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Introduction and Motivation 
 
Cancer cell lines are a ubiquitous pre-clinical model for testing drug sensitivity, genomic 
alterations and signaling pathways in many different tumor types. They are especially 
attractive because of the ease with which they can be manipulated in vitro, where finely 
controlled microenvironments can measure response to drugs, gene knockdown or culture 
conditions. More recently, there has been an interest in high-throughput characterization 
of the genomic alterations present in cancer cell lines. Notable projects include the 
Cancer Cell Line Encyclopedia (CCLE) (Barretina 2012) in the US and the Cancer Cell 
Line Project (Forbes 2011) in the UK. Additionally, a large scale RNAi screen against 
~11000 genes has been recently applied to 102 cell lines to identify genes that are 
essential for cancer growth (Project Achilles), potentially identifying novel targets for 
drug development (Cheung 2011).  
 
Despite efforts to characterize cancer cell lines, little is known about how the process of 
creating and passaging an immortalized cell line changes the underlying biology of the 
cells. Real tumors do not live in a culture dish, but rather reside in a complex in vivo 
environment. The surrounding stroma provides mechanical support, growth hormones 
and cytokines signal to tumor cells, and our own immune system constantly challenges 
the growing tumor. Additionally, the concentration of oxygen, nutrients and vasculature 
varies greatly across tumors, and may contribute to drug and radiation resistance (Gray 
1953). Thus, cells in culture face an entirely different fitness landscape, and it follows 
that alterations selected for in vivo may confer no selective advantage in culture (or may 
be damaging). Further, mutations that are passengers (non-advantageous) in vivo may 
drive expansion of that clone in culture. Previous studies have tracked cytological 
changes in cell line over time (Macville 1999) and compared cell line transcriptomes to 
unmatched primary tumors (Gillet 2011). However, to my knowledge, there have been no 
genome wide studies to systematically identify genes that are uniquely advantageous to 
cancer cell culture, rather than for in vivo proliferation. The discovery of such alterations 
could redirect drug development towards more relevant genes, and would provide 
important information for designing future cell-line based experiments.     
 
The relative fitness of cancer cells in vitro is expected to be governed by the acquisition 
of protein coding mutations, as well as by changes in gene regulation that alter gene 
expression. For this reason, I will quantify how the genome and transcriptome of cultured 
cell lines evolves after removal from the primary tumor. Three new cell lines will be 
derived from patients with acute myeloid leukemia (AML), and whole genome 
sequencing (WGS) and RNA-sequencing (RNA-seq) will be applied to matched primary 
and cell cultures at two times points: low passage cells (LPC) and high passage cells 
(HPC). I will interpret the results of sequencing in the context of data from the CCLE and 
Project Achilles to generate a list of genes that are significantly altered, or have 
significant expression changes, following the transition to cell culture. 
 
Hematopoietic cancers provide the best system for this study for several reasons. Tumors 
are inherently heterogeneous, containing multiple subclones with unique genomic 
features. Ideally, one would want the established cell lines to derive from the same 



location as the cells sent directly for sequencing, to minimize confounding from tumor 
heterogeneity. Because leukemia cells are not mechanically confined to surrounding 
stroma, they are well mixed -- cells sent for culture and cells sent for immediate 
sequencing will be drawn from the same population. Additionally, establishing leukemia 
cell lines is technically easier, as lines can be established directly from peripheral blood 
draws without having to be enzymatically dissociated or passaged through a xenograft. 
Finally, many leukemia patients (specifically AML) are young, and leukemia cancer 
genomes have low rates of mutations and simpler somatic genomes (Ley 2008).  
 
Although previous cancer cell line sequencing projects do not sequence matched 
primaries, whole genome sequencing (WGS) of temporally and spatially separated 
tumors within a single patient are now being reported. Similar to the methods proposed 
here, Ding et al performed WGS on matched normal, primary, metastasis and xenograft 
samples from a single breast cancer  (Ding 2011). By looking at mutations, structural 
variations and copy number changes across the four sequences, they successfully 
identified private mutations in the metastasis and xenograft, indicative of continuous 
tumor evolution. The approach proposed here is similar in methodology, but directed 
towards a different question: what are the genomic changes that provide fitness to cells in 
vitro?   
 
