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SUMMARY

Caenorhabditis elegans is a powerful model to study
metabolism and how it relates to nutrition, gene
expression, and life history traits. However, while
numerous experimental techniques that enable
perturbation of its diet and gene function are
available, a high-quality metabolic network model
has been lacking. Here, we reconstruct an initial
version of the C. elegans metabolic network. This
network model contains 1,273 genes, 623 enzymes,
and 1,985 metabolic reactions and is referred to as
iCEL1273. Using flux balance analysis, we show
that iCEL1273 is capable of representing the conver-
sion of bacterial biomass into C. elegans biomass
during growth and enables the predictions of gene
essentiality and other phenotypes. In addition, we
demonstrate that gene expression data can be inte-
grated with themodel by comparingmetabolic rewir-
ing in dauer animals versus growing larvae. iCEL1273
is available at a dedicated website (wormflux.
umassmed.edu) and will enable the unraveling of
the mechanisms by which different macro- and mi-
cronutrients contribute to the animal’s physiology.

INTRODUCTION

The nematode Caenorhabditis elegans and its bacterial diet

have been used as an interspecies system to gain insights into

the connections between nutrients, genotype, and phenotype

(Coolon et al., 2009; Gracida and Eckmann, 2013; MacNeil

et al., 2013; Pang and Curran, 2014; Soukas et al., 2009; Watson

et al., 2013, 2014). Different bacterial species or strains can be

fed to the animal, and both C. elegans and its diet can be genet-

ically manipulated (reviewed in Watson and Walhout, 2014;

Yilmaz and Walhout, 2014). A main challenge now is to under-

stand, at a systems level, how C. elegans responds to individual

nutrients. Gaining such insights requires a high-quality model of

both bacterial and C. elegans metabolic networks.

The metabolic network of an organism is the complete set of

biochemical reactions in which metabolites are broken down

and synthesized. It serves two major purposes: the generation

of biomass for growth and reproduction, and the generation of

energy to support cellular and organismal processes. Genome-

scale metabolic network models have been used together with
flux balance analysis (FBA) (O’Brien et al., 2015; Oberhardt

et al., 2009) to calculate the steady-state conversion rates

of compounds in every reaction of the network (i.e., reaction

fluxes). Using a selected objective such as optimal growth or

energy production, the calculated flux distribution predicts

the metabolic state of the organism, given a set of constraints

defined by nutritional or environmental conditions.

While metabolic networks have been reconstructed for a

large number of bacteria and a few eukaryotic organisms (re-

viewed in O’Brien et al., 2015), no metabolic network model is

available for C. elegans. Metabolic gene annotations are avail-

able in databases such as KEGG (Kanehisa et al., 2015) and

are useful for pathway visualization. However, these annotations

are remarkably incomplete and therefore most pathways are not

capable of carrying flux. Thus, current databases do not provide

a functional network structure that is suitable for FBA.

Here, we present the global reconstruction of the C. elegans

metabolic network and its conversion into a mathematical model

for use with FBA to generate mechanistic predictions and inte-

grate additional data types (Figure 1A). We demonstrate that

this model can simulate the conversion of bacterial diet into

C. elegans biomass, predict effects of diet or genotypic manipu-

lations on phenotypes, and can be integrated with gene expres-

sion data by mathematical modeling.
RESULTS

Overview of Reconstruction
We reconstructed the metabolic network of C. elegans using a

modular pipeline that integrates multiple sources of information

(Figure 1B). First, metabolic genes were annotated to establish

gene-protein-reaction (GPR) associations (Thiele and Palsson,

2010), which were then used to manually reconstruct a tem-

plate network in a pathway-by-pathway manner. Network

gaps that prevented reactions from carrying flux were identified

and filled. Reactions were localized to cytosol, mitochondria, or

extracellular space for proper network compartmentalization.

The resulting PRIME model (Figure 1B) was capable of produc-

ing C. elegans biomass from bacterial diet (Figure 1C). GPRs

left out by the manual reconstruction process were exhaus-

tively tested for flux carrying capacity in the PRIME model,

and the ones that could add functionality to the network were

re-incorporated. The resulting model includes 1,273 genes,

623 enzymes, and 1,985 metabolic reactions and was named

iCEL1273. The components of iCEL1273 are presented in

Tables S1, S2, S3, S4, and S5 (annotations, biomass composi-

tions, reactions, compounds, and enzymes). The main steps of
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Figure 1. Overview of the C. elegans Metabolic Network Model and the Reconstruction Process

(A) Toy network representing the reconstructed C. elegans metabolic model. Two nutrients obtained from diet are used to synthesize two C. elegans biomass

precursors with the excretion of one by-product as waste. The ‘‘predicted growth’’ indicates biomass production that can be achieved via indicated flux through

the network (i.e., body growth or offspring). The ‘‘predicted alternative growth’’ depicts how the network can be rewired to use alternate pathways to achieve the

same objective, as long as both precursors are successfully synthesized. The ‘‘predicted lethality’’ indicates genetic perturbations (e.g., knockout) that prevent

biomass production due to the fatal disruption of flux. The ‘‘integration of exp. data’’ illustrates the incorporation of gene expression data that describe the up- and

downregulation of genes encoding metabolic enzymes to deduce flux distribution under regulatory constraints.

(B) Pipeline of the C. elegans metabolic network reconstruction process. The top 12 resources are shown where used.

(C) Cartoon of the reconstructed network. The different types of reactions are indicated with their reaction ID headers and types provided in Table S3 (electron

transport chain: ETC).
the reconstruction are presented below, followed by model

validation. The details of the methods can be found in Supple-

mental Information.
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Identification of C. elegans Metabolic Genes
To generate an initial list ofC. elegansGPRs, we used the orthol-

ogy system in KEGG (Kanehisa et al., 2015), which connects



Figure 2. Annotation of C. elegans Metabolic Genes

(A) Example GPR association inferred via KO group.

(B) Example phylogenetic tree created by myTree that shows the relatedness of the ech-5 gene (based on protein sequence) to genes from human, three model

organisms, and representative organisms from ten taxonomic groups. The tree labels indicate KO group, taxonomy or model organism, organism name

(if taxonomic group), and gene name, respectively. See Figure S1 for abbreviations and details.

(C) Relative contribution of annotation resources to decision making for gene-KO connections in SACURE. The relative contribution was quantified as an overall

weight based on logistic regression involving annotation variables and manual decisions. See Supplemental Information and Table S9 for details.

(D) Venn diagram illustrating candidate metabolic genes that pass an arbitrarily lowmyKEGG score threshold to bematched with ametabolic KO group. Only two

of the 988 C. elegans metabolic genes previously annotated by KEGG were missed by this thresholding. The genes identified by SACURE are shown in pa-

rentheses.

(E) Venn diagrams illustrating final sets of genes and reactions in SACURE and iCEL1273 in relationship to KEGG. Only KEGG-based reactions are shown in the

iCEL1273 set (i.e., custom reactions not found in KEGG database are not included) for comparison with the other two sets, which by definition only have KEGG

reactions.

(F) Example of a metabolic gene family that was partially included in KEGG, but has been complemented by SACURE (genes annotated by both KEGG and

SACURE: green and genes annotated by SACURE only: yellow).
annotated genes to one of �17,000 KEGG orthology (KOs)

groups representing genes with shared function throughout phy-

logeny. Of these,�6,000 KO groups are first associated with en-

zymes designated by an enzyme commission (EC) number and

then with metabolic reactions. For instance, pyk-1 and pyk-2

are both associated with KO group K00873 and EC 2.7.1.40,

or pyruvate kinase, which catalyzes the conversion of phospho-

enolpyruvate into pyruvate (Figure 2A). At the time of our anal-

ysis, KEGG had identified 988 C. elegans genes associated

with 1,323 metabolic reactions (excluding signaling-related

reactions).

To assess the completeness of KEGG annotations, we cross-

referenced all C. elegans genes with metabolic enzyme infor-

mation available in WormBase (Harris et al., 2013) and UniProt
(UniProt Consortium, 2015). Specifically, we searched for

enzyme names in the gene descriptions in WormBase and pro-

tein domain annotations in both WormBase and UniProt. This

provided hundreds of additional candidate genes that were not

annotated in KEGG, but could potentially be associated with

metabolic enzymes and reactions. To determine which of these

genes encode metabolic enzymes, we developed two auxiliary

annotation data sets. The first, named myKEGG, was built by

compiling all best-hit and reciprocal best-hit Smith-Waterman

scores (based on protein sequence alignment) between each

of the 20,519 C. elegans genes and genes from all 3,073 organ-

isms incorporated in KEGG to yield an overall likelihood score

for possible gene-KO group associations. The second, myTree,

includes a phylogenetic tree for each C. elegans gene based on
Cell Systems 2, 297–311, May 25, 2016 299



protein sequence similarity (Figures 2B and S1). We used my-

Tree as a visual aid to observe clustering of the query gene

with other genes. In addition, we used an independent database

of eukaryotic orthologous groups (designated as KOG) (Koonin

et al., 2004), which provides a protein lineage based on seven

model organisms, including C. elegans, but, like WormBase

and UniProt, does not provide a direct connection between

genes, enzymes, and reactions.

To connect potential metabolic genes to reactions, we devel-

oped a pipeline named SACURE (systematic annotation with

manual curation and regression), which combines evidence

from all six resources. To minimize false negatives, we started

with a low myKEGG score threshold, resulting in 3,424 genes

associated with metabolic KO groups. To rationalize accepting

and rejecting gene-KO group associations and to standardize

our annotations, we formulated the decision making process

by machine learning. Weights were assigned to each resource

depending on their contribution to annotation decisions (Fig-

ures 2C and S2). Overall, our GPR annotations were driven by

clustering patterns in myTree, available KEGG annotation, and

sequence similarity-based scores in myKEGG, while WormBase

and KOG added support when these resources were not suffi-

cient to confidently make a decision. UniProt did not contribute

significantly, likely because it is redundant with the other sources

(Figure 2D).

In total, SACURE identified 1,435 metabolic genes (Figures

2D, 2E, and S1; Table S1), 455 of which were missing in KEGG

(31.7%). These genes brought in 175 metabolic reactions from

KEGG for which no C. elegans gene was previously assigned

(Figure 2E). Most of these genes (n = 343) complemented gene

families that were only partially annotated in KEGG. For instance,

three members of the trehalase (EC 3.2.1.28) family (tre-1, tre-3,

and tre-5) were annotated in KEGG, and our annotation pipeline

added twomore (tre-2 and tre-4), thus recovering the entire gene

family as listed in WormBase (Harris et al., 2013) (Figure 2F).

Reconstruction of a Template C. elegans Metabolic
Network: Pathway-by-Pathway Reconstruction and Gap
Filling
The SACURE-annotated, KEGG-based reactions formed the

backbone of our reconstruction. However, this collection does

not provide a functional network that describes the conversion

of nutrients into biomass and energy. First, not all C. elegans

metabolic pathways are captured by reactions in the KEGG

database. Examples include collagen, N-glycan, and iron-sulfur

cluster biosynthesis. Such pathways were manually recon-

structed using literature searches or MetaCyc (Caspi et al.,

2014), yielding a total of 81 custom reactions (Table S3). In addi-

tion, many KEGG reactions were modified usingC. elegans-rele-

vant rather than generic compounds (e.g., cyclopropane fatty

acids instead of long chain carboxylate), which resulted in 34

additional custom reactions.

Second, many pathways have gaps because of missing en-

zymes. SACURE filled 74 gaps in the KEGG template network,

thus validating the computational annotations, which were

made independent of gap analyses (Figure 3A). For instance,

the C. elegans gene encoding methylglutaconyl-CoA hydratase

wasmissing in KEGG, thus forming a gap in the leucine degrada-

tion pathway. Both myKEGG and myTree captured ECH-5 as a
300 Cell Systems 2, 297–311, May 25, 2016
candidate for this enzyme (Figure 2B). Remaining gaps were

iteratively detected by FBA (Figure 1B), first to find reactions

that could not carry flux and then to identify potential rescue re-

actions (gap-fillers). Many gaps were manually filled by relaxing

SACURE criteria or by inspecting homology with proteins from

other organisms (lenient annotation, n = 72; Figure 3B). For

instance, the tryptophan degradation pathway utilizes an arylfo-

mamidase, but this enzyme was annotated neither in KEGG nor

by SACURE (Figure 3B). afmd-1 was accepted as a gap-filler

based onmanual inspection of sequence homology. In 20 lenient

annotations, multiple candidate genes could be linked to an

enzyme, and the specific gene encoding the enzyme remains

to be determined (TBD in the Gene column of Table S3). An addi-

tional 77 gap-filling reactions were annotated bymanual curation

based on the literature. For instance, gob-1 has experimentally

been determined to encode a trehalose-6-phosphatase (Korm-

ish and McGhee, 2005) (Figure 3C).

Some gaps could not be filled by any of the above-mentioned

methods. However, the corresponding reactions do need to be

incorporated to enable network flux. In some cases, the gene

encoding the relevant metabolic enzyme has not yet been iden-

tified. Two such enzymes are found in the carnitine biosynthesis

pathway (Figure 3D). The first is a peptidase that degrades pro-

teins harboring methylated lysine, and the second is an aldolase

converting 3-hydroxytrimethyllysine into 4-trimethylammonio-

butanal. While this conversion has been observed in mammals,

little is known about the responsible enzymes (Vaz andWanders,

2002). Both reactions were incorporated during gap filling to

rescue the other four reactions in the carnitine biosynthesis

pathway (Figure 3D), which is believed to be functional in

C. elegans (Deusing et al., 2015). Finally, 39 gaps (37 transports

and two metabolic conversions) were filled without association

with any genes or uncharacterized enzymes, but based solely

on FBA. For example, there is an annotated gluconokinase

enzyme that is predicted to be functional only if gluconic acid

can enter C. elegans cells. Therefore, we added a predicted glu-

conic acid transport reaction to themodel (Figure 3E). The details

of manual reconstruction process are provided in the comments

and notes of Tables S1 and S3.

Reconstruction of a Template C. elegans Metabolic
Network: Biomass, Transport, and Demand/Sink
Reactions
Our C. elegansmetabolic network model is particularly aimed at

converting bacterial diet (input) into worm biomass (output) and

generating energy (Figure 1C). To enable network functionality

that accurately reflects C. elegans metabolism, we added reac-

tions for breakdown of bacteria and generation of worm biomass

to the model. Bacterial biomass was based on the composition

of an average E. coli cell (Neidhardt et al., 1990). In addition,

we included specific information on the lipid composition of

E. coli OP50 (Satouchi et al., 1993). C. elegans biomass compo-

sition has been only partially determined. We used specific infor-

mation for C. elegans where available, including lipids (Brock

et al., 2007; Brooks et al., 2009; Hutzell and Krusberg, 1982; Sa-

touchi et al., 1993), trehalose (Miersch and Döring, 2012), and

glycogen (Cooper and Van Gundy, 1970). To approximate the

missing variables in nucleic acid and amino acid composition,

we used the values previously established for yeast (Heavner



Figure 3. Gap-Filling Examples

(A–E) Example pathways with gaps. The different gap-filling methods are indicated as titles. The total number of reactions for each method is given as N. Up to

three genes encoding the enzymes carrying out each reaction are shown in boxes with the enzyme names indicated. See Table S4 for compound abbreviations

and names.

(A) Leucine degradation pathway in KEGG with a gap (yellow box) filled by SACURE.

