
The cell can be considered the fundamental unit in  
biology. For centuries, biologists have known that multi­
cellular organisms are characterized by a plethora of 
distinct cell types. Although the notion of a cell type is 
intuitively clear, a consistent and rigorous definition has 
remained elusive. Cells can be distinguished by their 
size and shape using a microscope, and attributes based 
on their physical appearance have traditionally been 
the primary determinant of cell type. Later, discover­
ies in molecular biology made it possible to character­
ize cell types on the basis of the presence or absence of 
surface proteins. However, surface proteins represent 
only a small fraction of the proteome, and it is likely 
that important differences are not manifested at the 
cell membrane.

Advances in microfluidics have made it possible to 
isolate a large number of cells, and along with improve­
ments in RNA isolation and amplification methods, it is 
now possible to profile the transcriptome of individual 
cells using next­ generation sequencing technologies. 
Technological developments have advanced at a breath­
taking speed. The first single­ cell RNA sequencing 
(scRNA­ seq) experiment was published in 2009, and the 
authors profiled only eight cells1. Only 7 years later, 10X 
Genomics released a data set of more than 1.3 million 
cells2. Thus, we are now in an era where large volumes 
of scRNA­ seq data make it possible to provide detailed 
catalogues of the cells found in a sample.

For researchers to be able to take full advantage of 
these rich data sets, efficient computational methods are 
required. There are several steps involved in the com­
putational analysis of scRNA­ seq data, including quality 
control, mapping, quantification, normalization, clus­
tering, finding trajectories and identifying differentially 
expressed genes (Fig. 1). The steps upstream of clustering 
may have a substantial impact on the outcome, and for 
each step numerous tools are available. Moreover, there are 
also software packages that implement the entire clustering 

workflow, for example, Seurat3, scanpy4 and SINCERA5. 
We encourage the reader to consult recently published 
overviews of this workflow6–10, as this Review focuses on 
clustering alone. As clustering is the key step in defining 
cell types based on the transcriptome, one must carefully 
consider both the computational and biological aspects.

The ability to define cell types through unsupervised  
clustering on the basis of transcriptome similarity has 
emerged as one of the most powerful applications of 
scRNA­ seq. Broadly speaking, the goal of clustering is 
to discover the natural groupings of a set of objects11. 
Defining cell types on the basis of the transcriptome 
is attractive because it provides a data­ driven, coher­
ent and unbiased approach that can be applied to any 
sample. This opportunity has spurred the creation of 
several atlas projects12–17, most notably the Human Cell 
Atlas18. These atlas projects aim to build comprehensive 
references for all cell types present in an organism or 
tissue at various stages of development. In addition to 
providing a deeper understanding of the basic biology, 
atlases will also be useful as references for disease stud­
ies. For a cell atlas to be of practical use, reliable methods  
for unsupervised clustering of the cells will be one of the 
key computational challenges.

Although considerable progress has been made in 
terms of clustering algorithms over the past few years, 
a number of questions remain unanswered. In particu­
lar, there is no strong consensus about what is the best 
approach or how cell types can be defined based on 
scRNA­ seq data. In this Review, we discuss several com­
putational and biological aspects related to clustering. 
We first discuss the types of available clustering methods 
and when it is appropriate to use them, because one of 
the underlying assumptions is that discrete clusters are 
present in the data. Next, we outline why unsupervised 
clustering is a difficult problem and what considerations 
need to be taken from both experimental and compu­
tational points of view. We then discuss the challenges 

Unsupervised clustering
The process of grouping 
objects based on similarity but 
without any ground truth or 
labelled training data.
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involved in the biological interpretation and annota­
tion of the results. Finally, we discuss how clustering 
approaches are likely to evolve over the coming years.

What clustering strategies are available?
Many clustering algorithms are generic in the sense that 
they can be applied to any type of data that are equipped 
with a measure of distance between data points. Owing 
to the large number of genes assayed in scRNA­ seq, 
that is, the high dimensionality, distances between data 
points (that is, cells) become similar, which is known 
as the ‘curse of dimensionality’19. Consequently, differ­
ences in distances tend to be small and thus not relia­
ble for identifying cell groups (Fig. 2). The application 
of feature selection and/or dimensionality reduction (Fig. 1) 
may reduce the noise and speed up calculations. Feature 
selection involves identifying the most informative 
genes, for example, the ones with the highest variance20, 
whereas dimensionality reduction, for example, prin­
cipal component analysis (PCA), projects data into a 
lower dimensional space. Many tools use variants of the 
standard methods: SC3 uses a small subset of principal 
components and pcaReduce applies PCA iteratively. 
Subsequently, distances are calculated in the lower 

dimensional space or by using only the selected genes. 
There are several different choices available, including 
Euclidean distance, cosine similarity, Pearson’s correla­
tion and Spearman’s correlation. The main advantage of 
the three latter measures is their scale invariance, that is, 
they consider relative differences in values, making them 
more robust to library or cell size differences.