Specific Aim 1: Establish three AML cancer cell lines from separate clinical samples 
 
Heparinized peripheral blood will be obtained from pediatric patients being treated at the 
Dana-Farber Cancer Institute with a diagnosis of AML confirmed by a cytopathologist. 
The clinical characteristics of patients will depend on the patient population at the time of 
the study. Leukemia cell lines from both treated and treatment naïve patients have been 
previously established (Asou 1991, Sun 2004). Age, treatment status, and time to 
remission will be recorded for all patients. The success rate for establishing cell lines 
from peripheral blood in B-cell precursor cell lines is between 5% and 30%, with 
treatment naïve patients being the most difficult (Drexler 2011). To obtain three AML 
cell lines, I expect to attempt cultures for 10-20 patients with AML.   
 
I will modify an established protocol for isolating leukemia cell lines from peripheral 
blood, based on previous successful reports of establishing AML cell lines (Sun 2004, 
Drexler 2011). Samples will be diluted 1:2 in DMEM and centrifuged using a Ficoll-
Hypaque density gradient solution. The mononuclear layer at the top will be removed, 
washed, and separated into equal partitions. Each aliquot will be counted and tested for 
viability. One vial will be immediately frozen using RNAlater (Invitrogen) at -196oC to 
preserve the RNA and DNA state of the cells. Following establishment of a cell line from 
the other aliquot, this sample can be thawed, and profiled as described in Aim 2 and Aim 
3.  
 
Cells for culture will be resuspended to 106 / mL and incubated in 10% CO2 at 37oC. Due 
to the difficulty of establishing cytokine-independent cell cultures, cell media will be 
supplemented with GM-CSF, IL-3, PIXY-321, SCF and IFN-gamma, which have been 
applied with high success rates to AML (Drexler 1997). Leukemia cells rapidly 



proliferate in the first 4 weeks following isolation, and cells will be passaged every two 
days.  
 
There are several potential difficulties in establishing long-term leukemia cell lines. One 
challenge is distinguishing tumor cells from Epstein-Barr Virus (EBV) transformed 
lymphoblast cells, which also immortalize and proliferate rapidly. After 2 weeks of 
culture, I will perform RT-PCR to look for copies of the EBV+ lymphoblasts. 
Additionally, I will test all cell lines for the presence of mycoplasma species, a common 
and damaging contamination frequently encountered when establishing novel cell lines. 
 
After two months of continuous culture, I will freeze portions of the cell lines for later 
culture and sequencing, and these cells will be designated as the low-passage cells (LPC). 
After twelve months of continuous cultures, the cells will be designated as high-passage 
cells (HPC). The total number of passages during this time will be recorded to establish a 
per-passage event rate for the leukemia cell lines. 
 
Specific Aim 2: Profile the genomic differences between primary tumors and cell 
lines  
 
To find altered genes that confer an advantage specific to cell culture, I will perform 
whole genome sequencing at 60x coverage through the Genome Sequencing Platform at 
the Broad Institute from the cells generated in Aim 1. Additionally, to ensure that 
genomic alterations represent somatic mutations, matched normal tissue will be 
sequenced to 30x for each patient. Mutation calls for all samples will be identified using 
Genome Analysis Took Kit (GATK) software (Broad Institute). Structural rearrangement 
will be identified using the dRanger algorithm, which identifies paired-end reads that 
map to distant genomic locations (Berger 2011). The purity and ploidy of each sample 
will also be identified using the ABSOLUTE algorithm, a method that uses SNP chip 
data to estimate the heterogeneity of tumors (Carter 2012). 
 
Mutations and structural rearrangements present in all three samples will be considered to 
represent true alterations, following manual review of the relevant reads (as in Ding 
2011). Potentially functional alterations (mutations and small indels present in coding 
regions, splice sites, non-coding RNA genes and within 1 kb of transcription start sites) 
present in either the LPC or HPC cells will be will be validated by PCR amplification and 
sequencing. Alterations not present in the primary will be called private alterations, 
which may have occurred de novo or from growth of a previously undetected subclone. 
Additionally, all cells will be karyotyped to identify large-scale translocations, a frequent 
driver event in hematopoietic cancers. 
 