(B) Tryptophan degradation pathway with a gap filled by lenient annotation.

(C) Trehalose production and degradation pathway with a gap filled by literature-based annotation.

(D) Carnitine biosynthesis with two gaps filled by adding two unknown enzymes for which no KO group is available for annotation.

(E) Potential gluconic acid degradation pathway with a gap filled by a transport reaction not annotated and not found in other eukaryotic models in BiGG.
et al., 2012). Overall, one bacterial and four C. elegans biomass

compositions were generated, with the latter representing

the output in four different modes of animal growth at different

life stages (Table S2). To connect the defined input and output,

we added 29 reactions for the degradation of bacterial biomass

and 19 reactions for the assembly of precursors into C. elegans

biomass (Figure 1C; Table S3).

Additional inputs and outputs include nutrients such as

glucose and metabolites not consumable by biomass or en-

ergy generation, such as signaling molecules, which are syn-

thesized or degraded by peripheral pathways. Flux to and

from these pathways was driven by hundreds of transport

and exchange (with the environment) reactions, as well as

82 demand and sink reactions (Thiele and Palsson, 2010) for

the end products (Figure 1C; Table S3). Although transporters

are generally uncharacterized in C. elegans, we included 17

known transporter proteins that carry 27 metabolites between

the different compartments of the network (see below). We

further assumed that metabolites transportable in yeast and

human models (Schellenberger et al., 2010) are also transport-
able in C. elegans and incorporated additional transport reac-

tions accordingly.

Finally, reactions obtained fromKEGGare typically not curated

for stoichiometry and reversibility (Feist et al., 2009). To define

these parameters, we used evidence fromBiGG (Schellenberger

et al., 2010), MetaCyc (Caspi et al., 2014), SEED (Henry et al.,

2010), and BRENDA (Chang et al., 2015), as well as literature

curation.

PRIME Model: Systematic Localization of C. elegans
Metabolic Reactions
Metabolism is highly compartmentalized in specific sub-cellular

spaces such as the mitochondria. Since the precise sub-cellular

localization is known for only few C. elegans proteins, we aimed

at a minimal network and predicted reaction localization to three

compartments: cytosol, mitochondria, and extracellular space.

We employed multiple resources that use protein sequence,

enzyme type, and reaction (Figure S3). In addition, we deter-

mined the flux carrying capacity of each reaction when localized

to mitochondria, cytosol, or both.
Cell Systems 2, 297–311, May 25, 2016 301



Figure 4. Reaction Localization and Key Statistics of Reconstructed Model

(A) Score-based assignment of reactions tomitochondria and other compartments (cytosolic or extracellular). An algorithmic compartment score greater than 6.2

(dotted lines) indicates automatic localization to that compartment. If two scores are within 1.2 of each other (dashed lines), the reaction is localized to both

compartments. In other cases, the higher score determines the compartment. The manual decisions that violate these rules are indicated as closed shapes. The

solid line shows identity.

(B) Computational determination of enzyme localization was validated against experimental localization data obtained from WormBase (Exp).

(C) The number of genes, enzymes, reactions, and compounds included in the PRIMEmodel and additions from semi-automated reconstruction. The numbers at

the top indicate elements in the final model, and the numbers in parentheses indicate additions.

(D) Distribution of reactions according to function and compartment.

(E) WormFlux provides an integrated platform for iCEL1273 access.
We rationalized the localization decisions by first calculating an

overall score for themitochondrial andnon-mitochondrial localiza-

tion of each reaction based on a weighted sum of evidence from

different predictors. This score was then used to algorithmically

decide whether a reaction is mitochondrial or not according to

two thresholds (Figure 4A), which were based on the best agree-

ment of predictions with the manually reconstructed template.

Reactions were then re-localized to maximize the agreement be-

tween the decisions and predictions. All decisions were manually

curated. For example, in many cases where a reaction was local-

ized to both compartments due to low scores indicating lack of

evidence (i.e., exceptions in lower-left quartile of Figure 4A), addi-

tional evidence from similar reactions catalyzed by the same

protein were used. In the end, the localization of fewer than 10%

of reactions was overruled manually (Figure 4A; Table S3).

We validated the predictions using experimentally determined

localization of 130 proteins available in WormBase (Harris et al.,
302 Cell Systems 2, 297–311, May 25, 2016
2013) (Table S6). One protein (ACO-1) was eliminated from this

analysis as its annotation was in fact driven by the experimental

annotation available in the used resources. For the remaining

129 proteins in this validation set, the sub-cellular localization

was wrongly predicted for only five (3.9%) (Figure 4C). In addi-

tion, four proteins (3.1%) were predicted to localize to both

mitochondria and cytosol. This analysis completed the recon-

struction of the PRIME model (Figure 1B), with 1,868 reactions

and 1,241 genes (Figure 4C).

Completion of Reconstruction by Semi-automated
Expansion of the PRIME Model
ThePRIMEmodel can carry out themetabolic functions depicted

in Figure 1C and forms the scaffold for additional reactions. Since

the PRIME model was reconstructed in a pathway-by-pathway

manner, many SACURE-annotated reactions that are not part

of well-defined pathways in KEGG and MetaCyc, or those that



seem to be part of incomplete pathways were not incorporated.

Remaining reactions may connect pathways, form alternative

pathways that perform overlapping metabolic functions, or

comprise isolated pathways (i.e., interconnected reactions

disconnected from the network as a group). We performed an

exhaustive computational analysis of whether the remaining re-

actions can support flux when added to the network.

Using the PRIME model, we tested the flux carrying capacity

of 704 SACURE-annotated reactions that were left out during

manual reconstruction. We also included helper reactions that

could connect the annotated reactions to the network, which

covered spontaneous reactions listed in KEGG, reactions asso-

ciated with uncharacterized enzymes listed in KEGG, and trans-

port reactions obtained from BiGG (yeast and human models).

Additional (custom) transport reactions were provided for every

compound to allow the reconstruction of isolated pathways

with few inputs and outputs. Proper connection to the network

was algorithmically defined as the ability of a reaction to carry

flux, without need for a custom transport reaction that has no

other function than rescuing this reaction. For instance, our an-

notations associated AMX-2 with the conversion of aminoace-

tone to methylglyoxal (Tables S1 and S3). However, while this

reaction was recovered by SACURE, it was not included in the

PRIME model since it was disconnected and did not form a

gap, as no pathway was dependent on it. The semi-automated

reconstruction added a spontaneous reaction that represents

the degradation of L-2-Amino-3-oxobutanoate to aminoacetone

to connect the AMX-2-catalyzed reaction to the network. Since

L-2-Amino-3-oxobutanoate is a by-product of glycine and thre-

onine breakdown, this additional reaction provided a lateral

connection between amino acid metabolism and methylglyoxal

detoxification.

The semi-automated pipeline identified 233 connected reac-

tions, leaving 471 reactions disconnected. Most of the discon-

nected reactions (n = 297) are parallel reactions of existing

enzymes in the model that we believe are either not relevant to

C. elegansmetabolism or are connected to the network with un-

known pathways. Others are enzymes with functions that do not

form complete pathways linked to the current network. We also

manually curated the 233 connected reactions and eliminated

themajority (n = 179) because they did not contribute to the func-

tionality of the model (see details in Supplemental Information

and Table S7).

Overall, the semi-automated procedure incorporated 117

additional reactions (56 annotated reactions and 61 helper reac-

tions, mostly transport and exchange) and 32 genes to themodel

(Figure 4C; Table S3). All SACURE-annotated reactions that

were excluded from the model are listed in Table S7, together

with the 28 KEGG reactions that were not annotated by SACURE

(Figure 2E). The final model contains 1,273 genes, 623 enzymes,

1,985 reactions, and 887 metabolites and is referred to as

iCEL1273 (Figures 2E and 4C). The distribution of reactions

into mitochondria and cytosol, as well as to different reaction

types, is provided in Figure 4D.

WormFlux: a Dedicated Website for iCEL1273
iCEL1273 is available at a custom-made website called Worm-

Flux (wormflux.umassmed.edu) (Figure 4E). WormFlux provides

a searchable database with detailed descriptions of model ele-
ments and their annotations in gene, enzyme, reaction, com-

pound, and pathway pages. To facilitate applications that

require modifications in biomass, we provide a ‘‘Biomass’’ tool

as part of WormFlux, which can take user-defined biomass pa-

rameters and adjusts bacterial degradation and worm biomass

assembly pathways accordingly.

Validation of iCEL1273: Reproducing Observed Mass
and Energy Balance during Two Stages of Life
To demonstrate that iCEL1273 adequately represents the con-

version of bacterial diet into C. elegans biomass, we gathered

information on bacterial intake, biomass production, O2 con-

sumption, and CO2 release observed with C. elegans during L4

larval and reproductive young adult stages, where biomass pro-

duction takes the form of growing body size and generation of

progeny, respectively. Although precise bacterial ingestion rates

are not available, the other rates are in relatively tight ranges. For

each life stage, we constrained the model with experimental

ranges observed for three of the four measured rates and deter-

mined the theoretical range for the fourth rate using flux vari-

ability analysis (FVA). The theoretical range overlapped with the

experimental observation in every case (Figure 5A), showing

that iCEL1273 can quantitatively explain C. elegans growth at

quasi-steady states.

The wide predictive ranges reflect the variability of flux in the

absence of additional constraints, as the model has a large solu-

tion space to freely perform conversions such as production of

formic acid instead of CO2 to waste carbon. This observed level

of flexibility is desired since the actual productivity of the meta-

bolism cannot be limited to the four fluxes considered. Most

importantly, the model must be able to produce significant

amounts of ATP in excess of the requirements for biomass pro-

duction in order to meet growth-associated maintenance (GAM,

linked to biomass production) and non-GAM (NGAM, indepen-

dent of biomass production, includingmovement) costs. In addi-

tion to these requirements routinely used in metabolic network

models, the C. elegans model needs to address the unknown

energetic cost of digesting bacterial biomass. We calculated

the additional ATP that iCEL1273 can produce to meet GAM

(excluding polymerization reactions for which energetic cost is

already a part of biomass assembly reactions), NGAM, and bac-

terial digestion, when constrained with the above mentioned

experimental data. The achievable ranges of values for these re-

quirements formed a finite volume (Figure 5B), where GAM and

NGAM were consistent with previous models (e.g., Reed et al.,

2003; Förster et al., 2003; Oh et al., 2007). Thus, iCEL1273 can

satisfy input/output rates for two different modes of growth

(body size and offspring) and generate energy for maintenance

and digestion costs. We arbitrarily picked the center of mass

of the tetrahedron in Figure 5B to determine the final costs in

each of the three categories, which dictated the coefficients of

ATP in the corresponding reactions (Table S3; NGAM: reaction

RCC0005, GAM: BIO0010, and digestion: DGR0007).

Validation of iCEL1273: Gene Essentiality and Other
Genotype-Phenotype Relationships
To test the ability of iCEL1273 to predict the outcome of genetic

perturbations, we compared genes predicted to be essential by

FBA to experimentally defined essential genes. FBA predicts
Cell Systems 2, 297–311, May 25, 2016 303
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Figure 5. Model Validation

(A) Comparison of model-predicted flux ranges with observed production/consumption rates during growth in two stages of life (Table S10). When the model is

constrained with three of the four experimental fluxes (blue bars if a range and stars if a single point), the predicted range for the fourth flux (red bars) overlaps with

or covers the experimental value, meaning all experimental rates can be satisfied simultaneously. The analysis was performed for L4 and young adult (Ad.) stages.

(B) Predicted production of excess ATP to address unknown maintenance (GAM and NGAM) and digestion costs. All combinations shown by blue dots can be

achieved while simultaneously satisfying all experimental constraints in (A). The center of mass of the tetrahedron was arbitrarily used to set the default values for

each parameter in subsequent applications.

(C) Association of genes with experimental no-growth (lethal, larval lethal, larval arrest, embryonic lethal, embryonic arrest, and sterile) phenotypes with genes

predicted by four different approaches as described in the main text. The statistical significance of associations is indicated by hypergeometric p values.

(D) Association of specific phenotypes with the predicted reduction in the production rates of different biomass precursors, specific metabolites, and ATP. The

boxes indicate relationships that were expected based on phenotype description and its relevance to the produced metabolites.

(E) Mechanistic predictions of genotype-phenotype and diet-phenotype relationships in the methionine salvage pathway. The predicted growth rates for mutant

animals with supplementedmetabolites are compared to experimental observations indicated at the top (left). Themethionine salvage pathway, together with the

adjacent one-carbon pool by folate, is shown on the right. In this pathway, methionine synthase (METR-1) uses methylcobalamin (vitamin B12) as a cofactor. The

inset bar graphs indicate fluxes (relative values) of corresponding reactions in the four cases shown on the left. For abbreviated compounds, see Table S4.
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essentialitywhenasevere reduction inpredictedbiomassproduc-

tion is observed after all reactions that are non-redundantly asso-

ciated with a gene are constrained to zero flux. Experimentally

determined essential genes include those associated with lethal,

growth arrest, or sterile phenotypes upon RNAi or mutation as re-

ported inWormBase (Harris et al., 2013).Using a threshold of 50%

for the reduction in biomass production efficiency, themodel pre-

dicted 159 essential genes. About 80%of these genes are indeed

essential (hypergeometric p value = 1.1 3 10�31) (Figure 5C, top

left Venn diagram). Biomass reduction thresholds between

30%–84% gave the same result, whereas we started underesti-

mating or overestimating essentiality beyond these levels.

Of the 33 genes that were incorrectly predicted to be essential

(Table S8), 19 are involved in the production of glycans and

lipids, which are adjustable components of biomass. Different

lipid and glycan compositions may support viability (Berninsone,

2006; Brock et al., 2007; Perez and Van Gilst, 2008; Zhang et al.,

2003). However, the model uses a constant composition that is

essential for biomass generation. Of the remaining 14 genes,

five function in DNA polymerization, but may represent specific

DNA processing activities that are not essential. For instance,

the DNA polymerase polh-1 is involved in DNA repair, which is

not essential for viability (Harris et al., 2013). Four of the remain-

ing nine genes, while not essential, do confer slow growth, sick,

or reduced fecundity phenotypes. The last five genes were only

tested byRNAi, and incomplete knockdownmay explain the lack

of essentiality. Indeed, the mutation of one of these genes, idi-1,

results in larval arrest (Yochem et al., 2005), however this infor-

mation was not yet present in WormBase (Harris et al., 2013).

Next, we focused on the 335 experimentally determined

essential genes that were not correctly predicted by iCEL1273

(Figure 5C). Missing a large number of essential genes is ex-

pected for several reasons. First, our initial definition of essenti-

ality assumed that redundant genes in GPR associations could

fully replace each other. However, paralogs may be individually

essential for viability when they function in separate physiolog-

ical compartments. For instance, the pyruvate kinases PYK-1

and PYK-2 are expressed in muscle and intestine, respectively,

and pyk-1 is essential for viability, whereas pyk-2 is not (Harris

et al., 2013). To better capture these genes, we re-predicted

essentiality, this time prohibiting functional replacement by pa-

ralogs in GPRs. This reduced the number of false negatives

from 331 to 251 (Figure 5C, top right Venn diagram).

The second reason for missing essential genes is the underly-

ing assumption that all reactions in the network can carry flux.