Diverse types of clustering methods are availa­
ble (Fig. 3). The most popular clustering algorithm is  
k­ means (Fig. 3b), which iteratively identifies k cluster 
centres (centroids), and each cell is assigned to the closest  
centroid. The standard method for k­ means, known as 
Lloyd’s algorithm21, has the advantage of scaling linearly 
with the number of points, which means that it can be 
applied to large data sets. However, Lloyd’s algorithm 
is greedy, and the method is not guaranteed to find the 
global minimum. These drawbacks can be overcome 
by repeated application of k­ means using different 
initial conditions or upstream processing and finding 
the consensus, as performed by SC3 (reF.22). Another 
disadvantage of k­ means is its bias towards identify­
ing equal­ sized clusters, which may result in rare cell 
types being hidden among a larger group. To overcome 
these issues, RaceID23 augments k­ means with outlier 
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Fig. 1 | example data analysis workflow for scRnA- seq. Overview of the workflow for the computational analysis of 
single- cell RNA sequencing (scRNA- seq) data leading up to unsupervised clustering. First, unreliable cells (and possible 
doublets) are removed through quality control. The cleaned data set is then normalized to correct for differences in read 
coverage and other technical confounders. Feature selection and dimensionality reduction isolate the most informative 
genes and strongest signals from background noise, respectively. Cell–cell distances are then calculated in the lower 
dimensional space and used to either construct a cell–cell distance graph or used directly by clustering algorithms to 
assign cells to clusters. Some methods will compute the distances before the dimensionality reduction. CPM, counts per 
million; CV, coefficient of variation; PC, principal component; RLE, relative log expression.

Feature selection
A collection of statistical 
approaches that identify and 
retain only variables that are 
most relevant to the underlying 
structure of the data set.

Dimensionality reduction
A collection of statistical 
approaches that reduces the 
number of variables in a data 
set. it often refers specifically 
to methods that recombine the 
original variables into a new set 
of non- redundant variables. 
Dimensionality reduction can 
help in identifying important 
patterns and reducing the 
amount of computations 
needed.

Greedy
An algorithm that, at each 
step, chooses the option that 
leads to the greatest reduction 
of the cost function. greedy 
algorithms are often fast, but 
they may fail to find the 
optimal solution.
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detection to identify rare cell types, whereas SIMLR24 
adapts k­ means by simultaneously training a custom 
distance measure.

Another widely used generic clustering algorithm 
frequently adapted for scRNA­ seq is hierarchical cluster­
ing (Fig. 3c), which sequentially combines individual cells  
into larger clusters (agglomerative) or divides clusters into  
smaller groups (divisive). An important shortcoming  
is that both time and memory requirements scale at least 
quadratically with the number of data points, which  
means that it is prohibitively expensive to use hierarchi­
cal clustering for large data sets. CIDR25 adapts hierar­
chical clustering for scRNA­ seq by adding an implicit 
imputation of zeros into the distance calculation, which 
gives more stable estimates of cell–cell distances in 
low­ depth samples. Many scRNA­ seq tools expand 
upon the idea of hierarchical clustering by carrying out 
dimensionality reduction after each merge or split. This 
iterative strategy improves the ability to identify small 
clusters, and it is used by BackSPIN26 and pcaReduce27 
and in a study by Tasic et al.28 (TAble 1).

Owing to the limitations of k­ means and hierarchical 
clustering, particularly for large data sets, it has become 
increasingly popular to apply community­ detection­based 
algorithms to scRNA­ seq data. Community detection 
is a variant on the idea of clustering that is specifically 
applied to graphs. Instead of identifying groups of points 
that are close together, community detection identifies 
groups of nodes that are densely connected. To apply such 
methods to scRNA­ seq data, it is necessary to construct 

a k­ nearest­neighbours graph. The choice of how many 
nearest neighbours (denoted by k) to include when con­
structing the single­ cell graph affects the number and size 
of the final clusters. To improve robustness to outliers, 
the graph is often reweighted based on the shared nearest 
neighbours of each pair of cells (Fig. 3d,e).

