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Introduction and Motivation 

We are in the midst of a revolution in understanding and characterizing human genetic variation. 
With the ready availability of whole-genome sequencing data has come new insights into the 
mechanisms that drive human variation. For example, recent evidence has suggested that 88% of 
disease-associated polymorphisms lie in non-coding regions of the genome1. Of particular 
interest in the understanding of human genetic variation is the identification of variants that arise 
from adaptive forces in the environment (such as infection, changes in diet, or exposure to 
toxins), as these variants may explain the continued existence of, or variability in resistance to, 
disease. However, pinpointing the specific variant that is under selection is challenging, since 
many nearby alleles are likely to be co-inherited with the mutation of interest.  In order to 
identify the causal variant driving selection, the Sabeti lab recently developed Composite of 
Multiple Signals (CMS), a test which combines multiple signals of selection to distinguish causal 
variants under recent positive selection with a resolution up to 100-fold higher than previously 
possible2. When CMS was applied to the entire human genome, the vast majority (90%) of 
selected variants were predicted to be regulatory. However, the functional implications of most 
of these selected regulatory variants remain unknown. 

Alternative splicing is a post-transcriptional regulatory mechanism that allows for the creation of 
many distinct mRNA and protein products from our limited repertoire of approximately 25,000 
genes, each with distinct properties in stability, subcellular localization, and function3. This 
capability is critical in multicellular organisms, in which distinct modes of regulation and subtle 
variations of function are often needed in order to allow diverse cell types to carry out their 
specialized biological roles. In testament, the proportion of genes which undergo alternative 
splicing rises in progression from lower- to higher-order organisms, reaching ~90% in humans4. 
Hence, in higher-level organisms such as humans, splicing is poised as a key substrate for 
positive evolutionary change. Indeed, a vast array of polymorphisms which affect the identity 
and relative proportions of splicing products have been noted in the human genome, many of 
which have been directly linked with disease5. Disappointingly, however, very few studies have 
attempted to identify those polymorphisms which have been subject to positive selection, and 
examples of splicing variants that have allowed humans to adapt to environmental or biological 
challenges are generally lacking.  

I propose a comprehensive search of the human genome for polymorphisms which have been 
subject to positive selective pressure in the recent evolutionary past to alter splicing isoforms or 
their proportions. We will first ask if the splicing architecture within CMS-identified positively 
selected regions is similar to that of the rest of the genome. This may enlighten us to general 
splicing properties which make a gene more or less susceptible to positive selection. We will 
then begin our search by exploiting mechanistic insight into the evolution and regulation of 
splicing to predict polymorphisms which create novel isoforms or alter the proportions of 
existing isoforms. We will utilize high-throughput expression data coupled with deep genome 
sequencing to verify the splicing effects predicted in silico. Finally, we will validate high-



confidence splicing polymorphisms using a minigene assay and perform additional population 
genetic analyses as well as follow-up molecular and biochemical experiments to unveil the 
evolutionary history of these polymorphisms and their biological role in human adaptation. 

 

Specific Aim 1: Compare the splicing architecture of positively-selected regions to the rest of 
the genome and identify candidate splicing polymorphisms responsible for positive selection 
signatures. 

We will first analyze the splicing architecture of genes within CMS-identified positively-selected 
regions in order to identify properties of the splicing machinery that positive selection may 
potentially rely upon (such as the ability to selectively regulate a specific isoform or the ease of 
creating a new splice site). Of note, we are interested in all outcomes of positive selection at this 
stage and not just those that act directly through the splicing machinery. For example, if 
alternative exons are more likely than constitutive exons to undergo positive selection by 
alteration of the protein sequence, this is an interesting finding that provides useful insight into 
the role of splicing in positive selection in the human genome. Although many genes present in 
CMS regions will be neutral “hitchhikers” not actually subject to recent positive selection, the 
enrichment of positively selected genes within CMS regions relative to the rest of the genome 
may allow detection of differences in parameters of the splicing architecture at statistically 
significant levels (calculated via the Kolmogorov-Smirnov test for goodness of fit between the 
distribution of the parameter under investigation within CMS regions and its distribution within 
the whole genome). Parameters relevant to our study of splicing architecture will include intron-
to-exon ratio (because longer introns and shorter exons have been observed over the course of 
higher organism evolution, and alternative exons are often flanked by longer introns than 
constitutive exons), number of fixed and polymorphic Alu transposable elements (because Alu 
elements are often involved in the creation of novel splicing isoforms), and the predicted strength 
of splice sites and Exonic Splicing Enhancers (ESEs) (because the weakening of splice sites and 
ESEs is associated with the transition from a constitutive exon to a regulated alternative exon)6. 