However, many reactions are only conditionally active, as not

all genes are expressed under all conditions. To address this

issue, we computationally derived an optimal state of growth in

the solution space, wherein maximum biomass production was

achieved with minimum total flux in all reactions, a method

known as parsimonious enzyme usage FBA (Lewis et al., 2010;

Machado and Herrgård, 2014). Assuming that the protein cost

of a flux is proportional to its magnitude, and also that cells are

programmed to grow with minimal cost for the synthesis of the

metabolic machinery, we used this specialized FBA approach

to predict reactions and thus genes that participate in the optimal

growth state and assumed that these genes are essential for

viability. Importantly, optimized flux distribution of the entire

network turned out to be an excellent predictor of gene essenti-
ality by itself and further reduced the number of false negatives

from 251 to 125 (Figure 5C, bottom left Venn diagram).

The third reason for missing essential genes is the assumption

that all bacterial degradation products are available toC. elegans

metabolism. We suspect this may not be the case for some

nutrients, such as nucleotides coming from the degradation of

bacterial nucleic acids. In addition, in the context of the animal’s

physiology, not all nutrients will be uniformly available in all tis-

sues. As a result, some tissues may be dependent on specific

metabolites suchas trehalose,which is hypothesized tobeanen-

ergy commodity inC. elegans (Braeckman et al., 2009; McElwee

et al., 2006).We simulated an optimal growth state again bymini-

mizing total flux when only amino acids, stored lipids, and treha-

lose were available as nutrients. This approach was again an

excellent predictor of lethality (Figure 5C, bottom right Venn dia-

gram) and captured 23 essential genes that were missed before

(Table S8), including genes associated with nucleic acid biosyn-

thesis (n = 15) and two of the five trehalases (tre-1 and tre-5).

Taken together, by using different types of nutrient and gene

function simulations, the model correctly predicted 359 of 461

essential genes (77%) leaving 102 genes unexplained.

Next, we changed the objective of FBA to the maximization of

demand reactions instead of biomass generation. The model

predicted 45 of the remaining 102 genes to be essential for the

production of vital molecules such as ubiquinone, methylated

histones, and inositol phosphates, which may be required for

the organism to grow, but are not included in the general

biomass composition (Table S8). The remaining 57 essential

genes that were not predicted by the model may be associated

with the production of other metabolites not included in our de-

mand list ormay be essential under nutritional conditions that are

yet to be explored.

Finally, we investigated the association between a set of 11

phenotypes and seven network objectives such asmaximization

of ATP or collagen production. For each phenotype, we found

that genes predicted to be essential for the production of related

metabolites are strongly associated with the gene sets reported

in WormBase (Figure 5D). For instance, collagen is the main

component of the C. elegans cuticle, and its biosynthetic pro-

duction in the model is related to morphological phenotypes

such as Dpy. Low efficiency of ATP generation is a good predic-

tor of slow growth and also lifespan extension, as expected (Chin

et al., 2014; Van Raamsdonk et al., 2010). It is important to note

that the usage of WormBase during gene annotations did not

create a testing bias for WormBase-derived phenotypes. The

phenotypic descriptions are not specifically linked to the anno-

tated functions with the exceptions of some genes associated

with coenzyme Q depleted and histone methylation variant phe-

notypes, for which, the elimination of WormBase descriptions

from SACURE input did not affect our predicted function. Alto-

gether, these phenotypic relationships validate the pathways

and GPR annotations comprising iCEL1273.

Validation of iCEL1273: Gene Essentiality and
Genotype-Phenotype Relationships in Methionine
Salvage Pathway
To demonstrate the utility of iCEL1273 for specific pathway ana-

lyses, we examined themethionine salvage pathway. At the cen-

ter of this pathway is methionine synthase (MS, encoded by
Cell Systems 2, 297–311, May 25, 2016 305



metr-1), which uses vitamin B12 to convert homocysteine into

methionine (Yilmaz and Walhout, 2014). Mutant metr-1 animals

cannot utilize vitamin B12 and exhibit a growth delay (Watson

et al., 2014). In addition, supplementation of methionine partially

rescues themetr-1mutant’s developmental delay (Watson et al.,

2014). In accordance with our experimental findings, simulated

deletion of metr-1 in iCEL1273 lowers the biomass production

rate (Figure5E)andgrowth ispredicted tobe restoredwhenmethi-

onine uptake is allowed during FBA. Importantly, the model pre-

dicts that the growth reduction in metr-1 mutants is mediated

by reduced flux in the methionine salvage cycle rather than

the connected folate pathway, which is consistent with our

previous observations (Watson et al., 2014) (Figure 5E). Themodel

also correctly predicts that the reaction that converts methio-

nine to S-adenosylmethionine is essential. This example shows

that iCEL1273 can provide mechanistic predictions for geno-

type-phenotype and diet-phenotype associations at the pathway

level.

Case Study: Analysis of Dauer Metabolism by
Integration of Gene Expression Data
Metabolic network flux can be rewired in response to environ-

mental or physiological cues (Watson et al., 2015). One mecha-

nism of network rewiring is by regulating metabolic gene expres-

sion. We tested the ability of iCEL1273 to predict metabolic

network rewiring when C. elegans enters the dauer stage in

response to adverse conditions. Regular C. elegans larval devel-

opment is associated with a fast aerobic metabolism that builds

large amounts of biomass in a short time, while dauer meta-

bolism is characterized by a slow microaerobic metabolism

that utilizes stored compounds such as fatty acids and glycogen

as nutrients (Hu, 2007).

To predict metabolic rewiring in dauer versus growing animals,

we used gene expression data from dauers and dauer recovery

larvae (Wang and Kim, 2003). Altogether, 144 genes are upregu-

lated and 241 are downregulated in dauer larvae (p < 0.001;

Table S1). We used this gene expression data to identify two

corresponding sets of reactions that are assumed to be in an

on (n = 231) or off (n = 136) state in dauer, respectively. We

then determined a flux distribution that best fits these reactions

following a previously established integration method (Shlomi

et al., 2008) (Figure 6A). We made two modifications to this

method to devise an optimization strategy for our application.

First, we performed flux fitting under three nutritional conditions:

bacterial intake, usage of storage compounds (triacylglyceride

and glycogen), or both. Second, we minimized total flux (abso-

lute values) of reactions that were unrestrained during the fitting

process (>83% of the network). Thus, we combined a gene

expression integration method (Shlomi et al., 2008) and a purely

predictive fluxminimizationmethod (Lewis et al., 2010;Machado

and Herrgård, 2014) to find an optimal state where the network is

most efficiently wired according to gene regulatory constraints.

In addition, we back-calculated the number of genes that have

consistent expression levels with the derived flux distribution

(flux-compatible genes). We then evaluated optimization quality

based on a high percentage of flux-compatible genes and a low

sum of minimized flux in unrestrained reactions (inclusion of flux

from fitted reactions in this sum did not change the conclusions;

Figure S4).
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For dauer larvae, both the highest number of flux-compatible

genes and lowest sum of minimized flux were obtained when

storage compounds were used as nutritional input (Figure 6B).

This is in agreement with the fact that dauers do not eat and

need to sustain their physiology by catabolizing stored energy

sources (Hu, 2007). To model the network wiring of growing

larvae, we reversed the up- and downregulated genes. In this

case, the optimal fit was obtained when a bacterial diet was

used as nutritional input, which agrees with the physiological re-

ality of growing larvae (Figure 6B). Importantly, the model

correctly predicted growth (biomass production) for growing

larvae, but not for dauer larvae (Figure 6C). In addition, dauer

larvae had predicted lower metabolic activity based on ATP

production, O2 consumption, and flux activity (Figure 6C).

Because the integration approach is only semi-quantitative

(e.g., expression levels are grouped into on and off states before

flux fitting), the flux comparisons between the two states cannot

be taken as a quantitative measure. Altogether, iCEL1273

correctly predicted, solely based on gene expression data,

that the metabolism was adjusted for stored resources, low

metabolic rate, and no biomass generation in dauer state and

the use of bacterial diet, higher metabolic rate, and growth in

the recovery state.

Compartmentalization of Dauer Metabolism
Several metabolic properties observed in the dauer larvae flux

distribution (Figure 6A) are in agreement with known features

of dauer metabolism. For instance, iCEL1273 correctly predicts

a rewiring from the TCA cycle to the glyoxylate shunt, as well as a

shift from oxidative phosphorylation to fermentation that results

in the production of succinate from the reversal of the succinate-

to-fumarate conversion (Braeckman et al., 2009; Burnell et al.,

2005; Holt and Riddle, 2003). The predicted end product of

this is propionate, which has been detected in the exometabo-

lome of C. elegans exposed to anaerobic conditions (Butler

et al., 2012). Another prediction from iCEL1273 is the concurrent

production and utilization of trehalose, which is an important

metabolite in C. elegans for energy production and desiccation

prevention in dauer animals (Erkut et al., 2011).

We asked whether iCEL1273 could mechanistically explain

the functionality of these rewired network properties under dauer

conditions. We reasoned that the simultaneous production

and consumption of trehalose might reflect distinct metabolic

activities in different tissues, cells, or compartments. However,

this could not be captured with whole-animal gene expression

data. We modeled two hypothetical compartments, a micro-

aerobic compartment that produces trehalose from stored fatty

acids and an anaerobic compartment that uses trehalose as

the sole energy source. Using FBA, we predicted flux distribu-

tions for maximum trehalose production and maximum energy

generation in the respective compartments (Figure 7A). We

found that the activation of the glyoxylate cycle results in greater

trehalose production from fatty acids in the microaerobic

compartment (Figure 7B). In the anaerobic compartment, the

reversal of the TCA cycle to ferment trehalose all the way to suc-

cinate resulted in greater levels of ATP generation than when this

pathway was blocked by limiting the flux through the fumarate

reductase reaction (Figure 7C). The biological nature of each

compartment is not yet known, but we hypothesize that they



Figure 6. Integration of Gene Expression Data with iCEL1273

(A) Predicted optimal flux distribution in central carbon pathways in dauer animals that use stored compounds (triacylglycerides and glycogen) as nutrition. The

red and green arrows indicate reactions to which the flux distribution was best-fitted based on gene expression. The black arrows indicate reactions with

predicted incoming or outgoing fluxes with respect to best-fits. The flux imbalances observed in the figure are due to pathways not shown (e.g., about half of the

incoming flux to 3 pg from 13 dpg and glycerol is diverted to amino acid metabolism [Table S3], hence the flux from 3 pg to 2 pg is less than the sum of fluxes

producing 3 pg). The enzymes used in text are indicated by abbreviations. For abbreviated compounds, see Table S4.

(B) Optimization variables with three different nutritional conditions in two stages. A high percentage of genes with flux-compatible expression levels and a low

sum of minimized fluxes (absolute values) are desired. The optimal states are circled.

(C) Summary of predicted dauer and growing larvae metabolism based on optimal states in (B). Each variable is normalized by itself (i.e., divided by themaximum

of the two states).
may correspond to different tissues. Taken together, key proper-

ties of dauer metabolism can be predicted by iCEL1273, and our

mechanistic predictions support the hypothesis that trehalose

acts as a commodity metabolite (Braeckman et al., 2009).
DISCUSSION

Metabolic network models serve both as knowledge bases and

predictive tools (Andersen et al., 2008; O’Brien et al., 2015;
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Figure 7. Mechanistic Analysis of Dauer Metabolism Using iCEL1273

(A) Two hypothetical compartments proposed to explain the key metabolic properties of dauer larvae (Figure 6A). The predicted fluxes are shown.

(B) Analysis of maximum trehalose production in the microaerobic compartment in (A) as a function of oxygen availability. The black and gray curves were

obtainedwith andwithout the glyoxylate pathway (by constraining the relevant reactions to carry zero flux), respectively. The yellow region indicates the additional

amount of trehalose that can be generated from the glyoxylate pathway.

(C) Sensitivity of ATP generation in the anaerobic compartment to the flux in fumarate reductase (FR) reaction. The circle indicates the optimal point where energy

is maximized.
Oberhardt et al., 2009; Shlomi et al., 2008). The annotation

database of iCEL1273 (wormflux.umassmed.edu), and its

predictive power shown by multiple validation tests make it a

suitable metabolic model for C. elegans.
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The metabolic network of C. elegans has not been systemati-

cally studied before. To make a comprehensive list of metabolic

genes and reactions in this organism, we developed and vali-

datedSACUREas anobjective annotationpipeline (Supplemental

http://wormflux.umassmed.edu


Information) and used the outcome in network reconstruction.

Additional annotations came from the modeling-based recon-

struction. It is important to note thatmodel validation tests carried

out in this study verify both the network structure and the annota-

tions, as gene-reaction associations were extensively used in

these tests. However, metabolic annotations are not yet com-

plete for C. elegans. In the future, it is likely that new annotated

pathways can be incorporated into iCEL1273, by connecting

them to the central network or diet at one end and to worm

biomass or demand/sink reactions at the other (Figure 1C). We

also envision that additional compartmentalization can be incor-

porated into the model when sufficient experimental evidence is

collected for protein localization in C. elegans. Thus, iCEL1273

can be considered a minimal global-scale metabolic model that

is expected to evolve as more information is obtained. For future

additions, a good starting pointwould be the annotated reactions

in Table S7 that were excluded from the model.

iCEL1273 can be further refined when more precise informa-

tion of both C. elegans and bacterial biomass composition be-

comes available. We approximated C. elegans biomass param-

eters that were not yet measured using data from yeast. Further,

the variability of biomass composition in different stages of life

and in different tissues of the animal will be considered in the

future. Finally, a major goal will be to incorporate different bacte-

rial compositions for different C. elegans diets. The Biomass tool

of WormFlux as well as exchange, demand, and sink reactions

readily available in the network can be used to control the dietary

input and biomass output of iCEL1273.

With increasingly accurate descriptions input, output, and

experimental constraints, FBA will become a powerful predictive

tool to explore metabolic network properties and functionality

at a systems level. However, it is important to note that FBA

cannot be used to predict metabolite concentrations or to

make a dynamic simulation of animal growth because of the

steady-state assumption used. These limitations are offset by

constraint-based approaches that allow data integration for a

given environmental condition. As we showed for dauer meta-

bolism, gene expression data can be used to constrain the

network and correctly capture the relevant metabolic state.

Similar methods can be applied to tissue-derived expression

data to derive tissue-specific metabolic networks and states

(Shlomi et al., 2008; Jerby et al., 2010). Furthermore, methods

have recently been developed for integrating metabolomics

data with metabolic networks (Töpfer et al., 2015), which

may open exciting new opportunities for studying C. elegans

metabolism.

EXPERIMENTAL PROCEDURES

Constraint-Based FBA

All mathematical modeling procedures used were based on FBA (Orth et al.,

2010). Briefly, the main idea of FBA is to satisfy mass balance at every node

(metabolite) of the metabolic network simultaneously. Assuming steady

state, total flux in and out of each node (i.e., the difference in production and

consumption rates of compounds) equals zero, which is represented by Equa-

tion 1, where, S is the stoichiometry matrix of reaction coefficients (dimensions

n 3 m; n = number of compounds and m = number of reactions), v is the flux

vector (m 3 1), and 0 is the vector indicating zero sum of fluxes at each node

(n3 1).