As some of the graph data sets available are extremely 
large, for example, those representing social networks 
or hyperlinks on the World Wide Web, several of the 
algorithms for community detection have been devel­
oped with an emphasis on speed and scalability29. In 
contrast to the methods based on hierarchical clustering 
that return the partitions at all levels, most graph­ based 
methods return only a single solution, which allows for 
faster run times. An advantage is that most graph­ based 
methods do not require the user to specify the number of 
clusters to identify, instead employing indirect resolution 
parameters. Only the Louvain algorithm has been widely 
applied to scRNA­ seq data, despite many others being 
available30, some of which have demonstrated better per­
formance in benchmarking studies31. The combination 
of shared­ nearest­neighbour graphs and Louvain com­
munity detection was first applied to scRNA­ seq data in 
the PhenoGraph32 method, and this approach has since 
been incorporated into Seurat3 and scanpy4.

There are several different user­ friendly clustering 
methods available today (TAble 1), and to help research­
ers determine which one is most suitable, recent studies 
have provided quantitative benchmarks33–35. Owing to 
their speed and scalability, the clustering methods that 
are part of the scanpy and Seurat packages are popular 
choices for large data sets. However, it has been shown 
that clustering based on the Louvain method does not 
perform as well for smaller data sets36. More generally, 
finding a clustering method that is best for all situations 
may be futile because it has been shown that it is impos­
sible for a single algorithm to achieve the full range of 
desired properties37. In fact, formal analysis cautions 
against comparing algorithms on the basis of a narrow 
set of criteria because no method can perform well for 
all problems38.

Discrete versus continuous cell grouping
One shortcoming of most clustering methods is that 
they will partition the data, regardless of whether or not 
there are any biologically meaningful groups present. 
Although some methods (for example, SC3, SINCERA 
and pcaReduce) can determine that only a single group 
is present, clustering methods often mistake random 
noise for true structure because of heuristic optimization. 
Thus, if there are no discrete groups of cells present in 
the data, then clustering is not an appropriate approach. 
An example of a situation when clusters may not be 
present is when considering differentiation trajecto­
ries39. Instead, cells can be placed on a continuum con­
necting two or more end states. When analysing such 
continuous processes, the commonly used approach is 
to forego clustering and instead order the cells along a 
one­ dimensional manifold (‘pseudotime’)39–41.

It is not always clear a priori whether clustering or 
pseudotime analysis is the most appropriate approach. 
For example, consider the study by Deng et al. of early 

Graphs
each graph consists of a set of 
nodes connected to each other 
with a set of edges. in single- 
cell rNA sequencing, nodes 
are cells, and edges are 
determined according to cell–
cell pairwise distances.

Heuristic optimization
A method for solving a 
problem that is designed to 
sacrifice accuracy in favour of 
speed. These methods are 
often based on approximations 
and cannot be guaranteed to 
find the best solution.
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Fig. 2 | illustration of the curse of dimensionality. Six separate populations of cells 
should ideally be distinguishable. Principal component (PC) analysis (PCA) plots of the 
Deng data set42 using 500 (part a) and 20,000 (part b) of the most variable genes. When 
using a large number of features, clusters are less distinct, as indicated by the shorter 
distances between clusters (for example, the 4-cell stage is not as isolated). Consequently , 
unsupervised clustering becomes more challenging.
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mouse development, which included cells from the 
1­cell, 2­cell, 4­cell, 8­cell and 16­cell states and from the 
blastoderm42. On the one hand, it is reasonable to apply 
clustering, expecting to find groups representing the dif­
ferent discrete stages of development. On the other hand, 
one would expect that a pseudotime ordering should be  

able to align the cells in accordance with their develop­
mental stage. We used two popular methods for pseudo­
time ordering to analyse these data, and the results 
suggest that the inferred order is in good agreement 
with the cluster labels provided by the authors (Fig. 4). 
Similarly, it has been shown that unsupervised clustering 
algorithms provide good results for this data set22.

Some authors have developed strategies that bridge 
the pseudotime and the clustering approaches. Tasic et al. 
left out a subset of cells as the data were repeatedly clus­
tered28. This bootstrapping strategy allowed them to cat­
egorize cells as stably assigned to the same cluster versus 
the cells that were assigned to different clusters. On the 
basis of this characterization, these authors labelled cells 
as either stable or transient, with the latter assumed to 
represent cells transitioning between two cell types. This 
strategy is a version of soft or fuzzy clustering whereby 
cells are assigned to groups of different probabilities43.  
A novel method by Wolf et al.44 provides a coarse­ grained 
graph representation in which cells are assigned either to 
nodes (which represent stable groups) or to connecting 
edges. This method is an advance over methods such as 
Mpath45 and TSCAN41, which first find discrete clusters 
and then subsequently infer a graph structure connect­
ing the clusters. Taken together, both the discrete view 
and the continuous view of the underlying structure can 
be informative, and it is advisable to explore both when 
faced with a situation where the choice is not obvious.

