicity and 
number of participants in each study and compare the accumulation of European-, 
African-, and Latin American-focused GWAS data over time. The collection rate and 
current amount of data for each population would be considered in the size of the 
simulated GWASs. 

Simulation of European and Admixed Genotypes 

I would simulate genotypes using msprime with GRCh38 and assuming a 
mutation rate μ = 2x108 mutations per base per generation, as previously described12,7. 
I would use a previously reported 1000 Genomes demographic model to simulate 
European individuals14. To simulate an admixed African population, I would consider 
two ancestral populations: CEU and YRI. I would include these populations as well as 
Native American ancestry when simulating a Latin American population. The simulated 
proportions of each ancestry present in each individual will vary within a range based on 
observations from ancestry deconvolution in Aim 1 and those previously reported in 
Martin et al.7 The simulated population sizes will be based on current and projected 
numbers from the literature review where admixed populations sizes will be some 



fraction of the European population size, e.g. 25%, 50%, 75%, 90%, 100%, and 200% 
of n = 200,000 Europeans. 

Simulation of Polygenic Risk Scores 

Following genotype simulation, I would simulate polygenic risk scores based on 
each simulated reference population (European, admixed African, and Latin American 
of various sizes). I would assign 200, 500, or 1000 causal alleles with randomized 
heritabilities of either 0.33, 0.50, or 0.67 to simulate phenotypes of different polygenicity 
as described in Martin et al.7 I would rank simulated individuals by liability (as previously 
defined7) and consider the top 5% as disease cases, then consider a random 5% of the 
remaining population as controls. Another random 5% of individuals, none of whom 
would be included in the case or control sets, would be reserved for validation. I would 
then perform a GWAS comparing the case and control populations and repeat the MAF 
filtering, clumping, and polygenic risk score construction as outlined in Aim 1. Polygenic 
risk scores would be constructed for the remaining matched-ancestry validation dataset. 
In the case of European simulations, polygenic risk scores would also be constructed 
for an equal number of simulated admixed African and Latin American individuals.  

Evaluation and Expected Results  

 I would predict disease status in the validation datasets from simulated polygenic 
risk scores using the best-scoring model as determined from Aim 1 (Table 1) and 
evaluate them as in Aim 1. I expect that the polygenic risk scores constructed based on 
the simulated European GWAS will outperform those based on the small (25% of n) and 
medium (50% of n) matched-ancestry GWASs. I expect that the matched-ancestry 
scores will reach the performance of the European scores before the simulated study 
size reaches n (i.e. at 75% or 90% of n). However, because of the heterogeneity of the 
simulated Latin American and admixed African populations, the admixed polygenic risk 
scores will likely perform worse on admixed validation sets than European polygenic 
risk scores perform on European validation sets even when the GWAS sizes are equal. 
I expect that to reach equal predictive value in matched-ancestry populations, the sizes 
of the admixed population GWASs must surpass the size of current European libraries. I 
predict that requisite GWAS size will be proportional to the admixture of the population, 
so the Latin American simulation will need to be larger than that of the admixed African 
simulation to achieve the European prediction standard. I would compare the estimated 
GWAS sizes to the data collection rates for each population as determined in the 
literature search in order to stress the need for prioritization of underrepresented 
admixed populations in polygenic risk studies. 
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