S,v = 0: (Equation 1)
The solution to Equation 1 alone is the null space of S. To obtain a biologically

meaningful solution in this space, flux values are first constrained based

on thermodynamic and other relevant information by Equation 2. Typically,

these constraints include reaction reversibility rules (e.g., the flux of an

irreversible reaction can only take positive values; 0 < v < 1,000, with 1,000

used as an arbitrary upper limit that represents infinity) and known or pre-

scribed uptake/secretion rates in exchange reactions (e.g., for an uptake

reaction that is set to provide up to 1 unit of a metabolite to the system:

�1 % v % 0). Allowed uptake rates characterize the specific input (diet, oxy-

gen, etc.) of a particular solution.

vmin
1 % vi < vmax

i for i = f1; 2; :::;mg: (Equation 2)

In addition, a biological objective is defined for maximizing or minimizing a

set of fluxes as shown in Equation 3. For instance, to predict the metabolism

of optimal growth, the constant for the flux of biomass reaction is set at 1

(cbiomass rxn = 1) and the rest of the reactions at 0. Maximization of the objective

then yields maximum possible biomass production, i.e., growth rate.

obj f =
Xn

i = 1

civi: (Equation 3)

Equations 1–3 are solved together as a linear programming problem using a

specialized solver. The solver used in this study was Gurobi Optimizer version

6 (Gurobi Optimization). FBA can bemodified to carry out different applications

of metabolic network modeling. For instance, the variability of the objective

function as a function of a particular flux can be calculated to perform sensi-

tivity analyses as in Figures 7B and 7C and gene expression data can be inte-

grated using mixed integer linear programming (Shlomi et al., 2008) as in

Figure 6. Details of different variants of FBA used in this study are provided

in Supplemental Information.

Additional Methods

Details of methods used in every subsection of Results are available

in Supplemental Information, following the same sub-section titles for

convenience.

Model Availability

iCEL1273 can be downloaded from WormFlux in different formats including

text, MS Excel, and SBML (Hucka et al., 2003).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and ten tables and can be found with this article online at http://

dx.doi.org/10.1016/j.cels.2016.04.012.
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Shlomi, T., Cabili, M.N., Herrgård, M.J., Palsson, B.O., and Ruppin, E. (2008).

Network-based prediction of human tissue-specific metabolism. Nat.

Biotechnol. 26, 1003–1010.

Soukas, A.A., Kane, E.A., Carr, C.E., Melo, J.A., and Ruvkun, G. (2009). Rictor/

TORC2 regulates fat metabolism, feeding, growth, and life span in

Caenorhabditis elegans. Genes Dev. 23, 496–511.

Thiele, I., and Palsson, B.O. (2010). A protocol for generating a high-quality

genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121.
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FigureA S1,A relatedA toA FigureA 2/ IllustrationA ofA myKEGGA scoringA algorithmA andA examplesA ofA custom
phylogeneticAtrees.A(A-B) EvaluationRof C. elegans gene acy-4 withRmyKEGG (A) andRmyTree (B)/RTheRfinal
decisionRforRthisRgeneRisRanRassociationRwithRK6L6xDROadenylateRcyclase1RatRlowRconfidence/ (A) ReciprocalRbest
hitsRORBH1RtableRshowingRrelatedRgenesRinRotherRorganismsRinRdescendingRorderRofRSmith,WatermanRalignment
scoresRinRKEGGROs1/ROrganismRandRgeneRpairsRareRdesignatedRaccordingRtoRKEGGRnomenclature/RTopR9666Rrows
areR truncatedR atR 96DRgenesRdueR toR theRminimumR thresholdRof sNP66R forR aR significantR match/R AccordinglyAR the
correctionR factorR OO96D,9661k966R NR 6/6D1R makesR theR contributionR ofR theR topR 9666R groupR toR overallR score
insignificant/RTheRmostRlikelyRKORassociationsRareRobtainedRforRK6L6xDRandRK6L6x:RwithRmyKEGGRscoresRof
6/D;R andR 6/PLR inR theR RBHR tableR OEquationA S11R andR 6/D;R andR 6/P;R overallR OEquationA S21AR respectively/ (B)
PhylogeneticR treeR showsRclusteringRaroundRK6L6xDARwithRaRclusterR scoreRofR6/33R forR thisRKO/RTreeR scoresRare
9/D3RandR6/P3RforRK6L6xDRandRK6L6x:ARrespectively/ (C) ARmyTreeRexampleRthatRneededRmanualRcuration/ C.

elegans gene ugt-15 wasRmanuallyRassociatedRwithRK66:;;ROglucuronosyltransferase1/RDueRtoRtheRdominationRof
theR treeR by C. elegans paralogsAR myTreeR scoresR underestimatedR theR strengthR ofR theR visibleR clusteringR pattern
OclusteringRscoreRisR6RandRtreeRscoreRisR6/3DRforRassociationRwithRK66:;;1/RTreeRabbreviationsRinRthisRfigureRand
FigureA2BMRCELA C. elegansFRHASA H. sapiensFRDMEA D. melanogasterFRATHA A. thalianaFRSCEA S. cerevisiaeF
BACARbacteriaFRARCARarchaeaFRPROARprotistsFRFUNARfungiFRPLAARplantsFRINVARinvertebratesFRNEMARnematodesF
ARTAR arthropodsFR VERAR vertebratesFR MAMAR mammals/R ParentheticalR informationR forR sequencesR fromR other
organismsRindicatesRgenesRintroducedRasRbestRmatchesROB1RorRreciprocalRbestRhitsROR1/RParentheticalRinformation
for C. elegans sequencesRindicatesRgenesRintroducedRasRparaloguesROP1RorRasRaRreciprocalRbestRmatchRtoRoneRofRthe
otherRorganismsRinRtheRtreeROB1/ROrganismRabbreviationsRareRfromRKEGG/
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Figurey S3,y relatedy toy Figurey 4 andy Figurey 5.y Predictorsy fory reactiony localizationy scoringy algorithmy of
Figuresy4Ayandy4ByandyreproductionyofyoptimalygrowthyrelationshipsyinyFigurey5Byusingynon-redundant
gene-reactiony associationsy only.y (A) ResourcesB usedB forB evaluatingB reactionB localizationB toB mitochondriaB or
otherB compartments.B GeneAB enzymeAB andB reactionB indicateB atB whichB levelB theB predictorB works.B GeneVlevel
predictionsBevaluateB theB targetingBofBproteinsBencodedBbyB theBgenesB inB reactionBGPRBtoBmitochondriaBorBother
compartments.B TheB enzymeB levelB predictorB evaluatesB theB localizationB ofB theB generalB enzymeB inB GPRB inB the
BrendaBdatabase.BReactionB levelBpredictorsB localizeB theB reaction.BEachBpredictorBgivesBaB scoreBfromB0B toB1B for
eachB compartmentB SmitochondrialB andB nonVmitochondrialC.B TheseB scoresB areB multipliedB withB theB indicated
weightsBandBsummedB toBobtainBaBcumulativeBevidenceB scoreABwhichB isB thenBusedB forBdecisionVmakingB SFigure
4AC.BWeightsBinBparenthesesBindicateBaBbonusBawardedBwhenBanBexceptionalBscoreBisBachievedBSseeBSupplemental
ExperimentalBProceduresC. (B) ComparisonBofB theB accuracyBofB reactionB localizationBbyB theBprimeB modelB Si.e.A
basedB onB theB pipelineB indicatedB inB sectionB 4CB andB byB individualB geneVlevelB predictors.B PredictionsB areB tested
againstB theB experimentalB validationB setB STabley S8C.B PrimeB modelB columnB isB theB sameB asB thatB in Figurey 4B.
PredictionsBbyBgeneVlevelBpredictorsBwereBbasedBonBaBscoreBthresholdBofB0.5BSoutBofB1.0CBtoBassignBaBproteinBtoBa
particularB compartmentB SmitochondriaB orB otherC.B See Tabley S6 forB details. (C) AssociationB ofB genesB with
experimentalB noVgrowthB SlethalAB larvalB lethalAB larvalB arrestAB embryonicB lethalAB embryonicB arrestAB andB sterileC
phenotypesBwithBgenesBpredictedBbyB twoBdifferentBapproachesBalsoB shownB in Figurey 5B.BTheBdifferenceB from
correspondingB VennB diagramsB in Figurey 5B isB thatAB onlyB nonVredundantB geneVreactionB associationsB are
consideredABasBopposedBtoBallBassociations.BStatisticalBsignificanceBofBassociationsBisBindicatedBbyBhypergeometric
pVvalues.
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Figure S4, related to Figure 6. Detailed evaluation of fitting quality during the integration of gene
expression data. (A) Percentage of reactions (with on or off activity states) that fit the flux distribution is
plotted against the sum of minimized flux (absolute flux values of reactions with an undetermined state of
activity). (B) Percentage of genes that have a regulation state compatible with the flux distribution (upregulated
and active or downregulated and inactive) is plotted against the sum of all flux (absolute values) after flux
minimization for reactions with an undetermined state of activity.



 
 
SUPPLEMENTAL TABLES 

  



 
Table S9. Related to Figure 2. Predictors used for the annotation of metabolic genesa. 

Predictor Input Method Assignment Output Weight 

KEGG KO Direct KO {0,1} 17.3 

Cluster Score Phylogenetic 
tree 

Lineage 
algorithm KO [0,1] 13.6 

Normalized 
myKEGG score SW tables Equation S2, 

normalized KO [0,1] 7.74 

myKEGG score SW tables Equation S2 KO [0,1] 3.44 

KOG  KOG, SW 
tables Indirect EC {0,1} 3.49 

Tree score Phylogenetic 
tree Tree algorithm KO [0,2) 3.42 

WormBase 
description 

Text, protein 
domains Word matching EC [0,1] 2.91 

UniProt 
descriptionb 

Text, protein 
families Word matching EC [0,1] 0.00 

UniProt ECb EC Direct EC {0,1} 0.00 

 

aAbbreviations: EC, Enzyme Commission number, KO, KEGG Orthology; KOG, orthology groups based 
on (Koonin et al., 2004); SW, Smith-Waterman alignment. 
bUniProt scores were rejected by the model as they were associated with small weights and zeroing these 
weights did not change algorithmic decisions. 
 
  



Table S10. Related to Figure 5. Validation of iCEL1273 with observed consumption/production rates. 

 L4 Stage Adult Stage (3 days) 

Constraint 
Observed 
range Model range 

Observed 
range 

Model 
rangea 

Bacterial uptake 
(g dW/g dW/h) 0.02-0.2 0.16-unba 0.02-0.2 0.09-unba 

O2 uptake 
(mmol/g dW/h) 2.4 1.1-5.3 0.49-0.70 0.10-4.2 

CO2 release 
(mmol/g dW/h) 1.7-2.4 0.26-2.6 0.49 0.0-1.8 

Biomass production (1/h) 0.100 0-0.133 0.065 0-0.144 
 

a Unbound since excess bacterial material can be excreted as waste product. 
 

 
  



Other Supplemental Table Legends 
 
 
Table S1. Related to Figures 2 and 6. Annotation of metabolic genes. 
 
Table S2. Related to Experimental Procedures. Biomass compositions of C. elegans and the bacterial 
diet. 
 
Table S3. Related to Figures 4 and 6. Reactions in iCEL1273. 
 
Table S4. Related to Figure 4. Compounds in iCEL1273. 
 
Table S5. Related to Figure 4. Enzymes in iCEL1273. 
 
Table S6. Related to Figure 4. Validation of gene localization in PRIME model. 
 
Table S7. Related to Figure 2 and Experimental Procedures. Annotated reactions excluded from 
iCEL1273. 
 
Table S8. Related to Figure 5. Phenotypic predictions. 
 
  



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

The details of methods followed in each subsection of Results (main text) are presented below with the 
matching titles. 

 

1. Identification of C. elegans Metabolic Genes 

To annotate metabolic genes, we used information from four databases (KEGG, WormBase, UniProt and a 
published list of eukaryotic orthology groups named KOGs (Koonin et al., 2004)) and two KEGG-based 
databases developed in this study (myKEGG and myTree). Each resource was used to predict the nearest 
KEGG orthology groups (KOs) for each gene in the C. elegans genome (a list of C. elegans genes encoding 
20,519 proteins in KEGG). The predictions from different resources were both visually evaluated and 
converted to a numerical score for computational evaluations (Table S9). All predictions of gene-KO 
associations from all resources were combined using a custom pipeline called Systematic Annotation by 
manual CUration and Regression (SACURE) to give the final decision for each gene (i.e., determination of 
the KO, enzyme, and reaction, if available, based on convincing evidence). The resources used in this 
procedure are explained below. 

 

KEGG   

Available annotations of C. elegans genes were collected from KEGG database (date: June, 2014). Finding 
gene-KO connections was straightforward with this dataset as KEGG-annotated genes are directly 
connected to KOs. For computational purposes, the score data for each gene was represented by 1 for KOs 
associated with the gene (typically only one KO) and 0 for the rest (Table S9). 

 

WormBase 

Protein domain annotations were obtained from Wormmart (version WS220) and concatenated with gene 
descriptions downloaded from the WormBase website (from gene Overview sections using html download 
option) (September, 2014) to make a WormBase text string for each gene. To match these annotations with 
KEGG KOs, names of all KOs and all enzymes were downloaded from KEGG. For each KO, a list of all 
alternative names were formed by combining KO names and names of enzymes associated with the KO. 
For each gene, annotation in WormBase was compared to all KO names using a word matching algorithm. 
This algorithm gave scores from 0 to 1 for a match between a WormBase text string and every KO name, 
thus defining the score for every potential gene-KO association. If all words in a KO name were not 
matched in the WormBase text string, the score was always zero. Otherwise, the score was increased by 0.5 
for every perfect word match and reduced by 0.1 for each character interruption between words in the 
annotation. Final score was obtained by normalizing all KO scores for a gene with the highest scoring KO 
(hence scores varied from 0 to 1; Table S9).  

 

UniProt 

Protein names, family annotations, and EC numbers were downloaded from UniProt (date: October, 2014) 
(Bateman et al., 2015) for every protein-coding gene in C. elegans. Two scores were obtained (Table S9). 
First, protein name and family annotations were concatenated to make a UniProt annotation text and scored 
as described above for WormBase. Secondly, if an EC number was available, gene-KO associations were 
established with KOs related to the EC with a score of 1, while all other KOs were scored 0. 

 

KOG 

The identifier for all eukaryotic orthology groups (KOGs) from (Koonin et al., 2004) that included a C. 
elegans gene were obtained from Wormmart (version WS220). For each C. elegans gene in a KOG, the 
name of genes from up to six other organisms (Homo sapiens, Drosophila melanogaster, Arabidopsis 
thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Encephalitozoon cuniculi) in the 



same KOG were downloaded from the NCBI web page describing the KOG. Then these genes were cross 
referenced with KEGG to obtain KO associations if annotated and each KO connection established this 
way obtained a score of 1, while the rest of the KOs were scored 0 (Table S9).  