Technical challenges
Owing to the low initial amounts of RNA obtained from 
a single cell, scRNA­ seq data generally exhibit higher 
levels of noise and more zero values (known as drop­
outs) than RNA­ seq data from bulk cell populations.  
It is not uncommon to have >50% of the entries in a 
count matrix equal to zero46. There are three explana­
tions for why dropouts are observed: first, the transcript 
was not present and the zero is thus an accurate rep­
resentation of the state of the cell; second, the sequenc­
ing depth was low, and, although it was present, the 
transcript is not reported; and third, as part of the library 
preparation, the transcript was not captured or failed to 
amplify. Moreover, dropouts introduce computational 
challenges, as some methods are poorly equipped to deal 
with data that deviate greatly from a multivariate nor­
mal distribution. There are several statistical methods 
available for imputing zeros25,47,48, but they all rely on pre­ 
existing cell–cell or gene–gene correlations in the data to 
infer the appropriate imputed value.

Estimating technical noise in scRNA­ seq data is chal­
lenging because each individual cell is a biological, not a 
technical, replicate. However, through the use of endog­
enous spike­ in RNA49, several noise models have been 
developed50–54. These can be used to estimate the robust­
ness of clusters by adding simulated noise to data sets 
and reapplying the clustering workflow, as implemented 
in BEARscc54.

One type of technical noise that may arise because 
of the experimental design is often referred to as a batch 
effect55 (Fig. 5). Batch effects refer to changes in gene 
expression that are due to experimental factors, for exam­
ple, the time of the experiment, the laboratory where it 
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Fig. 3 | clustering methods for scRnA- seq. Representation of different clustering 
approaches for single- cell RNA sequencing (scRNA- seq) using the Deng data set42 of early 
mouse embryo development. a | True clusters, as defined by the authors, are based on the 
developmental stage (colours are the same as in Fig. 2). b | k- means separates cells into k = 5 
groups. Because k- means assumes equal- sized clusters, the larger group of blastocysts is 
split from the other cell groups before the 8-cell and 16-cell stages are separated from each 
other. c | Complete- linkage hierarchical clustering creates a hierarchy of cells that can be cut 
at different levels (the result for k = 5 is indicated by the coloured bars at the bottom). Cutting 
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community detection29 is applied to a shared- nearest-neighbour graph connecting the cells 
and finds tightly connected communities in the graph (number of nearest neighbours  
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of neighbours when constructing the cell–cell graph indirectly decreases the resolution of 
graph- based clustering. Each clustering algorithm was implemented in R (igraph for parts d 
and e) and applied to the first two principal components (PCs) of the data.
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was carried out, the person carrying out the experiment 
or the lane used in the sequencing machine56. Several 
studies have suggested that batch effects can have a large 
impact on clustering55,57–59. The best strategy for avoiding 
batch effects is to have a balanced experimental design so 
that samples are split across experimental batches60. In 
such cases, it is fairly simple to regress out batch effects. 
However, in some cases, for example, when working with 
perishable samples, this strategy may not be feasible.

It is also important to pay close attention to how the 
samples are handled, as this can have a major impact. 
When acquiring postmortem samples, RNA may 
degrade non­ uniformly, and it is known that sensitiv­
ity can vary between tissues61,62. Moreover, dissociation 
of sensitive tissues, such as neuronal cells, may activate 
expression of immediate early genes or other stress­ 
response genes63. Adding inhibitors or preserving cells 
through freezing or chemical fixation may reduce the 
effects of handling; however, efforts to optimize such 
protocols for scRNA­ seq are still ongoing.

