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Points of siGnifiCAnCE

Comparing samples—part II
When a large number of tests are performed, P values 
must be interpreted differently.

It is surprising when your best friend wins the lottery but not when 
a random person in New York City wins. When we are monitoring a 
large number of experimental results, whether it is expression of all 
the features in an ‘omics experiment or the outcomes of all the experi-
ments done in the lifetime of a project, we expect to see rare outcomes 
that occur by chance. The use of P values, which assign a measure of 
rarity to a single experimental outcome, is misleading when many 
experiments are considered. Consequently, these values need to be 
adjusted and reinterpreted. The methods that achieve this are called 
multiple-testing corrections. We discuss the basic principles of this 
analysis and illustrate several approaches.

Recall the interpretation of the P value obtained from a single two-
sample t-test: the probability that the test would produce a statistic at 
least as extreme, assuming that the null hypothesis is true. Significance 
is assigned when P ≤ a, where a is the type I error rate set to control 
false positives. Applying conventional a = 0.05, we expect a 5% chance 
of making a false positive inference. This is the per-comparison error 
rate (PCER).

When we now perform N tests, this relatively small PCER can result 
in a large number of false positive inferences, aN. For example, if  
N = 10,000, as is common in analyses that examine large gene sets, 
we expect 500 genes to be incorrectly associated with an effect for  
a = 0.05. If the effect chance is 10% and test power is 80%, we’ll con-
clude that 1,250 genes show an effect, and we will be wrong 450 out 
of 1,250 times. In other words, roughly 1 out of 3 ‘discoveries’ will be 
false. For cases in which the effect chance is even lower, our list of 
significant genes will be over-run with false positives: for a 1% effect 
chance, 6 out of 7 (495 of 575) discoveries are false. The role of mul-
tiple-testing correction methods is to mitigate these issues—a large 

number of false positives and large fraction of false discoveries—while 
ideally keeping power high.

There are many adjustment methods; we will discuss common ones 
that adjust the P value. To illustrate their effect, we performed a simu-
lation of a typical ‘omics expression experiment in which N genes are 
tested for an effect between control and treatment (Fig. 1a). Some 
genes were simulated to have differential expression with an effect 
size d = 2, which corresponded to a test power of 80% at a = 0.05. The  
P value for the difference in expression between control and treatment 
samples was computed with a two-sample t-test. We created data sets 
with N = 10, 100, 1,000 and 10,000 genes and an effect chance (per-
centage of genes having a nonzero effect) of 10% and 50% (Fig. 1b).  
We performed the simulation 100 times for each combination of N 
and effect chance to reduce the variability in the results to better illus-
trate trends, which are shown in Figure 2.

Figure 1b defines useful measures of the performance of the mul-
tiple-comparison experiment. Depending on the correction method, 
one or more of these measures are prioritized. The false positive rate 
(FPR) is the chance of inferring an effect when no effect is present. 
Without P value adjustment, we expect FPR to be close to a. The false 
discovery rate (FDR) is the fraction of positive inferences that are 
false. Technically, this term is reserved for the expected value of this 
fraction over all samples—for any given sample, the term false dis-
covery percentage (FDP) is used, but either can be used if there is no 
ambiguity. Analogously to the FDR, the false nondiscovery rate (FNR) 
measures the error rate in terms of false negatives. Together the FDR 
and FNR are the multiple-test equivalents of type I and type II error 
levels. Finally, power is the fraction of real effects that are detected1. 
The performance of popular correction methods is illustrated using 
FPR, FDR and power in Figure 2.

The simplest correction method is Bonferroni’s, which adjusts the 
P values by multiplying them by the number of tests, P´ = PN, up to 
a maximum value of P´ = 1. As a result, a P value may lose its sig-
nificance in the context of multiple tests. For example, for N = 10,000 
tests, an observed P = 0.00001 is adjusted P´ = 0.1. The effect of this 
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Figure 1 | the experimental design of our gene expression simulation.  
(a) A gene’s expression was simulated by a control and treatment sample 
(n = 5 each) of normally distributed values (m = 0, s = 1). for a fraction of 
genes, an effect size d = 2 (80% power) was simulated by setting  
m = 2. (b) Gene data sets were generated for 10% and 50% effect chances. 
P values were tested at a = 0.05, and inferences were categorized as 
shown by the color scheme. for each data set and correction method, false 
positive rate (fPR), false detection rate (fDR) and power were calculated. 
fnR is the false negative rate.
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Figure 2 | family-wise error rate (fWER) methods such as Bonferroni’s 
negatively affect statistical power in comparisons across many tests. false 
discovery rate (fDR)-based methods such as Benjamini-Hochberg (BH) and 
storey’s are more sensitive. Bars show false positive rate (fPR), fDR and 
power for each combination of effect chance and N on the basis of inference 
counts using P values from the gene expression simulation (Fig. 1) adjusted 
with different methods (unadjusted (—), Bonferroni, BH and storey). 
storey’s method did not provide consistent results for N = 10 because a 
larger number of tests is needed.
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correction is to control the probability of committing even one type I 
error across all tests. The chance of this is called the family-wise error 
rate (FWER), and Bonferroni’s correction ensures that FWER < a.