 

myKEGG 

To determine an overall protein sequence score for every potential gene-KO association, we used Smith-
Waterman (SW) scores between each C. elegans gene in KEGG and best matching genes in up to 3,073 
KEGG organisms (organisms that do not have a gene with a score of 100 or higher are not provided by 
KEGG as this score indicates that sequence similarity is not sufficient for a match). The SW table of each C. 
elegans gene was downloaded from KEGG for best hits (BH) and reciprocal best hits (RBH) (i.e., two 
tables were obtained per gene). In addition to the best matching gene for each organism and the 
corresponding SW score, the SW tables indicate the KO to which the matching gene belongs, provided that 
the gene is successfully annotated by KEGG. Thus, when sorted with respect to a decreasing SW score, a 
visual inspection of these tables show the likely KO candidates for the query C. elegans gene based on 
which KOs are populated in highest scoring matches (i.e., at the top rows of the sorted table; see Figure 
S1A for an example). To simplify the dataset and to minimize false positive identifications, we used an SW 
score threshold of 190; matches below this threshold were considered insignificant and removed from 
tables. This threshold was based on KEGG annotations, where we found only two metabolic genes that 
were associated with KOs with SW scores <190 (out of 988 total based on association with a metabolic 
reaction).  

To translate our visual evaluation of SW tables into a computational algorithm, we devised a formula 
that scored KOs for each gene according to their relative proportion in top 10 (group A), top 100 (group B), 
and top 1000 (group C) best matching organisms (genes) in these tables. Given a candidate gene-KO 
association for a gene, the query KO was scored in each one of these groups and a combined score was 
obtained for the KO based on Equation S1, where, i indicates the group, w is the weight assigned to the 
group (wA = wB = 0.45, wC = 0.1), c is a correction factor that is needed for tables with less than 10, 100 or 
200 rows for the three respective groups (cA = NA/10, cB = (NB-10)/90, and cC = [min(NC,200)-100]/100; N 
is the number of rows in the particular group), and s is the SW score. The last term in Equation S1 
indicates the sum of scores of matching genes annotated with the query KO as normalized by the total score 
from every KO in the group. Then, scores from BH and RBH tables were further weighed to get the final 
myKEGG score for the query KO according to Equation S2. In addition, a normalized myKEGG score 
was calculated, where the highest scoring KO for a given gene got a score of 1.0 (Table S9). 
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myTree 

As a final aid for annotation decisions, we created a phylogenetic tree for each gene based on protein 
sequences. Briefly, for a query gene that is to be annotated, we determined best matches in four other well-
studied organisms (H. sapiens, D. melanogaster, A. thaliana, and S. cerevisiae) and best matches (with a 
KO annotation in KEGG) in any organism belonging to ten selected taxanomic groups (Bacteria, Archaea, 
Protists, Fungi, Plants, Invertebrates, Nematodes, Arthropods, Vertebrates, and Mammals). When best 
matches from the four species and from the taxonomic groups were the same due to taxonomic overlaps, 
we obtained the next best match in the taxonomic group to add to the tree. If the best match in any case was 
not a RBH, then the best reciprocal hit in C. elegans gene was also included in the tree. In addition, up to 5 
potential paralogs of the query gene in C. elegans genome (top 5 matches) were used even if not captured 



as a reciprocal hit. In all matches, an SW score threshold of 200 was required, and when a match was not 
found, that organism, taxonomic group, or candidate paralog was excluded from the tree. The protein 
sequences of all available matches were downloaded from KEGG and aligned by MUSCLE (Edgar, 2004). 
MUSCLE was also used to create phylogenetic trees with the “maketree” function and resulting PHY file 
was converted to an SVG image using custom PYTHON scripts. An example is provided in Figure S1B.  

While visual inspection of phylogenetic trees was very important for annotation decisions, conversion 
of these evaluations into an algorithm was necessary for SACURE. Thus we obtained two scores that 
quantitatively defined the information found in these trees. First was a cluster score to define the 
relatedness of the query gene to KOs in the same lineage in the tree. Proportion of each KO assigned to 
genes sharing the same lineage with the query gene (i.e., branching from the same node plus up to two prior 
nodes on the tree) was calculated. Starting from the lowest node, for every node up to the third node in a 
row that covers both the query gene and the evaluated KO, proportion of the KO was multiplied by 1/3 and 
added to a score sum for the KO. Thus, only KOs that shared the lowest node with the query gene could get 
a score different than 0. Unannotated genes (i.e., genes without a KO association) were included in the 
calculation of these proportions. The cluster score gets a maximum value of 1 (Table S9) (i.e., when all 
three lowest nodes covering the query gene are dominated by one KO, as in Figure 2B in the main text). 
The other tree score was based on the entire tree, where the cumulative similarity score of each KO in the 
tree (i.e., the sum of reciprocals of distance from query gene for every gene associated with that KO) was 
calculated and the resulting values were normalized by the average of two highest scoring KOs (regular 
normalization by maximum score was avoided to reward the highest score only to KOs that totally 
dominated the trees). Unknown KOs for unannotated genes were all included in the scoring as a single KO. 
This method yielded a cluster score between 0 and 2 (Table S9). See Figure S1B for an example for tree 
and cluster scores. 

 

Systematic Annotation by Manual Curation and Regression (SACURE) 

We annotated metabolic genes in C. elegans by manual curation reinforced by an algorithm that verified 
and rationalized our decision-making process based on the variables and scores described above. First, a set 
of candidate metabolic genes was determined based on association with a metabolic KO that required a 
minimum myKEGG score of 0.0004 and additional evidence in at least in one of the four external 
databases used (KEGG, WormBase, UniProt, and KOG). A metabolic KO was defined as any KO that is 
linked to an enzyme or a reaction in KEGG database. The small threshold for myKEGG was set to 
minimize the number of false negatives so that manual curation was feasible. Only two metabolic genes 
annotated by KEGG were missed at this threshold; higher thresholds increased this number and were 
therefore avoided. The resulting set had 2,850 candidate protein sequences with evidence for association 
with at least one enzyme or reaction in KEGG database. 

Potential gene-KO associations were manually inspected based on the evidence from different 
resources. After an initial evaluation, we started training a logistic regression function, which determined 
the weights of each annotation resource in the decision-making process. The input of the function was 
scores from all resources (Table S9) for all possible gene-KO associations, and the output was a probability 
value (P) of accepting an association, with a probability greater than 0.5 indicating an acceptance and one 
lower than this value indicating a rejection (see Figure S2A for the final function). This function was best 
fitted to the manual decisions using the mnrfit routine of MATLAB (version R2014a) (The MathWorks, 
Inc., Natick, MA). We then checked how the output of this function fitted to the manual decisions. Misfits 
resulted in one of two actions before the next step: (i) some decisions were wrong or inconsistent with the 
rest of the decisions because of human errors and these were corrected; or (ii) some decisions could not be 
captured by the logistic function because evidence in some of the resources was not adequately 
interpretable by our scoring algorithms (most frequently, tree scores were underestimated when a tree was 
dominated by C. elegans paralogs [Figure S1C]) and these decisions were separated from the evaluation 
list as irregulars (see below). Then, logistic function fitting was repeated with the remaining regular 
decisions, and this process was iteratively continued, until 2,353 genes remained in the regular set with 
1,704 manually accepted gene-KO associations in 1,704 genes, 13,763 manually rejected associations in all 
genes, and only 11 misfits to algorithmic decisions. The weights of the final logistic function for each 
resource are shown in Table S9. In Figure 2C of the main text, the weights in Table S9 were grouped for 



resources that yielded two scores (e.g., myTree has two different scores) by multiplying each weight by the 
maximum possible score in each category. 

We used the trained logistic function to divide our annotation decisions into two categories: regular 
(with a defined formula based on the calculated weights) and irregular (based on an exception that 
overrules this formula), thereby rationalizing all of our decisions with some defined basis. In addition, we 
divided our decisions into three confidence levels based on the p-values from logistic function and whether 
the association was grouped as regular or irregular: (1) low confidence, regular with 0.5 < P ≤ 0.9 or 
irregular; (2) medium confidence, regular with 0.9 < P ≤ 0.99; and (3) high confidence, regular with 0.99 < 
P.    

To establish the final set of annotated metabolic genes and reactions for metabolic network 
reconstruction, we first modified the definition of metabolic KOs and enzymes. We removed 37 enzymes, 
as these were associated with functions such as protein kinases or ubiquitin modifications, and were 
therefore not relevant to the design of our metabolic model. We also added 91 new KOs to the list of 
metabolic orthology groups as their connections to KEGG enzymes or reactions were not clear in the 
database links and were to be established manually (e.g., K02272 is a KO associated with cytochrome c 
oxidase subunit 7c, but the association with the corresponding enzyme EC 1.9.3.1 was not available in 
KEGG). Gene associations with these additional KOs were evaluated with the trained logistic function 
followed by manual curation, adding 109 genes to the regular set. After all these changes, the number of 
accepted gene-KO associations was 1,182 in our regular set and 180 in our irregular set. Out of 180 
irregular decisions, 32 were changed to regular as the final logistic function actually captured these 
decisions (this was not the case initially as they were not captured by earlier versions of the model during 
training, and were therefore categorized as irregular). An additional set of 9 gene-KO associations were 
found among the set of genes with a high myKEGG score but no evidence from databases (ignored during 
manual evaluations) with the help of the trained logistic function. These additions were manually 
confirmed as well. Finally, for a set of 64 genes, we indirectly established connections to metabolic 
reactions although these genes could not be associated with any KOs directly. Specifically, we incorporated 
genes for which all candidate KOs (or enzymes) overlapped in a set of reactions. On the overall, we 
obtained 1,435 SACURE-annotated genes distributed into different confidence categories as shown in 
Figure S2B. All final gene-reaction associations in SACURE are shown in Table S1, with regular 
associations indicated as logistic regression - based, irregular ones as exceptions (the types of exceptional 
rules are also indicated), and overlap-based ones as intersections (the types of intersections are also 
indicated).  Some of the reactions in Table S1 and Figure S2B were generic reactions and some were 
repeated (i.e. two reaction IDs in KEGG indicated the same biochemical reaction). We removed most 
generic reactions (those with specific versions available in the database) and kept only one of each of the 
repeated reaction pairs in the rest of the analysis, which resulted in a reduction of 81 reactions from the 
annotation set. 

 

Validation of SACURE 

To check if the trained logistic function robustly captured our regular decisions, we performed leave-one-
out cross validation. Testing one gene-KO decision at a time in 3,408 cases (all 1,704 accepted associations 
and as many rejected associations that were randomly picked), we first removed a decision, then refitted the 
function to the remaining decisions, predicted the decision that was left out, and compared this prediction 
to the original decision. Out of 3,408 tests, and excluding the 11 misfits, only 4 decisions originally picked 
by the logistic function became wrong during cross validation (0.1% error rate). This cross validation test 
proves that the trained logistic function (Figure S2A) captures our regular manual decisions.  

We further evaluated the predictive power of the trained and validated logistic function in retrospect, 
by comparing algorithmic decisions with conclusions from SACURE. In total, SACURE pipeline yielded 
curated decisions for 2,972 genes including both core metabolic genes and others associated with signaling 
reactions. Logistic function decisions for 174 (5.9%) of these 2,972 genes resulted in false negatives 
(algorithmic null association was manually overruled by a positive gene-KO association) and 28 (0.9%) 
false positives (algorithmic decision was manually rejected). The low disagreement rate (6.8%) between 
manual and algorithmic decisions indicates that vast majority of the annotations made in this study are 
based on an annotation formula, as represented by the weights of the logistic function (Table S9).  



During the reconstruction process, 185 genes were re-annotated (Table S1) to complement gene-
reaction associations in a network context (see below). Among these, 147 annotations were missed by 
SACURE (Table S1), which makes about 12% of the model genes and 7% of all curated genes in this 
study. Although more annotations are certainly needed for a more complete picture of C. elegans 
metabolism, the fact that 88% of genes that make a mathematically functional global-scale network model 
came from this annotation pipeline also validates the approach taken in this study.  

 

Availability and potential applications of SACURE 

The annotation database obtained for the C. elegans genome is available at WormFlux, with 3,018 curated 
decisions (including those mentioned above plus curations made during the reconstruction process) and 
17,326 non-curated decisions, the latter set showing purely algorithmic results for mostly non-metabolic 
genes. The low predictive error rate mentioned above may or may not be valid for the non-metabolic gene 
set, as the training of the decision function was carried out by metabolic genes, so non-curated decisions 
should be used with care. The approach developed in this study may also be useful for annotation of 
metabolic genes in other genomes found in KEGG, by replacing WormBase descriptions with other 
organism databases, or by using a different set of descriptive annotation resources (note that one of the 
current resources, KOG, is limited to only 6 other organisms). Either way, the logistic function would need 
to be retrained by manual curation as the current rules (weights) cannot be generalized to other genomes 
(e.g., due to differential levels of completion in KEGG database, different annotation sources, etc.). The 
computational tools used in SACURE (myKEGG, myTree, and word-matching algorithms) are not 
standalone applications as they are dependent on KEGG for SW tables (myKEGG and myTree), MUSCLE 
for sequence alignment (myTree), and text input from descriptive databases for enzyme name matching 
(word-matching algorithms). Our customized codes used in this pipeline are available for potential users 
upon request.  

 

 
2. Reconstruction of a Template C. elegans Metabolic Network: Pathway-by-Pathway Reconstruction 
and Gap Filling 

Using GPRs from SACURE, a template metabolic network of C. elegans was reconstructed in a pathway-
by-pathway manner, following pathway definitions in KEGG, MetaCyc, and the literature. Pathways for 
each reaction are indicated in Table S3, together with references in comments section when the pathway 
was not directly adopted from KEGG. Although obvious pathway gaps were generally detected and fixed 
during manual reconstruction (see main text for different types of gap-filling approaches), flux balance 
analysis (FBA) was needed at advanced stages of the network to identify additional gaps. Presence of 
network gaps is evident from the lack of flux carrying capacity of a subset of reactions. To determine if a 
reaction can carry any flux in the forward direction, FBA was performed with the objective function that 
maximizes the flux in the reaction. For reversible reactions, flux carrying in the reverse direction was 
additionally tested by minimizing the flux as the objective, since the flux values are negative in the reverse 
direction. If the maximum flux for an irreversible reaction is zero or both maximum and minimum fluxes 
for a reversible reaction are zero, then a network gap prevents flux flow. In these tests, to make sure flux 
carrying capacity was not limited by the diet, all possible nutrients were supplied to the model by setting 
the lower boundary of all exchange and sink reactions to a negative value. 

For each zero-flux reaction detected, potential gap-filling reactions were identified by a careful 
analysis of the network and flux flow. When the gap could not be found manually, shadow prices were 
calculated for the zero-flux reaction as a useful aid in finding the potential gaps. A shadow price is the 
change in objective function when a metabolite deviates from steady state hence being produced or 
consumed (Reznik et al., 2013). Thus, it identifies metabolites that limit the objective function (i.e., the flux 
in the reaction examined). Potential rescue reactions are those that produce or degrade these metabolites. If 
these reactions were not available in the GPR set from SACURE, reaction annotations were revisited. 
Specifically, lenient annotations, literature searches, and uncharacterized enzymes were tested (see main 
text). When these approaches did not annotate any rescue reactions, the zero-flux reaction was rescued by 
the transport of a reactant or a product. Reactions that could not be rescued by a single transport reaction 



were considered as disconnected and left out of the network until the last step of reconstruction where 
nearly exhaustive gap-filling was performed (see section 5 below).  

Since the tracking of all gap-filler reactions is difficult during manual reconstruction (e.g., when many 
reactions are inserted as a whole pathway from the literature, which ones are filling gaps and which ones 
are forming alternative pathways are not clear), gaps in Figure 3 were retrospectively defined once 
iCEL1273 was fully reconstructed. To determine if a query reaction in the model is a gap-filler, first the 
flux of this reaction was constrained to zero, and then the flux carrying capacity of all of the rest of the 
reactions was calculated. If a subset of the rest of the reactions lost flux carrying capacity under this 
constraint, then the query reaction is a gap-filler, unless it is annotated by KEGG alone or it is an 
automatically incorporated BiGG transport reaction (see below in section 3). The type of annotation carried 
out to identify the gap-filler reaction determines the category to which the reaction belongs, according to 
the categories in Figure 3. All these gap-fillers are also indicated in Table S3.  