Considering the high level of noise in scRNA­ seq 
experiments, one must ask whether each cluster corre­
sponds to a true biological effect or whether the cluster 
arose because of technical artefacts, for example, droplets 
containing two cells (doublets)64. Doublets arising from 
cells of two distinct cell types can be easily mistaken for 
rare transitional cells, as they will exhibit a phenotype that 

is intermediate between the two originating cell types. 
Some plate­ based or microfluidic­ chip­based protocols 
allow imaging of captured cells before lysis, which can 
facilitate the identification of doublets. Owing to the wide 
range of cell sizes and sequencing depths in scRNA­ seq 
studies, it is computationally challenging to identify dou­
blets65. Several tools have been developed whereby syn­
thetic doublets are generated computationally for a given 
data set, and an algorithm is trained to identify them and 
is then applied to the original data66–68. As there are many 
other technical confounders, it is important to evaluate 
factors such as mitochondrial RNA, experimental batch, 
sequencing depth and the number of genes detected 
across clusters to ensure that none of these aspects drives 
the clustering. It has also been suggested that highly 
expressed genes, for example, ribosomal genes, may have 
an exaggerated effect on clustering69.

Biological challenges
In addition to technical noise, transient biological 
states can mask the underlying cell identity. A well­ 
documented example is the cell­ cycle phase, which can 
confound cell­ type identity in differentiating T cells70. 
Tools such as scLVM70 or cyclone71 can regress out cell­ 
cycle effects and provide a corrected transcriptome. 
However, it is not always clear whether a specific signa­
ture should be considered a confounder. For example, 

Bootstrapping
A statistical approach in which 
data sets are randomly 
sampled and reanalysed  
to assess the robustness of  
a result.

Gaussian mixture model
A statistical model of one or 
more normal distributions. 
When fitted to data, each 
normal distribution can be 
interpreted as a distinct cluster 
of points.

Table 1 | clustering methods for scRnA- seq

name Year Method type strengths Limitations

scanpy4 2018 PCA + graph- based Very scalable May not be accurate for small data sets

Seurat (latest)3 2016

PhenoGraph32 2015

SC322 2017 PCA + k- means High accuracy through consensus, 
provides estimation of k

High complexity , not scalable

SIMLR24 2017 Data- driven dimensionality 
reduction + k- means

Concurrent training of the distance 
metric improves sensitivity in noisy 
data sets

Adjusting the distance metric to make 
cells fit the clusters may artificially 
inflate quality measures

CIDR25 2017 PCA + hierarchical Implicitly imputes dropouts when 
calculating distances

GiniClust75 2016 DBSCAN Sensitive to rare cell types Not effective for the detection of large 
clusters

pcaReduce27 2016 PCA + k- means + hierarchical Provides hierarchy of solutions Very stochastic, does not provide a 
stable result

Tasic et al.28 2016 PCA + hierarchical Cross validation used to perform 
fuzzy clustering

High complexity , no software package 
available

TSCAN41 2016 PCA + gaussian mixture model Combines clustering and 
pseudotime analysis

Assumes clusters follow multivariate 
normal distribution

mpath45 2016 Hierarchical Combines clustering and 
pseudotime analysis

Uses empirically defined thresholds 
and a priori knowledge

BackSPIN26 2015 Biclustering (hierarchical) Multiple rounds of feature selection 
improve clustering resolution

Tends to over- partition the data

RaceID23, RaceID2115, 
RaceID3

2015 k- Means Detects rare cell types, provides 
estimation of k

Performs poorly when there are no rare 
cell types

SINCERA5 2015 Hierarchical Method is intuitively easy to 
understand

Simple hierarchical clustering is used, 
may not be appropriate for very noisy 
data

SNN- Cliq80 2015 Graph- based Provides estimation of k High complexity , not scalable

DBSCAN, density- based spatial clustering of applications with noise; PCA , principal component analysis; scRNA- seq, single- cell RNA sequencing.
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in cancer proliferation, signatures are biologically rel­
evant and can correlate with cell­ type identity rather 
than mask it72. Similarly, overall RNA content or cell 
size can confound clustering analyses but in many cases 
may reflect true differences in cell type73. Determining 
which biological signals should be considered con­
founders or valid cell­ type differences is contingent 
on the particular question or system under considera­
tion; thus, analysis pipelines must be customizable for 
different situations.

The heterogeneity of most tissues presents an addi­
tional challenge. One of the most well­ studied systems 
is human blood, and it has been shown that cell­ type 
frequencies span at least two orders of magnitude74. The 
recently published mouse cell atlas with ~300,000 cells 
profiled14 shows a similar range. However, it is very likely 
that larger studies with deeper sequencing will reveal 
additional rare cell types, pushing the range of frequen­
cies three or four orders of magnitude. As many methods 
work best when clusters are approximately equal in size, 
tools such as GiniClust75 and RaceID23 have been specif­
ically tailored to identify rare cell types. Unfortunately, 
a better ability to distinguish rare cell types comes at 
the cost of poorer performance when clustering more 
frequent cell types. To deal with these situations, many 
authors have adopted a divide­ and­conquer strategy, 
whereby large clusters identified after an initial cluster­
ing are subsequently reclustered76,77. This tactic is use­
ful because biological samples frequently have multiple 
levels of functional specialization; for instance, neurons 
share specific functional characteristics that are distinct 
from those of various glial cell types but also contain 
distinct subtypes with more specialized functions, such 

as excitatory or inhibitory properties. However, deter­
mining when a large cluster should or should not be 
reclustered is difficult.