Turning to our search for polymorphisms which directly interact with the splicing machinery, we 
will begin by identifying within the approximately 100 polymorphisms of each of the 412 
positively-selected regions identified by running CMS on the pilot phase of the 1000 Genomes 
Project those with the potential to create novel splicing isoforms. Insight into the evolution of 
novel splice isoforms has identified 3 predominant mechanisms6: exon shuffling, exonization, 
and transition. Each of these mechanisms involves characteristic intermediates which can be 
identified in the genome. Exon shuffling is the process in which a new exon is inserted into an 
existing gene or an exon is duplicated in the same gene. Variants which arise from exon 
shuffling manifest as Copy Number Variants (CNVs). A recent study which mapped CNVs using 
1000 Genomes data identified 1,119 CNVs that overlap with exons7. We will determine if any of 
these CNVs result in polymorphic exon duplications relative to the ancestral state and are present 



within CMS regions. Exonization is a process in which intronic sequences gain splice sites and 
become exons. Alu elements contain sequences similar to consensus splice sites and hence novel 
splice sites can be created when a single element inserted in the antisense orientation acquires 
characteristic mutations or when the hairpin formed by two complementary elements inserted 
adjacent to each other is modified by A-to-I RNA editing. A recent study identified 6,000 
polymorphic Alu element insertions using 1000 Genomes data, in addition to the 1.1 million Alu 
elements which are fixed in the human lineage8. We will identify fixed Alu elements containing 
polymorphisms that create novel splice sites or polymorphic Alu elements which have acquired 
mutations that create novel splice sites. Finally, in transition, alternative cassette exons are 
derived from constitutive exons. This can occur when two complementary Alu elements adjacent 
to each other form a hairpin in the upstream intronic sequence which serves as an Intronic 
Splicing Silencer9. We will identify polymorphic Alu insertions resulting in the formation of a 
hairpin upstream of an exon. We will also identify polymorphisms which weaken the splice sites 
and ESEs of constitutive exons (as described below). 

In addition to identifying the creation of novel isoforms, we will also identify polymorphisms 
which alter the proportions of existing isoforms by altering the affinity of trans-acting splicing 
factors to cis-acting (sequence) elements (CAEs). Currently, the best-characterized CAEs include 
the 5’donor, 3’acceptor and branchpoint consensus splice sites, as well as Exonic Splicing 
Enhancers (ESEs). We will combine results from multiple in silico CAE prediction tools, 
including MaxEntScan, Splice Site Finder, ESE Finder, and RESCUE-ESE, while imposing 
appropriate thresholds to predict polymorphisms which alter splice site or ESE strength with 
maximal sensitivity and specificity10. ESE prediction has particularly low specificity and we will 
take special care to verify predicted ESE polymorphisms with RNA-sequencing data. 

 

Specific Aim 2: Identify splicing quantitative trait loci for the LCL cell line in order to verify the 
predicted effect of candidate splicing polymorphisms.  

Once we have predicted candidate splicing polymorphisms in silico, we will look for evidence 
that the predicted novel splicing isoforms or changes in isoform proportions occur in a natural 
biological setting. We will thus investigate genotype-phenotype correlations in LCLs (EBV-
immortalized B-lymphocytes derived from peripheral blood) for which data is already available 
through the 1000 Genomes Project. A caveat of this approach is that not all trans-acting splicing 
factors are expressed in LCLs, leading to false-negatives. However, previous studies that used a 
similar approach attained a suitable sensitivity5. Polymorphisms which result in differential 
expression of splicing isoforms, such as those we will predict in our in silico studies, are referred 
to as splicing quantitative trait loci (sQTLs). In order to identify sQTLs in the LCL cell line we 
will require high-density genome sequencing data (in order to genotype each polymorphism) as 
well as genome-wide expression data (to identify the splicing isoforms produced) across many 
individuals in multiple populations (to maximize heterozygosity across loci).  