 

3. Reconstruction of a Template C. elegans Metabolic Network: Biomass, Transport, and 
Demand/Sink Reactions 

Degradation of bacterial biomass 

The degradation of bacterial biomass is represented by Degradation-type reactions in Table S3 with DGR 
header (29 reactions in total). All products of degradation are made exportable, which means that the model 
is not constrained to using a constant proportion of different materials and can waste food in excess. 
Importantly, degradation was established such that 1 unit of bacterial intake (reaction EXC0050) amounts 
to 1 g of material in standard flux units (mmoles/g dW/h, where dW denotes the dry weight of C. elegans 
used in flux normalization).   

The coefficients in the degradation reactions are a function of the composition and formulation of 
different components of the bacterial biomass, which are indicated in Table S2. This biomass composition 
was based on that of E. coli in (Neidhardt et al., 1990) except for phospholipids and the soluble component. 
Phospholipid composition was adjusted to the OP50 strain (standard diet of C. elegans) according to 
(Satouchi et al., 1993). Only essential metabolites (required by biomass assembly or demand reactions) 
were included in the soluble component. The fraction of most of these compounds in the overall biomass 
was based on E. coli metabolome database (ECMDB) (Guo et al., 2013) except for vitamin B6 components 
(approximated based on (Dempsey, 1971)), iron-related compounds (approximated based on (Matzanke et 
al., 1989)), and coenzyme A, which was set arbitrarily since the concentration given in ECMDB exceeded 
the limit for the proportion of the entire soluble component in bacterial biomass.  

  

Assembly of C. elegans biomass 

The assembly of C. elegans biomass was represented by Biomass-type reactions in Table S3 with the BIO 
header (19 reactions in total). Four different biomass reactions (biomass reaction is defined as the final step 
of an assembly) were used to represent four different forms of animal biomass mainly depending on the 
absence/presence of DNA (to address cell division) and storage compounds (triacylglycerides [TAG], 
glycogen, and trehalose). These are BIO0100 (no DNA, with storage), BIO0101 (no DNA, no storage), 
BIO0102 (with both DNA and storage), and BIO0103 (with DNA, no storage). In addition, collagen 
proteins, major components of C. elegans cuticle, were not included in BIO0102. Thus, BIO0102 was 
designed to represent the biomass assembly in germline to make embryos, whilst BIO0100 and BIO0101 
represented body mass with and without storage, and BIO0103 represented progeny assembly inside the 
eggs. The metabolite coefficients in these reactions as well as other assembly reactions are a function of the 
composition and formulation of different components of the C. elegans biomass, which are indicated in 
Table S2. The fraction of macromolecules (proteins, DNA, RNA, TAG, etc.) was first determined for the 
complete biomass (with both DNA and storage), and then, these fractions were recalculated by making one 
or both of these two components zero and increasing the rest proportionally.  

Since the biomass composition of C. elegans has not been studied systematically, we collected 
information on different biomass components from various studies and developed an approximate 
composition. This constant composition was used in all analyses as a first approximation, although many 



components of biomass may be varied in different stages of life. Overall fraction of total lipids was based 
on (Hutzell and Krusberg, 1982), whilst the ratio of phospholipids to TAG was approximated as 1 based on 
(Brock et al., 2007; Brooks et al., 2009). Glycogen content was obtained from (Cooper and Vangundy, 
1970). Trehalose fraction was approximated as 1% based on (Miersch and Doring, 2012). Glycans of C. 
elegans are represented with N-linked glycans and chitin in the model. While no quantitative information 
was found for these components, O-linked glycans are reported to make approximately 1% of biomass in 
(Hanover et al., 2005). We assumed a fraction of 2% for total glycans, equally divided between the 
representative forms chitin and N-linked glycans. For other variables that were not available in the 
literature, we used the biomass composition of yeast based on (Forster et al., 2003) as a first approximation. 
These variables included the amino acid composition of proteins, the overall fractions of DNA, RNA, and 
ash (i.e., the proportion that was not represented by any metabolite in the biomass reaction), and the relative 
ratio of the four bases in RNA. The proportions of the four bases in DNA were determined based on the 
GC% of C. elegans genome, approximated as 35%. The remaining portion of biomass after all of the above 
estimations was assumed to be made of proteins. Protein mass was divided into mitochondrial, cytosolic 
and collagen components which were assumed to make 20%, 70%, and 10% of total protein, respectively. 
Inclusion of the mitochondrial component was necessary to link the separate mitochondrial protein 
biosynthesis pathway to the biomass assembly. The collagen component was included since collagens form 
a significant proportion of the cuticle and have a specific, predictable amino acid composition, which was 
based on 21 major collagens according to (Page and Johnstone, 2007). 

The lipid composition of C. elegans biomass was further detailed using relatively precise reports from 
the literature. The macro composition of phospholipids (phosphatidylcholine, sphingomyelin, ether-lipids 
etc.) was based on (Satouchi et al., 1993). Fatty acid compositions in phospholipids and TAG were based 
on (Brock et al., 2007) with two exceptions. First fatty acids with chain length greater than 20 carbons, 
which were rarely detectable in analytical studies (Reis et al., 2011), were represented in the model by a 24-
carbon chain molecule assumed to make only 1% of total fatty acids. Second, the mass ratio of cyclic fatty 
acid cis-11,12-methyleneoctadecanoic acid in TAG was reduced from 0.17 to a symbolic 0.0001, as the 
only source for cyclic fatty acids is the bacterial diet and the original ratio made this compound limiting for 
growth based on stored lipids. This limitation was considered as non-realistic since animals can adjust the 
composition of TAG as evident from the variation of composition in different studies (Brock et al., 2007; 
Perez and Van Gilst, 2008).   

The energetic cost of polymerization reactions that form proteins, DNA, and RNA was determined 
according to (Neidhardt et al., 1990) and included in the coefficients of ATP or GTP consumed in these 
reactions. 

 

Transport 

Since the identity of metabolite transporters is generally not known in C. elegans, we derived most (80%) 
of the transport reactions from yeast (Forster et al., 2003) and human (Duarte et al., 2007) metabolic 
models in BiGG (Schellenberger et al., 2010). First a collection of all transport reactions in these two 
models was formed. Then compounds in the C elegans model were cross-referenced with those in BiGG. 
This process was straightforward for most compounds as we used the BiGG nomenclature in the naming of 
our compounds (Table S4). Other compounds in C. elegans were matched with their counterparts in BiGG 
if available (e.g., dedolp [dehydrodolichol diphosphate] in the C. elegans model matches dedolp_L and 
dedolp_U in the human model, which are the liver and uterine homologs of this metabolite, respectively). 
Using the transport collection and compound matches, the corresponding transport reactions were 
determined for every compound in the C. elegans model. All organelles in BiGG transport reactions, except 
for mitochondria, were converted to cytosol, since organelle compartmentalization is not made in 
iCEL1273 except for mitochondria. The simplest form of available transport was incorporated for each 
compound (e.g., reversible ammonium transport between cells and extracellular space is coupled with 
sodium, calcium, chloride, or proton transport in the human model, but these reactions were rejected and a 
simpler reaction that reversibly transports just ammonium was incorporated from the yeast model). 
Importantly, protons involved in all incorporated reactions were eliminated, as the inclusion of protons in 
mitochondrial transport reactions resulted in an artificially large ATP synthesis ability. This was caused by 
thermodynamically infeasible loops that involved the transport of interconvertible metabolites and provided 



a net flux of protons out of mitochondria. The transport of protons to and from mitochondria is limited in 
iCEL1273 to the electron transport chain and ATP synthase to allow stoichiometric calculations of ATP 
generation. Potential contributions from other transport reactions cannot be described accurately and this 
uncertainty is currently considered as part of maintenance costs (see below in section 6). All BiGG-related 
transport reactions are indicated in the comments section of Table S3.  

For a subset of metabolites, 99 transport reactions were added but not automatically incorporated from 
BiGG (Table S3, Transport-type reactions without the indication of a BiGG transport in comments). These 
included known transporters (e.g., HGR-1 for heme transport), unknown ones that carry out transport 
reactions predicted to be present with high confidence (e.g., N-acetylglucosamine uptake is inserted as a 
transport reaction since this compound is part of the axenic medium for C. elegans (Lu and Goetsch, 1993)), 
and gap fillers (e.g. gluconic acid transport, Figure 3E). The basis for each of these transport reactions is 
indicated in the comments column of Table S3.  

All compounds that are localized to extracellular space (i.e., involved in at least one transport reaction 
between cytosol and extracellular space compartments) are drained or imported by exchange reactions, to 
allow mass balance during FBA. Exchange reactions are used for controlling the input and output of the 
model by flux constraints to define the conditions tested (see below). These reactions are indicated as 
exchange-type with EX header in Table S3.  

 

Demand/sink reactions 

Endpoint metabolites that are biologically functional without further conversion by metabolic reactions are 
drained by demand reactions to allow mass balance during their production. These metabolites include 
signaling molecules (e.g., phosphoinositols), vitamins (e.g., cobalamin [vitamin B12]), cofactors (e.g., 
coenzyme A), modified proteins (e.g., methylated histones), and others (e.g., glutaurine). Reactions that 
drain certain endpoint metabolites are made reversible since these metabolites can also be degraded when 
available. Reversible reactions that both provide and consume endpoint metabolites are called sink 
reactions (Thiele and Palsson, 2010). Examples include sink reactions for storage compounds (e.g., 
trehalose) and other metabolites that may be degraded and used in different forms if available (e.g., 
methylated histones can be demethylated). The difference between demand/sink reactions and exchange 
reactions is that the endpoint compounds do not need to be transported, as they are used, stored or 
consumed where they are made available. As with exchange reactions, demand and sink reactions are used 
to control the input and output of the model for specific tests (see below). Demand and sink reactions are 
indicated as Demand-type and Sink-type with headers DMN and SNK in Table S3.  

 

Reaction reversibility and stoichiometry 

To decide whether a reaction is reversible or irreversible, we used the information about the direction of the 
reaction in BiGG, MetaCyc (Caspi et al., 2014), SEED (Aziz et al., 2008; Henry et al., 2010), and Brenda 
(Schomburg et al., 2004). Three cases were possible regarding reaction directionality: reversible, 
irreversible in the assumed forward direction, irreversible in the reverse direction to what is assumed. Since 
databases did not always agree on reaction directionality, we calculated a cumulative score for each case of 
directionality for a reaction by adding individual scores from the different resources. The individual scores 
were 1 or 0 for reports in SEED and MetaCyc since for a given reaction there was at most one matching 
reaction in each of these databases. For BiGG and Brenda, the directionality scores were defined as the 
proportion of reports supporting each case, since there were typically multiple matches. In addition to direct 
matches in Brenda, which was not frequently available, overall reversibility score for the enzyme 
associated with the reaction was also considered as another Brenda score. These individual scores were 
summed for each case of directionality. If the score of the best case was higher than the next by >80%, that 
case was selected. If not, or if the highest score was <0.5 for any case, the reaction was made reversible 
(i.e., a low overall score meant lack of sufficient data for a decision, which lead to an assumption of a 
reversible reaction). Exceptions were made in the decision process in multiple cases such as when one 
database gave more convincing evidence than others (e.g., when multiple experimental reports are available 
in Brenda for the direction of a reaction), when the information regarding reversibility was found in 



literature, or when reversibility could be based on similar reactions in the absence of data for the specific 
reaction in question. All reversibility exceptions are indicated in the comments column of Table S3.  

Stoichiometry of a reaction was determined according to the following data in a priority order (i.e., the 
first method that provided an answer determined the stoichimetry): (1) stoichiometry of matching reactions 
in BiGG, (2) stoichiometry of the matching reaction in MetaCyc, (3) stoichiometry reported in literature. If 
none of these sources had the information sought, we determined stoichiometry based on mass and charge 
balance. To determine molar weight for mass balance, compound formulas were obtained from KEGG, 
MetaCyc, or BiGG. For charge balance, compound charges were obtained from BiGG if available, or were 
based on other methods as indicated in Table S4, comments section. Exceptional cases in stoichiometric 
decisions were rare and are indicated in Table S3, comments section.   

 

4. PRIME Model: Systematic Localization of C. elegans Metabolic Reactions  

Reactions were divided into three compartments: mitochondria, cytosol, and extra-cellular space. The 
localization of biomass, demand, transport and exchange reactions was straightforward based on their 
definition (e.g., a demand reaction is localized to the compartment where the drained compound is present). 
The locations of the other reactions, which are the core set of reactions in the model and are designated as 
“regular” category in Table S3 (reactions with header R), were systematically determined based on seven 
resources and FBA (Figure S3A).We first used our procedure to decide whether each reaction should be 
localized to mitochondria or not. Non-mitochondrial reactions were then further localized to extracellular 
space or cytosol manually. Since only three non-mitochondrial reactions were localized to extracellular 
space, the main task of this procedure was to decide between mitochondrial and cytosolic localization for 
every regular reaction. 

The resources used in systematic localization provided evidence at different levels (Figure S3A). Four 
of the localization resources predicted the targeting of proteins encoded by the genes in reaction GPR to 
mitochondria, cytosol, or other organelle. Localization to other organelles was equivalent to localization to 
cytosol in the model. Brenda was used as a resource to collect non-specific information regarding the 
localization of the general enzyme associated with the reaction (e.g., EC 2.4.2.30). BiGG models and FBA 
provided evidence for the localization of the reaction itself. Each resource was used to obtain a cytosolic 
and a mitochondrial score from 0 to 1. These scores were then multiplied by weights (depending on the 
resource, Figure S3A) and summed to get a final score on each compartment. The cumulative scores for 
each compartment were used to decide on reaction localization (see below). Data was derived from these 
resources as follows: 

Mitoprot: This tool was used to calculate the probability (Pm) that a protein is targeted to mitochondria 
based on the N-terminal sequence (Claros and Vincens, 1996). While the Pm value defined the 
mitochondrial score, the corresponding cytosolic score was 1-Pm. Protein sequences were obtained from 
WormBase. When multiple isoforms were available for the product of the same gene, scores were 
calculated for each isoform, and the maximum scores were used in each compartment. Since Mitoprot 
provided a direct prediction based on specific protein sequence, we valued this resource with a relatively 
high weight of 2 for scores <0.95, and an even larger weight of 4 for scores ≥ 0.95 (indicative of 95% 
confidence).  