Computational challenges
Many scRNA­ seq data sets are very large, with hundreds 
of thousands of cells, presenting both challenges and 
opportunities. A large data set ensures that analy ses will 
have high power and improves the ability to detect rare 
cell types. Although it is possible to cluster such large 
data sets in a time span of hours3,4, visualizing and inter­
preting the clustering results is difficult. Linear transfor­
mations, such as PCA, are unable to accurately capture 
relationships between cells because of the high levels 
of dropout and noise. Nonlinear techniques are more 
flexible, as they can provide outcomes that are often 
more aesthetically pleasing and easier to interpret by 
visual inspection. The most commonly used nonlinear  
dimensionality reductions are tSNE78 and UMAP79. The 
main limitation of these methods is that they contain 
parameters that are required to be manually defined 
by the user and can strongly affect the visualization.  
As the guidelines for choosing the parameters are vague, 
the possibility of achieving a wide range of outcomes 
remains open.

Most clustering methods include one or more param­
eters that can be chosen by the user to determine the 
resolution of the clustering. The choice of para meter 
often has a large effect on the outcome. Selecting the 
resolu tion of clustering is often referred to as choosing k.  
For some methods, for example, k­ means clustering, 
this choice is made explicitly by the user, but for other 
methods, the decision can be indirect, for example, 
choosing the number of nearest neighbours when con­
structing a graph. There are computational methods 
available to help guide the choice of k22,23,80. Many of 
these methods are based on the idea of calculating a 
cluster quality score and identifying an ‘elbow,’ that is, 
the point where the score plateaus. These scores tend to 
favour a fairly coarse resolution, with clearly separated 
clusters rather than closely related or overlapping cell 
types. As there is no consensus on the correct method 
for choosing k, judgement from the researcher is  
required. If there are reasons to believe that a sample  
is heterogeneous or if one is interested in uncovering 
new subtypes, then it is advisable to use a high k or a 
method that is tailored towards the discovery of rare 
cell types. Moreover, if the cells are sequenced to only 
a shallow depth, then it is less likely that a fine­ grained 
clustering strategy will work.

Perhaps the most challenging aspect of scRNA­ seq 
analysis (and this is not restricted to clustering) is how 
to validate a computational analysis method. The best 
strategy currently available is to have a set­ up where the 
cell types are known through other means, for exam­
ple, by selecting cells from distinct cell lines81,82, using 
tissues that are very well studied and understood (for 
example, peripheral blood mononuclear cells74) or con­
sidering cells taken from the earliest stages of embryonic 
development42,83. These data sets serve as reliable ground 
truth, but one of the drawbacks is that they are unlikely 
to be as complex or challenging as some tissue samples.  
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Fig. 4 | comparison of clustering and pseudotime methods. Pseudotime cell 
trajectories were identified in the Deng et al. data set42 by two trajectory methods: 
TSCAN41 (part a) and diffusion maps (part b)114. Each dot represents a cell, and the colour 
corresponds to the annotation provided by Deng et al. The cells have been grouped 
along the y- axis according to the cell type and placed in temporal order. The x- axis 
corresponds to the inferred pseudotime, and ideally , the groups of cells should fall on 
the diagonal. Neither of the methods performs well across all times, but TSCAN 
performs better for the later time points (4-cell stage and beyond), whereas diffusion 
maps does well up to the 8-cell stage.
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Another drawback is that many of the suitable data sets 
are quite small, making it difficult to test methods at the 
kinds of scale that are relevant for current experiments. 
Another very useful strategy is to use spatial methods, 
for example, seqFISH84, RNAscope85 and merFISH86. 
As these methods do not rely on sequencing, they are 
orthogonal and a positive result should be considered 
strong validation. However, the limited number of 
mRNAs that can be profiled with these technologies and 
the costs and challenges involved in setting up the assays 
mean that their use is currently limited.