FWER methods such as Bonferroni’s are extremely conservative 
and greatly reduce the test’s power in order to control the number of 
false positives, particularly as the number of tests increases (Fig. 2). For 
N = 10 comparisons, our simulation shows a reduction in power for 
Bonferroni from 80% to ~33% for both 10% and 50% effect chance. 
These values drop to ~8% for N = 100, and by the time we are testing a 
large data set with N = 10,000, our power is ~0.2%. In other words, for a 
10% effect chance, out of the 1,000 genes that have an effect, we expect 
to find only 2! Unless the cost of a false positive greatly outweighs the 
cost of a false negative, applying Bonferroni correction makes for an 
inefficient experiment. There are other FWER methods (such as Holm’s 
and Hochberg’s) that are designed to increase power by applying a less 
stringent adjustment to the P values. The benefits of these variants are 
realized when the number of comparisons is small (for example, <20) 
and the effect rate is high, but neither method will rescue the power of 
the test for a large number of comparisons.

In most situations, we are willing to accept a certain number of 
false positives, measured by FPR, as long as the ratio of false posi-
tives to true positives is low, measured by FDR. Methods that control 
FDR—such as Benjamini-Hochberg (BH), which scales P values in 
inverse proportion to their rank when ordered—provide better power 
characteristics than FWER methods. Our simulation shows that their 
power does not decrease as quickly as Bonferroni’s with N for a small 
effect chance (for example, 10%) and actually increases with N when 
the effect chance is high (Fig. 2). At N = 1,000, whereas Bonferroni 
correction has a power of <2%, BH maintains 12% and 56% power at 
10% and 50% effect rate while keeping FDR at 4.4% and 2.2%, respec-
tively. Now, instead of identifying two genes at N = 10,000 and effect 
rate 10% with Bonferroni, we find 88 and are wrong only four times.

The final method shown in Figure 2 is Storey’s, which introduces 
two useful measures: p0 and the q value. This approach is based on the 
observation that if the requirements of the t-test are met, the distribu-
tion of its P values for comparisons for which the null is true is expected 

to be uniform (by definition of the P value). In contrast, comparisons 
corresponding to an effect will have more P values close to 0 (Fig. 3a).  
In a real-world experiment we do not know which comparisons truly 
correspond to an effect, so all we see is the aggregate distribution, 
shown as the third histogram in Figure 3a. If the effect rate is low, most 
of our P values will come from cases in which the null is true, and the 
peak near 0 will be less pronounced than for a high effect chance. The 
peak will also be attenuated when the power of the test is low.

When we perform the comparison P ≤ a on unadjusted P values, 
any values from the null will result in a false positive (Fig. 3b). This 
results in a very large FDR: for the unadjusted test, FDR = 36% for  
N = 1,000 and 10% effect chance. Storey’s method adjusts P values 
with a rank scheme similar to that of BH but incorporates the estimate 
of the fraction of tests for which the null is true, p0. Conceptually, 
this fraction corresponds to part of the distribution below the optimal 
boundary that splits it into uniform (P under true null) and skewed 
components (P under false null) (Fig. 3b). Two common estimates 
of p0 are twice the average of all P values (Pound and Cheng’s meth-
od) and 2/N times the number of P values greater than 0.5 (Storey’s 
method). The latter is a specific case of a generalized estimate in 
which a different cutoff, l, is chosen (Fig. 3c). Although p0 is used 
in Storey’s method in adjusting P values, it can be estimated and used 
independently. Storey’s method performs very well, as long as there 
are enough comparisons to robustly estimate p0. For all simulation 
scenarios, power is better than BH, and FDR is more tightly controlled 
at 5%. Use the interactive graphs in Supplementary Table 1 to run the 
simulation and explore adjusted P-value distributions.

The consequences of misinterpreting the P value are repeatedly 
raised2,3. The appropriate measure to report in multiple-testing 
scenarios is the q value, which is the FDR equivalent of the P value. 
Adjusted P values obtained from methods such as BH and Storey’s 
are actually q values. A test’s q value is the minimum FDR at which 
the test would be declared significant. This FDR value is a collective 
measure calculated across all tests with FDR ≤ q. For example, if we 
consider a comparison with q = 0.01 significant, then we accept an 
FDR of at most 0.01 among the set of comparisons with q ≤ 0.01. This 
FDR should not be confused with the probability that any given test 
is a false positive, which is given by the local FDR. The q value has a 
more direct meaning to laboratory activities than the P value because 
it relates the proportion of errors in the quantity of interest—the num-
ber of discoveries.

The choice of correction method depends on your tolerance for 
false positives and the number of comparisons. FDR methods are 
more sensitive, especially when there are many comparisons, whereas 
FWER methods sacrifice sensitivity to control false positives. When 
the assumptions of the t-test are not met, the distribution of P values 
may be unusual and these methods lose their applicability—we rec-
ommend always performing a quick visual check of the distribution of 
P values from your experiment before applying any of these methods.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2900).
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Figure 3 | the shape of the distribution of unadjusted P values can be used 
to infer the fraction of hypotheses that are null and the false discovery 
rate (fDR). (a) P values from null are expected to be distributed uniformly, 
whereas those for which the null is false will have more small values. shown 
are distributions from the simulation for N = 1,000. (b) inference types 
using color scheme of Figure 1b on the P value histogram. the fDR is the 
fraction of P < a that correspond to false positives. (c) storey’s method 
first estimates the fraction of comparisons for which the null is true, p0, by 
counting the number of P values larger than a cutoff l (such as 0.5) relative 
to (1 – l)N (such as N/2), the count expected when the distribution is 
uniform. if R discoveries are observed, about aNp0 are expected to be false 
positives, and fDR can be estimated by aNp0/R.
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