Mitominer: This database provides experimental and theoretical evidence for mitochondrial 
localization of genes in twelve eukaryotic species including five metazoans. Since C. elegans is not part of 
this database, we scored genes in our reconstruction based on their potential orthologs in Mitominer. An 
ortholog was defined as a reciprocal best hit in KEGG SW score tables (see above, section 1). The 
orthologs were cross-referenced with gene names in a Mitominer reference table that lists proteins with 
evidence for mitochondrial localization, mostly based on fluorescence assays and proteomics analyses. The 
Mitominer score for cytosol (Scyt) was then based on the ratio of orthologs (in the twelve Mitominer 
organisms) that had no hits in the evidence table. Mitochondrial score (Smit) was calculated as a function of 
two variables: (1) the ratio of hits in the Mitominer database (1- Scyt) and (2) the evidence available for the 
ortholog with the strongest evidence of mitochondrial targeting. The equation for this score is Smit = 0.5E + 
0.5(1- Scyt), where E is the highest evidence score in all orthologs. The evidence score was calculated as E = 
0.8exp + 0.2thr, where exp stands for the strength of the experimental and thr for that of the theoretical 



evidence provided. To define the strength of the evidence score, we differentially weighed fluorescence-
based and mass-spec-based (proteomics) reports from tests in the organism carrying the orthologous protein. 
If there were more than 1 fluorescence-based reports, or more than 7 mass-spec reports, exp was given a 
value of 1. If only one of these two types of evidence was available with less than or equal to these 
thresholds (1 and 7, respectively), then exp = 0.5. If both types of evidence was available in any number of 
reports, exp was given a value of 1. The strength of the theoretical score (thr) was defined as the ratio of 
theoretical predictors that predicted mitochondrial targeting of the orthologous protein sequence. The total 
number of predictors was 5. The overall Mitominer score was given a relative weight of 1.5 in the total 
localization score (Figure S3A) as it was not directly based on C. elegans genes, but it integrated 
experimental information about homologous genes from multiple other eukaryotes.  

UniProt and Organelle Database: Available information on the subcellular localization C. elegans 
proteins was downloaded from UniProt (Bateman et al., 2015) and Organelle Database (Wiwatwattana and 
Kumar, 2005). Mitochondrial and non-mitochondrial scores were defined as 0 or 1 depending on the 
absence or presence of each compartment in the reported information (all non-mitochondrial localizations 
were considered as the cytosolic compartment). These scores were given a low weight (Figure S3A) since 
there was no information for vast majority of proteins in both databases, and since the existing information 
was mainly based on theoretical predictions (not related to Mitoprot). 

Brenda: Protein localization information was collected from Brenda for all enzymes in the model (only 
eukaryotic reports were evaluated). For each enzyme, the proportion of the number of reports that indicate 
enzyme localization to mitochondria determined the mitochondrial score and the proportion of the rest of 
the localization reports determined the cytosolic score. However, if one of the reports was directly based on 
C. elegans proteins, the score was made 1.0 for the corresponding location. The weight of Brenda score 
was set at 1 (Figure S3A) as this analysis was based on indirect associations based on the generic enzyme, 
without assessment of homology.  

BiGG: This database includes reactions from the metabolic network models of two eukaryotes, human 
and yeast, for which subcellular localizations in the corresponding model are indicated. Each reaction in the 
C. elegans model was first searched in these models. If no matches were found, both compartments 
(mitochondrial or non-mitochondrial) were given 0 score. If matches were found, the score of a 
compartment was increased by 0.5 for the occurrence of the reaction in that compartment in each organism. 
For example, if the mitochondrial version of a reaction was found in the yeast network but not in the human 
network, the mitochondrial score would be 0.5. If the reaction was found in the cytosol of the yeast network 
and the peroxisome of the human network, the non-mitochondrial score would be 1.0. BiGG scores were 
given a medium weight (Figure S3A) since these eukaryotic models reflect systematic reconstructions in 
two well studied eukaryotes, although this information is also not direct.  

FBA: The localization of a reaction to mitochondria or cytosol was also scored based on the capacity of 
the reaction to carry flux in either compartment. Three tests were performed for each reaction in the model, 
by localizing the reaction to mitochondria, cytosol, and both compartments. In each test, maximum flux 
that the reaction could take was calculated as described above (see section 2). If this flux was not zero in a 
compartment in any one of these tests, that compartment was scored 1. The weight of this score was 2 
(Figure S3A), reflecting the fact that flux carrying capacity provides a direct prediction for the correct 
localization in modeling terms. In addition, for each of the three tests above, maximum biomass production 
and maximum energy generation were calculated, by using the biomass drain (BIO0010, Table S3) and 
ATP-maintenance (RCC0005) reactions as the maximized objective, respectively. If the localization of the 
reaction to a particular compartment increased one or both of these values compared to otherwise, then the 
score of that compartment was changed to 4 as a bonus (Figure S3A). If localization to both compartments 
was necessary for the increase in biomass or energy production, then both compartments received this 
bonus score. 

Reaction localization was based on cumulative evidence from the resources defined above. An overall 
score was calculated for mitochondrial and non-mitochondrial compartmentalization of each reaction by 
summing the scores multiplied by the corresponding weights (Figure S3A). For reactions that were 
associated with multiple genes or enzymes, the maximum gene- and enzyme-level scores were used for 
each compartment. The range of the overall score was from 0 (no evidence for the compartment scored or 
no data) to 14 (consistently perfect scores for the compartment). To algorithmically decide the location of 



reactions from overall scores, two thresholds were determined, which we designate as τ1 and τ 2. A reaction 
was localized to a compartment either if the cumulative score passed τ 1 for that compartment or if the score 
of that compartment was above the score of the other compartment by more than τ2. If the two compartment 
scores were within τ 2 of each other, the reaction was localized to both. These thresholds were set at optimal 
values of τ 1 = 6.2 and τ 2 = 1.2, which maximized the agreement between the localizations in the template 
model and algorithmic decisions. Since the template model was manually reconstructed, reaction 
localization was based mainly on pathways, gap-filling criteria, and a manual evaluation of evidence in the 
above defined resources. The disagreements between the computational decisions and manual localizations 
were then resolved by either re-localizing reactions or setting exceptions that overruled these scores. This 
procedure was carried out iteratively, since FBA-based scores changed when reaction localizations were 
changed. When no more changes were observed in computational decisions, all reactions were localized to 
mitochondrial and non-mitochondrial compartments on a rational basis, either as algorithmically explained 
by the cumulative scores or as decided by an exception rule (Figure 4A). All exceptions for protein 
localization are explained in the comments column of Table S3.  

Finally, reactions that were associated with multiple genes and localized to both cytosol and 
mitochondria were further examined to divide the GPR into the two compartments. The genes (proteins) 
associated with such reactions were localized based on overall scores from the four resources yielding 
evidence at the gene level (Figure S3A). Scores were manually evaluated, and for each gene, the 
compartment that was clearly ahead in cumulative score was selected. If scores were close or if both were 
low, the gene (protein) was localized to both compartments. Exceptional cases are indicated in the 
comments column of Table S3. With the reaction and protein re-localizations, the reconstruction of the 
prime model was completed (Figure 1B, Table S3).  

 

Validation of subcellular localization in the Prime model 

To validate reaction and protein localization in the prime model, experimental protein localization data was 
downloaded from WormBase. Specifically, IDA (inferred from direct assay) reports for cellular component 
in the gene ontology section were used. IDA protein locations were available for proteins encoded by 132 
genes in the prime model. Locations of these genes in the prime model were determined based on the 
locations of the reactions they are associated with. 

We first checked whether the experimental information was a part of the decision-making in some of 
these genes, mainly since UniProt, Organelle Database, and Brenda reports may cover available 
experimental data. For only one gene (aco-1) did this information affect both the score from either of these 
resources and the algorithmic conclusion based on total score. Therefore, this gene was excluded from the 
validation analysis. In addition, the predictions for the location of two of the remaining 131 genes were 
correct, but not used in the model due to technical restrictions in the model design. One of these genes is 
vha-8, which encodes a vacuolar ATPase, but is localized to mitochondria as there is only one ATPase in 
the model. The other one is acs-2, which encodes an acyl coA synthetase, an important component of 
phospholipids biosynthesis. However, we avoided the inclusion of separate, mitochondrial pathways for the 
biosynthesis of mitochondrial phospholipids, and lumped all related genes in cytosolic pathways to make a 
cytosolic phospholipid (PhosphoL, Table S4) that represented all phospholipids in the biomass. Both vha-8 
and acs-2 were excluded from validation analysis.  

The results of validation with the remaining 129 genes are shown in Figure 4B in the main text. This 
result is repeated here in comparison with the performance of our gene-based predictors (Figure S3B). 
While Mitoprot showed an excellent performance by itself, both error rate and nonspecific matching were 
tripled with this tool compared to the metabolic model. The Mitominer-based predictor developed in this 
study was the next best and had a reasonable error rate of about 15% despite its indirect capture of evidence 
based on gene orthology. UniProt and Organelle Database clearly had poor coverage compared to other 
tools, although error rates were low or moderate. 
 
5. Completion of Reconstruction by Semi-Automated Expansion of the Prime Model 

To explore the possibility of connecting the rest of the SACURE-annotated reactions (704 reactions that 
were not incorporated during pathway-by-pathway manual reconstruction; hereafter referred to as the query 



set) to the prime model, we used a semi-automated reconstruction pipeline. This procedure had the 
following steps: 

1) Reversibility and localization of the reactions in the query set were determined based on multiple 
resources as explained above (sections 3 and 4, respectively). As an exception, experimental data 
in WormBase (section 4) was directly incorporated for these reactions when available, overruling 
other evidence.   

2) Prime model reactions, query set, reactions of uncharacterized enzymes in KEGG, spontaneous 
reactions in KEGG, and BiGG transport reactions (human and yeast models; see section 3) were 
merged to form a unified reaction network.  

3) Reactions that were disconnected in the unified network at both ends were eliminated right away, 
as these reactions would never be useful in our connectivity criteria (see below). Then, additional 
transport reactions were incorporated for every compound in the query set that was not 
transportable by BiGG transport reactions. The final network had a total of 8,679 reactions and 
was converted to a mathematical model for FBA. 

4) FBA was combined with mixed integer linear programming (MILP, see section 7 below) (Shlomi 
et al., 2008) to maximize the number of query set reactions that carried flux while minimizing the 
number of additional (not BiGG-based) transport reactions that carried flux. Reactions that could 
not carry flux in this step were eliminated as they needed more than one transport reaction to be 
connected to the network. It is important to note that the optimization technique used in this step 
mathematically captures all reactions that are connected to the network (i.e., that can carry flux) 
based on our criteria (i.e., not dependent on a specific transport reaction with no other use). This 
property was verified by test cases. 

5) Further FBA analyses were carried out to determine the dependence of the remaining query set 
reactions (that could carry flux) on reactions other than those in the prime model (i.e., a reaction is 
dependent on another if it cannot carry flux when the other reaction is constrained to zero flux). 
Query set reactions that were dependent on additional transport reactions which had no other 
function (i.e., no other query reaction depended on them) were eliminated. Auxiliary reactions 
(reactions of uncharacterized enzymes, spontaneous reactions, all transport reactions) that did not 
have any function (i.e., no query set reactions were dependent on them) were also eliminated.   

6) The remaining reactions in the query set (N=233) are connected to the network. As a final step, 
these reactions were manually examined to decide which ones are to be incorporated into the 
model. 

Most of the reactions from step 5 (77%) were rejected during manual curation, since they did not add 
any new function to the model. For instance, R00572 is a KEGG reaction for pyruvate kinase (associated 
with pyk-1 and pyk-2 in SACURE) that uses CTP in the conversion of phosphoenolpyruvate to pyruvate. 
This conversion is represented in the model with an ATP-based reaction (RC00200, Table S3). Since ATP 
and CTP are interconvertible (RC00570, Table S3), the addition of R00572 does not add any function to 
the model except for artificially increasing the number of reactions. Therefore this reaction, as well as three 
other forms of the same conversion using other nucleoside triphosphates (GTP, UTP, ITP), were not 
incorporated into the model. All SACURE-annotated, excluded reactions are listed in Table S7. The 
reasons for exclusion are indicated in the comments column. Reactions eliminated at steps 3-4 above are 
indicated as disconnected.  
  
6. Validation of iCEL1273: Reproducing Observed Mass and Energy Balance during Two Stages of 
Life  

To test if iCEL1273 can reproduce observed production/consumption rates related to growth (biomass 
production as body mass or progeny, bacterial intake, and respiration rates), we obtained relatively accurate 
measurements of these variables at different stages of life from the literature. Since predictions with FBA 
assume a steady state condition, we looked for rates measured in short time intervals where animals can be 
assumed to be in a quasi-steady state condition as a first approximation. Based on multiple studies, we were 
able to determine approximate rates for two stages: the L4 larval stage during post-embryonic development 
and the young adult stage where egg laying begins (Table S10). Since these rates were not reported in units 



usable in FBA, we first carried out unit conversions. Specifically, we converted the amount of bacteria 
consumed and biomass produced from numbers (of bacteria and eggs) or length (worm body) to grams, and 
converted different O2 consumption and CO2 release rates to mmoles of gas per hour per gram dry weight 
of worm biomass. Also in respiration studies, we found either O2 consumption or CO2 production rates, but 
not both, so one had to be derived from the other. To perform all these calculations, we used the following 
assumptions:  

i. Wet weight of a worm is related to its length by the relationship in (Ferris et al., 1995). 
ii. Wet/dry weight ratio is 3.4 (Neidhardt et al., 1990) (based on bacteria, assumed to be valid for 

worms also). 
iii. Wet weight/ protein weight ratio in worms is 5 based on (Van Voorhies, 2002). 
iv. Respiration quotient in C. elegans (CO2 released / O2 consumed) varied between 0.7 and 1, 

according to (Van Voorhies, 2002). 
v. Wet weight of a worm egg is 0.035 μg based on (Byerly et al., 1976). 

vi. Wet weight of a bacterium (E. coli) is 0.95 pg based on (Neidhardt et al., 1990). 

Using the length-mass relationship mentioned in (i), a length-based growth curve provided in (Hirsh et 
al., 1976) was translated into a weight curve, and the biomass production rate was calculated for the L4 
stage using Equation S3, wherein, μ is the growth rate, W is weight and Δt is the length of L4 stage which 
is ~12 hours. This equation is a good approximation for the average production rate as the growth curve is 
nearly linear during the L4 stage. Average respiration rates were obtained for the L4 stage from 
(Vanfleteren and DeVreese, 1996) using assumptions (ii), (iii), and (iv). For the young adult stage, both egg 
laying rates and respiration rates were obtained from the same study (Van Voorhies and Ward, 1999). The 
reported egg laying rate was ~3.75 eggs per worm per hour, which resulted in 0.065 gram eggs per gram 
worm per hour when converted using (v) and assuming a wet weight of 2 μg for a young adult based on the 
length data in (Hirsh et al., 1976) and the assumption (i). Hourly respiration rates were calculated using 
assumptions (ii) and (iv). As for bacterial consumption rates, we could not find carefully measured data, 
except that egg-laying adults are known to consume several millions of bacteria per day (Hirsh et al., 1976; 
McGhee, 2007) and the average consumption per day during the entire life span of C. elegans is in the 
same order of magnitude (Ferris et al., 1997). We therefore assumed that an adult animal consumes 1 to 10 
million bacteria per day and converted this range to 0.02 to 0.2 g bacteria / g worm / hour based on (vi) and 
again assuming a wet weight of 2 μg per worm. Since the biomass production rate was even larger in the 
L4 stage (Table S10, note that this value is normalized by the worm weight and actually L4 worms produce 
less biomass per day on an absolute scale), we believe this is a rough but reasonable range that covers both 
stages. When converted back to numbers, this range corresponds to 125 thousand – 1.25 million bacteria 
per day for L4 worms as their body mass is much smaller than adults (~0.25 μg at middle L4 stage as 
compared to ~2 μ g in adult stage).  
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The rates in Table S10 were used to test the performance of iCEL1273 when constrained by 
observations. Each rate in Table S10 can be predicted by one or more reactions in the model. These 
reactions are EXC0050 for bacterial intake, EX00007 for oxygen exchange, EX00011 (CO2 exchange) and 
EX00288 (bicarbonate exchange) for CO2 release (the sum of flux in these reactions predicts total release), 
BIO0100 for biomass production in L4 stage, and BIO0102 for biomass production during egg-laying adult 
stage (see section 3 above for the specificity of biomass reactions; all reactions can be found in Table S3). 
Four flux variability analysis tests were performed for each stage of life. In these tests, reactions related to 
one of the four rates were set as the objective function, all the other reactions were constrained with 
observed rates (in the case of CO2 release rate, the sum of EX00011 and EX00288 was constrained), and 
two separate FBA solutions were obtained for maximizing and minimizing the objective function. The 
minimum and maximum values obtained determined the predicted range for the rate tested. These tests 
could result in a failure in two ways. First, no solutions may be obtained, hence indicating that the model 
cannot simultaneously meet the requirements in the three constrained rates, irrespective of the rate that is 



being predicted. Second, the model may predict a range that is outside the experimental range of the tested 
rate. In the case of a success, the model predicts a range that overlaps with the experimental range of the 
tested rate. As shown in Figure 5A, the model passed all tests by predicting a range consistent with the 
experimental observation.  