Biological interpretation and annotation
Although clustering methods partition cells according to 
transcriptional similarity, they leave it to the user to pro­
vide the biological interpretation. Analysing and under­
standing each cluster comprise an often time­ consuming 
process that involves manually searching the literature 
and various databases. It is frequently assumed that 
each cluster will correspond to one or more cell types. 
However, there are no fixed criteria or rules for desig­
nating a cluster as a specific cell type, and there is no 
centralized database of known cell types and their char­
acteristics. Instead, for most fields, there is an implicit 
understanding among researchers regarding the nature 
of the most important cell types and what genes they 
express. For many biological systems, relying on this type 
of ‘folklore’ for cell­ type annotation appears to work well 
in practice. As an example, in October 2016, scRNA­ seq 
studies of the adult human pancreas were published by 

five separate groups87–91. Although the work was carried 
out independently, the choices of cell­ type labels were 
very consistent92. Similarly, a recent study93 has suggested 
that neuronal clusters identified in different studies cor­
respond well. However, the good correspondence may 
reflect a bias due to the existing literature.

The most relevant information that can be extracted 
from a cluster is the set of RNAs that are present or 
absent. The genes that are highly expressed and make 
it possible to distinguish one cluster from the others are 
often referred to as marker genes. A popular approach is 
to use gene ontology analysis to identify the terms most 
enriched for the marker genes of each cluster94. The gene 
ontology terms may give an indication of what biological 
process is most relevant for the cells. Alternatively, these 
genes can be compared with those referenced in existing 
literature or used for validation experiments.

As more and more data become available, one strat­
egy will be to compare newly identified clusters against 
previously annotated data sets (Fig. 6). However, several 
studies have demonstrated that batch effects can be 
substantial, resulting in cells from the same tissue clus­
tering by experimental origin rather than by biological 
similarity58,59 (Fig. 5). Thus, comparing samples collected 
by different research groups or using different proto­
cols remains challenging. Currently, there are two main 
strategies available for joint analysis of data sets: merging 
and projection.

If two samples are taken from a similar biological 
origin (for example, the same healthy tissue), then it 
is useful to merge the data from both samples before 
clustering. However, to make this possible, experi­
mental batch effects must first be taken into account.  
The methods that have been developed for this task58,59 
try to distinguish components of the variability that is 
common between two data sets from the variability that 
is unique to one data set. It is assumed that the varia­
bility found across data sets originates from biological 
processes, for example, differences between cell types.  
By contrast, the unique components are assumed to be 
due to experimental artefacts and should be removed 
before merging two data sets.

Instead of computationally merging data sets directly, 
one can instead project the cells from one data set to 
another92,95,96. The projection strategy is favourable when 
one of the data sets is very large and reanalysis would be 
costly. Projection corresponds to a nearest­ neighbour­ 
finding problem where the goal is to find the best match 
to a query cell among a set of cells that have been pre­
viously clustered and annotated. The main limitation 
is that cells derived from a novel cell type that is not 
present in the reference may be incorrectly projected 
or simply fail to project. Thus, the generation of com­
prehensive atlases of cell types will greatly facilitate this 
strategy (Fig. 6).

Another helpful type of resource that aims to reuse 
already collected data is cell ontology databases97. The 
main challenge in the creation of these databases 
is to describe cell states or transitions on the basis of 
gene expression in single cells in a meaningful and 
comprehensive manner. Integration of cell ontolo­
gies and scRNA­ seq atlases will enable the systematic 
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identification of marker genes for annotating other 
data sets98. Similar to gene ontologies, cell ontologies 
are hierarchical, and thus they are able to describe rela­
tionships between cell types and at multiple resolutions. 
Comparison to the ontology will make it easier to put 
novel cell types into context and relate them to exist­
ing knowledge99 (Fig. 6). Cell ontologies will be helpful 
to ensure that annotations are consistent. Considering 
the scale and complexity of some of the data sets being 
collected today, this attainment of consistency is a formi­
dable challenge. For example, several collections of cells, 
each containing hundreds of thousands of cells from the 
mouse brain, have recently been released12–14,100. Each of 
these data sets has been clustered into hundreds of cell 
types, but it remains unclear how well they match. There 
are also computational methods available that can con­
sider other types of information to aid interpretation. 
SCENIC101 uses putative regulatory binding sites found 
in promoter regions to identify shared regulatory net­
works. In addition to providing additional information 
for the clustering, knowing which transcription factors 
are most important for a particular cell­ type identity 
can facilitate the biological interpretation. PAGODA51 
identifies overdispersed gene sets, which can be related 
to functional modules.