Due to the higher rates of genomic alterations found in cancer cells and cell lines, I 
expect many private alterations to arise during the course of cell culture. In this case, with 
only three samples it will be challenging to identify individual genes and alterations that 
confer advantages specific to the in vitro environment. To overcome this challenge, I will 
narrow the list of candidate genes using data from the 192 hematopoietic cell lines 
profiled in the Cancer Cell Line Encyclopedia (CCLE), as outline in Figure 1. Because 



CCLE performed targeted sequencing rather than WGS, current methods for determining 
mutation significance will inapplicable (e.g. InVex, Hodis 2012). Instead, I will create an 
algorithm that identifies genes that are statistically more likely to mutated than expected 
by chance by permuting mutations within samples, controlling for gene size, overall 
mutation rate, and GC content. Significantly altered genes are expected to have either 
contributed to oncogenesis, proliferation in cell culture, or both. Additionally, to identify 
genes that are frequently amplified or deleted, I will apply the GISTIC algorithm 
(Mermel 2010) to the SNP data from the 192 CCLE leukemia cell lines. Briefly, GISTIC 
uses SNP probe intensity across many samples to find regions of the genome with 
frequent copy number alterations.  
 
Genes that have been mutated, deleted, amplified or rearranged during the process of cell 
culture will be cross-referenced to the list of significantly altered genes across the 192 
CCLE cell lines, creating a list of candidate genes that are advantageous for cell growth 
in culture. To validate that these alterations provide a growth advantage, I will apply 
shRNAs against the altered genes and compare the growth curve against a sham shRNA 
control. For each gene, three different shRNAs will be applied, and knockdown will be 
confirmed by western blot. In addition, I will apply the shRNAs to the six leukemia cell 
lines from the NCI-60 panel. In the case that the gene has a known inhibitor, I will create 
drug sensitivity curves for the three novel cell lines and the six NCI-60 leukemia lines.  
 
Specific Aim 3: Profile the transcriptome in the primary tumors and cell lines 
 
I will perform RNA-seq on the primary tumors and LPC and HPC cells to quantify RNA 
expression levels among the samples. Sequencing reads will be aligned, normalized and 
quantified with GenePattern (Broad Institute). To establish significance values for 
differential expression, the Cuffdiff (Trapnell 2013) algorithm will be applied to each 
sample independently, across all three time points.  Briefly, Cuffdiff uses variability in 
read depth along a gene, along with mapping quality scores, to provide an estimated 
variance of gene expression. Cuffdiff will then compare expression among the conditions 
(i.e. time points) and provide a ranking of genes that are differentially expressed.  
 
As with identifying significantly mutated genes, the actual amount of variation in gene 
expression between primary and culture cells is unknown. With only three samples, one 
challenge that could arise is that there may be insufficient power to identify genes whose 
expression is more significantly altered than others. To narrow the list of differentially 
expressed genes to ones that have the greatest biological significance to growth in cell 
culture, I will utilize data from the Achilles project, a large shRNA screen of 102 cell 
lines that measured the relative abundance of cells following gene knockdown. Genes 
that are upregulated specifically in novel cell lines should be expected to confer a growth 
and survival advantage to the cells in culture, and their knockdown in Achilles should 
inhibit cell growth. Conversely, genes that are downregulated should have either no effect 
on cell survival in culture, or inhibit cell growth in vitro. The major drawback to this 
analysis is that among the 102 cell lines, only two are hematopoietic (multiple myeloma 
and leukemia).   
 



Finally, to understand the biological significance of the differentially expressed genes, I 
will use GenePattern to perform gene ontology (GO) enrichment analysis to identify 
pathways that are significantly altered in cell culture. Additionally, I will perform two-
dimensional hierarchical clustering on the gene expression profiles to identify if cells are 
more similar among cases within a time point (i.e. culture time is most important 
indicator of similarity), or among different time points within a case. To further 
understand gene expression changes, I will repeat the clustering after incorporating gene 
expression profiles from 40 additional leukemia cell lines (Andersson 2005). 
 
Additional Possible Experiment 
 
Although not included in my specific proposal, a recently reported data set of WGS for 
eight matched primary and recurrent post-treatment AML tumors suggests an additional 
interesting experiment (Ding 2013).  They find novel mutations and a high incidence of 
transversions in AML cells following chemotherapy. Ultimately, one would like to know 
how well cell line models recapitulate true tumor response to chemotherapy. Using the 
LPC and HPC cell lines, I would apply identical chemotherapy drugs as used in 
treatment, and resequence following the development of resistance to identify new 
mutations and rearrangements. This would address the question of whether the 
mechanism of drug resistance in cell lines is similar to the mechanism now seen in 
resistant in vivo tumors. 
 
 

 
Figure 1: Flowchart of the proposed workflow to identify genes that are putatively 
important for cell culture, but not found to be altered in primary tumors. Because it is 
unknown what the initial mutation rate of leukemia cell lines is following cell culture 
establishment, incorporating CCLE data (as shown on left hand side) might be required to 
narrow the list of altered genes to those that are most promising.  
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