Genome data will be derived from participants in the pilot phase of the 1000 Genomes Project. 
This is a natural choice, as our CMS genome-wide scan was carried out on 1000 Genomes data. 
Illumina RNA-sequencing data for LCLs is available for 60 CEU (European) participants11 as 
well as 69 YRI (African) participants12. Unfortunately, RNA-seq data is not currently available 
for CHB/JPT (Eastern Asian) participants. We will derive LCL expression data for CHB/JPT 
participants from a study in which LCL expression data was measured using the Illumina 
Human-6 v2 Expression BeadChip from 109 CEU, 108 YRI, and 162 CHB/JPT participants in 
phase 3 of the HapMap Project, many of whom also participated in the 1000 Genomes project13. 
We will derive genome sequencing data as well as microarray expression data from the subset of 
participants of the aforementioned study that also participated in the 1000 Genomes Project. A 
caveat of this approach is that the Illumina BeadChip only contains probes for well-characterized 
splicing isoforms. Nonetheless, including expression data for the CHB/JPT population will 
markedly improve our power to measure sQTLs affecting well-characterized splicing isoforms 
present at high minor allele frequencies (MAF) in this population (presumably due to positive 
selection).  Another concern is that pooling data across platforms may produce false positive 
correlations due to platform bias. To minimize platform bias, we will perform linear regressions 
between RNA-seq counts and microarray isoform intensities for CEU and YRI participants for 
which both RNA-seq and microarray data is available. We will use the regression coefficients we 
derive to generate predicted RNA-seq counts for CHB/JPT participants. We will ensure that 
platform bias is minimized by performing 10-fold leave-one-out-cross-validation and assessing 
cross-platform correlation coefficients after linear regression. We will discard isoforms that 
repeatedly result in poor cross-platform correlation (for example, due to non-linear probe 
hybridization). 

For individuals for which RNA-seq data is available, we will map reads which are not present in 
RefSeq to the genome in order to identify novel splicing isoforms. To identify sQTLs, the 
fraction of reads in a gene that falls in a given exon will be treated as a quantitative trait, and 
linear regression will be performed against number of derived alleles for each polymorphism 
within the exon under investigation and its flanking introns. To correct for multiple tests of 
association, we will carry out multiple permutations on expression data followed by FDR 
correction. The effects of population stratification will be controlled for by Principle Component 
Analysis.   

 

Specific Aim 3: Validate high-priority splicing polymorphisms with minigene assays and 
investigate the potential selective role of validated candidates. 

Finally, we will validate that our candidate splicing polymorphisms are causal for the changes in 
splicing observed. Because our means of validation is low-throughput, we will prioritize high-
confidence polymorphisms for validation. In silico predictions will be sufficient evidence for 
polymorphisms which alter splice sites, as 83% specificity is attainable at appropriate 



thresholds10.  However, verification of the predicted splicing effect in RNA-seq data will be 
required for polymorphisms which create novel splice isoforms or alter isoform ratios by 
interfering with ESEs, as in silico prediction tools developed for these purposes have markedly 
lower specificity. Furthermore, we will limit validation to polymorphisms whose CMS score 
places them among the top 20 candidate causal variants in a given CMS region after repeating 
CMS with simulation parameters specific to the variant of interest (including population 
demographics, allele frequencies, and local recombination rate). Although each CMS region 
contains an average of 100 candidate variants, the causal variant is among the top 20 variants in 
50% of random simulations and in a larger proportion of targeted simulations.  

Bench-top validation will involve a minigene assay14, in which the exon of interest (the “test” 
exon) is cloned along with its flanking introns between constitutively spliced GFP exons, such 
that GFP fluorescence is inversely correlated with inclusion of the test exon. Constructs will be 
generated which are identical except with respect to the candidate polymorphism in order to 
assess if the derived allele of the candidate polymorphism is sufficient to alter splicing of the test 
exon. The minigene assay will be performed in an LCL cell line in order to replicate the context 
in which the predicted effect was (potentially) verified. 

Once a splicing polymorphism is validated, we will perform follow-up molecular and 
biochemical experiments to unveil its biological role in human adaptation. Oftentimes coding 
exons correspond to distinct protein domains15. Therefore, if a coding exon is affected we will 
analyze available protein structural data to determine if the splicing event affects the modular 
structure of the protein product. We will also determine if the splicing event affects subcellular 
localization. If a non-coding exon is affected, we will test for differential mRNA stability or 
translation rate between isoforms.  Finally, if a particular trans-acting splicing factor is involved, 
we will investigate the tissue expression profile of the factor as well as its evolutionary origin 
(alternative splicing events often arise after the emergence of a novel splicing factor). 

In order to investigate the evolutionary history of the polymorphism, we will perform spatially-
explicit population genetic simulations to predict the Bayesian posterior probability distributions 
of various population genetic parameters, including date and location of origin as well as 
selection intensity. Our spatially explicit model will rely upon allele frequencies observed in the 
52 global populations studied in the Human Genome Diversity Panel (HGDP), and will consider 
various demographic processes, including population growth, sporadic long-range migration, 
cultural diffusion of farming technology, gene flow between demes and between cultural groups, 
and the effects of the spread of farming on carrying capacities16. Coupled with biological 
information, this will allow us to gain insight into factors which shaped the recent evolution of 
humankind.	  
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