When does a cluster represent a new cell type?
A central aim of scRNA­ seq analysis is often to define 
cell type using unsupervised clustering based on the 
whole transcriptome102. However, for a new cell type to 
be accepted, it is necessary to go beyond characterization 
of the transcriptome. Researchers must demonstrate that 
the newly identified cluster is also functionally distinct. 
There are no universally applicable rules that can be 

applied here, and which assay is appropriate depends 
on the biological context.

To date, there are already several studies available 
demonstrating that this approach can be successful103–105. 
One of the most striking findings was made by Villani 
et al.76, who discovered several new cell subpopulations 
in human blood. Although the study considered only 
~2,400 cells, a relatively modest number by today’s 
standards, sorting based on several markers and deep 
sequencing using full­ length transcripts provided a 
high­ quality data set. The novel clusters were shown to 
be distinct according to several properties, including 
morphology, stimulation by pathogens and ability to 
activate T cells.

Although the principles of defining new cell types 
are clear, there are many practical challenges, both 
experimental and computational, as we have shown in 
this Review. Thus, there are many issues that must be 
resolved to reach a consensus on how to best define cell 
types on the basis of the transcriptome profile. Some 
debates will be technical, focusing on questions about 
how to best choose the number of clusters or what qual­
ity of antibody is required for a validation experiment. 
By contrast, some of the questions will be more philo­
sophical, for example, what assays are relevant for the 
given context, what magnitude of qualitative and quan­
titative differences is required, and whether a transient 
difference merits designation as a new cell type or should 
be considered a change in cell state.

We anticipate that the large number of data sets col­
lected through cell atlas projects will enable a more strin­
gent definition of cell types than what we have today. For 
example, with samples from across the whole body of an 
organism, it should be possible to determine how many 
marker genes are required to uniquely identify a specific 
cell type. Furthermore, it will be possible to ensure that 
definitions are consistent across tissues and species.

Outlook
Unsupervised clustering is likely to remain a central 
component of scRNA­ seq analysis. As much of the 
downstream analysis is carried out based on the clus­
ters, the final conclusions may be strongly affected by 
the clustering. It is likely that several different algo­
rithms will be in use for clustering in the foreseeable 
future. To some extent, this diversity will reflect the 
fact that some methods will perform better for cer­
tain types of data, for example, sparse sequencing data 
from droplet microfluidics approaches versus deeper 
sequencing data from Smart­ seq2 protocols. However, 
owing to the complex nature of the clustering problem, 
it is unlikely that one method will be deemed superior 
to all others.

The specifics of the clustering challenge will evolve as 
new technologies are introduced. In addition to having 
to cope with larger and larger data sets, there will be new 
modalities to consider. One interesting line of research is 
into so­ called multi­ omics methods, that is, assays that 
measure more than one aspect of the cell, such as the 
DNA methylome, open chromatin or proteome106–108. 
The additional layers of omics data will provide infor­
mation about the phenotype that is not manifested by 
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Fig. 6 | schematic overview of clustering and annotation in the context of a cell 
atlas project. Many data sets (each data set represented by a different shape) are 
acquired from multiple tissues, and these are clustered and merged to identify consistent 
cell types across multiple data sets (shared cell types shown in the same colour) and 
stored in a database. Manual and computational curation of the atlas is used to inform 
the construction of a cell- type ontology and to identify robust markers for each cell type. 
New samples (grey circles) can be annotated with the standardized nomenclature 
defined in the ontology either using the cell- type markers or by projecting directly onto 
the atlas to identify the cells that are most similar.
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the transcriptome, for example, by identifying active 
enhancers that help to influence the ability of the cell 
to respond to external stimuli109. Another important 
technological development is spatial methods110–113. 
Although current approaches are limited in terms of 
spatial resolution or the number of transcripts that can 
be profiled, they provide important information that 
is inaccessible by spatially naive scRNA­ seq methods. 
Incorporating spatial information will be important for 
clustering. For example, some groups of cells that are 
difficult to distinguish on the basis of their transcrip­
tomes may occupy different positions in the tissue or be 
surrounded by distinct neighbours.

In addition to developing methods for carrying out 
the clustering, there is also a need for methods that 
will facilitate biological interpretation and annotation. 
Hopefully, collaborations through cell ontology and cell 
atlas projects will ensure greater consistency with regard 
to both clustering and analyses. As discussed here, there 
is a need for the community to agree on suitable criteria 
about what constitutes a cell type based on the transcrip­
tome, what assays are required for functional validation, 
how to select marker genes and what nomenclature to 
use when assigning names.
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