To derive feasible maintenance and digestion costs for C. elegans, the model was constrained by an 
achievable range of values for non-growth associated maintenance (NGAM), growth associated 
maintenance (GAM), and digestion costs. NGAM cost was imposed by constraining the flux of reaction 
RCC0005 (Table S3) to the selected value. To impose GAM and digestion costs, the coefficients of ATP in 
reactions BIO0010 and DGR0007 were set according to the selected values, respectively. Then, for each 
stage of life, FBA was performed with the objective of minimizing bacterial intake while constraining the 
model by the three other observed rates (Table S10). In the case of a success, the minimum bacterial intake 
in the solution is less than the upper limit (0.2 g bacteria / g worm / hour in both stages, Table S10), which 
means the model can satisfy all experimental criteria with the imposed energetic costs. In the case of a 
failure, the solution is greater than the upper limit for bacterial intake and the model cannot meet the 
energetic requirements with the selected costs. We varied the selected costs exhaustively by gridding the 
3D space for NGAM (at steps of 0.1 mmoles ATP / g dW / h), GAM (steps of 1 unit), and digestion costs 
(steps of 1 unit). Figure 5B shows all values that resulted in a success, and therefore, each data point shows 
a combination of energetic costs that can be met by iCEL1273. The center of mass of this gridded space 
was arbitrarily selected as the final values for these costs.  
 
7. Validation of iCEL1273: Gene Essentiality and Genotype-Phenotype Relationships  

To test the ability of iCEL1273 to predict specific phenotypes that may be related to metabolic functions, 
we downloaded all observed phenotypes from WormBase, reported in the Phenotypes section. For each 
gene, this data includes observations from experiments in which the expression of the gene is perturbed 
either by mutation or by RNAi on wild type animals. Observations with the rare case of mutation 
experiments on a genetic background (i.e., with multiple mutations) were removed from the dataset to 
reduce complexity. 
 

Experimentally determined essential genes 

Genes associated with the following phenotypes were considered essential: lethal, larval lethal, L1 lethal, 
early larval lethal, larval arrest, L1 arrest, early larval arrest, embryonic lethal, embryonic arrest, and sterile. 
  

Predicted essential genes 

Four methods were used to predict essential genes, which varied based on the definition of essentiality and 
diet, as explained in the following. 

Non-redundant associations with regular diet: Perturbation of a gene was represented in the model by 
constraining the reactions that are non-redundantly associated with the gene to a flux value of zero. A non-
redundant association occurs in two types of GPR. In the first type, the query gene is the only gene in the 
GPR, and in the second, the query gene is connected to others with an AND logic, as a subunit of a protein, 
as a component of a protein complex, or as an enzyme in a merged reaction involving multiple enzymes. 
The diet was defined as bacteria, arbitrarily provided at a rate of -0.32 g/g dW/h in the EXC0050 reaction 
(the negative sign indicates uptake by convention). Most other exchange reactions were constrained to 
positive values to allow secretion while inhibiting uptake of other nutrients. Exceptions included oxygen, 
water, phosphate, and cholesterol, for which the lower limit of exchange was set at a negative value to 
allow uptake. This uptake was limited to 0.01 mmoles/g dW/hour for cholesterol, which was required in 
trace amounts for a small set of reactions, and was made practically limitless for others to avoid limiting the 
model with these nutrients (up to 1000 mmoles/g dW/hour). The objective in FBA was defined as the 
maximization of biomass production by either reaction BIO0100 or BIO0103 which together account for 
all biomass components (see section 3 above). The maximum biomass production with each reaction was 
then calculated to find the growth rate upon perturbation (Bp). This value was compared to growth rate 
obtained when no constraints were applied (Bo, represents wild type). Reduction in growth rate due to 
perturbation is given by (Bo-Bp)/Bo. Predicted essentiality was defined as the case when the perturbation of 



the query gene caused a value of 0.5 or greater (i.e., >50% reduction in growth rate) in at least one of the 
objective functions (i.e., BIO0100 or BIO0103). Other thresholds were tested and the strength of 
associations between predicted and experimentally determined essential genes (based on hypergeometric p-
value) did not change in the range 0.3-0.84.  

All associations with regular diet: This method is the same as the previous one, except that gene 
perturbation was represented by the elimination (constraining to zero flux) of all reactions associated with 
the query gene, irrespective of the type of association. Thus, if the query gene is in a set of paralogs in the 
GPR of a reaction (i.e., connected with an OR logic), the reaction is eliminated in this method unlike the 
previous method, which assumed that paralogs are redundant in function.  

Optimal growth with regular diet: As different from previous methods, no gene perturbations were 
simulated with this method. First FBA was used to calculate the maximum growth rate with bacterial diet 
as described above (identical to Bo above). Importantly, this solution is not unique in flux distribution, i.e., 
there is a large solution space with alternative flux distributions using alternative pathways to yield the 
same growth rate. We defined optimal growth as the solution with minimum total flux, when the maximum 
growth rate was not altered. To find this solution, we performed a second FBA by modifying the model 
such that each reversible reaction was divided into two reactions, one defining the forward direction and the 
other the reverse direction. Then all reactions were constrained to a positive flux, and the biomass 
production rate (flux of BIO0010) was constrained to Bo. FBA was performed with the objective of 
minimizing the sum of flux in all reactions (i.e., the objective function covered all reactions). The 
calculated flux distribution was then mapped from the modified model back to the original model, such that, 
for each reaction that is reversible in the original model, the flux in the reverse direction in the modified 
model was subtracted from the flux in the forward direction to obtain the corresponding flux in the original 
model. Irreversible reactions were mapped without modification. The flux distribution obtained with this 
procedure determined the predicted optimal growth state. Essential genes were defined as genes that are 
active during optimal growth, i.e., associated with reactions that carry flux in this state. For Figure 5B, all 
types of GPR associations were considered, as in the previous method. As a comparison, Figure S3C 
presents the case when only non-redundant associations are considered.  

Optimal growth with modified diet: This method is the same as the previous one except that the diet was 
modified. Bacterial intake rate was set to zero. Instead the model was provided with all 20 amino acids, 
trehalose and triacylglycerides (TAG). For amino acid uptake, the corresponding exchange reactions were 
constrained to a minimum flux of -0.01 mmoles/g dW/h (i.e., this amount of each amino acid was made 
available to the model). For trehalose and triacylglycerides, the corresponding sink reactions (SNK0013 
and SNK0014, respectively) were constrained to -1.0 and -0.23 mmoles/g dW/h, respectively. These 
numbers were arranged to allow the generation of same amounts of energy as the bacterial diet above 
(calculated with FBA by setting the flux of RCC0005, ATP consumption reaction, as the objective to be 
maximized). In addition, the soluble component of the bacterial diet was provided with a maximum uptake 
rate of 0.01 mmoles/g dW/h, as this portion of the bacterial diet contains essential nutrients (heme iron, 
molybdenum, etc.) for biomass production. The results of this method were also presented for all 
associations (Figure 5B) and non-redundant associations (Figure S3C). 

Phenotypes and gene essentiality results are listed in Table S8 for every gene in iCEL1273. Predicted 
essentiality results from the methods described above are indicated in the corresponding columns with 
descriptive titles.  

 

Metabolic products of genes 

To provide a potential explanation for false negatives from the above four methods (unpredicted essential 
genes) and also to clearly identify the role of genes predicted to be essential, we determined the relationship 
between genes and a set of key products. These products were metabolites drained by demand and sink 
reactions (vitamins, cofactors, modified proteins, signaling compounds, etc.; see section 3), biomass 
precursors (DNA, RNA, phospholipids, etc.), and energy (ATP). In essence, we evaluated how the 
production capacity of the model changed upon the perturbation of each gene for this set of products. The 
approach is the same as the method titled “all associations with regular diet” in the previous subsection, 
except that, instead of maximizing the biomass production, this method maximized the production of a 



metabolite or ATP generation. If the tested product was a metabolite consumable by a demand/sink 
reaction, the flux of that reaction was maximized as the objective. If the metabolite was a biomass 
precursor, an artificial demand reaction was temporarily created and the same method was applied using 
this reaction. For energy generation, the objective was the maximization of the flux in reaction RCC0005, 
which converts synthesized ATP back to ADP. For each query gene, this method was repeated for all 
products one by one. If the maximum production rate decreased by more than 50% upon the perturbation of 
the query gene, this gene was considered as essential for the tested product. The metabolites found by this 
method for each gene are listed in the theoretical products column of Table S8. 

 

Other phenotypic predictions 

In addition to growth-related phenotypes, we searched other metabolism-related phenotypes reported in 
WormBase for iCEL1273 genes. We found 10 well-defined, relatively frequent phenotypes (associated 
with ≥ 5 genes) for which we had a related product in the model that could allow a phenotypic prediction. 
We added to this list the slow growth phenotype to represent non-lethal but growth-related phenotypes that 
are frequently encountered. The expected relationships were as follows (phenotypes – metabolic products 
that are related): Slow growth/extended life span – ATP, cell cycle slow early emb/cell division variant – 
DNA, lipid depleted/lipid composition variant/fat content reduced – TAG/phospholipids, dumpy/organism 
morphology variant – collagen, coenzyme Q depleted – ubiquinone, histone methylation variant – 
methylated histone. We assigned genes to each one of the products using the perturbation-response method 
described in the previous subsection, except that the threshold for the decrease in production rate that was 
used to associate genes with products was not taken only at 50%, but eight different thresholds from 0.1% 
to 99.9% were applied. Then we compared the predicted gene-product relationships with experimental 
gene-phenotype associations, as was done with gene essentiality (Figure 5C). A hypergeometric p-value < 
0.001 was considered as a statistically validated association. As can be seen in Figure 5D, where the lowest 
p-values obtained from different thresholds are shown, all expected relationships were significant. As a side 
note, only two of these relationships became insignificant when a single threshold of 50% was used in this 
analysis (lipid depleted - phospholipids, organism morphology variant - collagen). The most significant 
associations obtained in this analysis are presented in Table S8, in the column named selected phenotype 
associations.   
 
8. Validation of iCEL1273: Gene Essentiality and Genotype-Phenotype Relationships in Methionine 
Salvage Pathway 

The method used in this section was described in the previous section. See subsection Predicted essential 
genes (FBA methods for all associations with regular diet).  

 
9. Case Study: Analysis of Dauer Metabolism Using Gene Expression Data 

Microarray-based gene expression data was obtained from a study that compares dauer and growing larvae 
(Wang and Kim, 2003). The analysis of metabolic states based on this dataset was carried out in two steps. 
First, gene expression was translated into reaction activity based on GPRs, and a best-fit flux distribution to 
this activity map was derived. This step gives the maximum number of active and inactive reactions that 
can be fitted by a predicted flux distribution. Second, while keeping the number of flux-fitted reactions 
constant, an optimal flux distribution with minimum total flux in other reactions (i.e., with undetermined 
activity) was obtained. In the following, the first two subsections describe these two methods. In the third 
subsection, we explain the final optimization procedure that applies this analysis to different conditions of 
nutrient availability for dauer and growing larvae to define the final metabolic state for each stage of life.  

 

Integration of gene expression data using mixed integer linear programming (MILP) 

To identify a flux distribution that best fits the gene expression data, first, we determined genes that were 
clearly upregulated and downregulated based on a p-value cutoff at 0.001. Then, these expression states 
were integrated with the network model using the mixed integer linear programming (MILP) approach 
described in (Shlomi et al., 2008). This method requires a set of reactions that ideally carry flux in the 
optimized solution and another set of reactions that do not (referred to as highly expressed and lowly 



expressed reactions in the original publication, respectively). We refer to these sets as reactions with on 
(RON) and off (ROFF) states respectively. The objective is to find a flux distribution that maximizes the total 
number of ROFF reactions with zero flux and RON reactions with a flux exceeding a threshold. Gene 
expression was translated into reaction status using the logical operators in GPRs (Shlomi et al., 2008). For 
instance, if an upregulated gene is associated with a reaction as a single gene or as connected to other genes 
with an OR logic (i.e., if it is one of the paralogs), then the reaction is assigned to the on state; if it is 
connected to other genes with an AND logic (e.g., if it is a protein subunit), whether the reaction is on or 
off depends on the other genes. If a downregulated gene is related to a reaction as a single gene or as 
connected to the others with an AND logic, then the reaction is assigned to the off state. Reactions that 
were not categorized as on or off have an undetermined status since transcriptional regulation is not 
sufficient to draw a conclusion. The activity of these floating reactions is to be predicted by the fitting 
method.  

In terms of MILP, the goal of maximizing the agreement between reaction status and flux distribution 
is represented by the maximization objective in Equation S4, which is fulfilled while satisfying Equations 
S5-S9 simultaneously. In Equation S4 y-values are integer variables used in MILP that take values of 0 or 
1. Equations S5 and S6 are the main equations of constraint-based FBA (see main text, Experimental 
Procedures), where S is the stoichiometry matrix, ν denotes the vector of reaction fluxes, and νmin and νmax 
indicate the lower and upper bounds of these fluxes. Equation S7 represents the formulation that 
encourages zero flux in reactions in the off category. Since a y-value of 1 constrains the flux of a reaction to 
0 in this expression (both upper and lower bounds become zero), making a lowly expressed reaction carry 
zero-flux is equal to adding 1 to the objective in Equation S4, which is to be maximized. If this cannot be 
made (i.e., the reaction has to carry flux in the best-fit condition when all other constraints are imposed), 
then the y-value is set at 0 (hence not contributing to the objective), which converts Equation S7 into the 
original flux constraint from Equation S6. Similarly, Equation S8 represents encouraging a positive flux 
in the forward direction in reactions of the on category. A y-value of 1 is equivalent to having a flux equal 
to or greater than a minimum value set beforehand (ε). For reversible reactions, Equation S9 is also 
implemented, this time rewarding a negative flux less than or equal to –ε. We arbitrarily used ε=0.1 in this 
study.  
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Flux minimization 

The solution from the previous subsection provides the maximized objective, i.e., the maximum number of 
reactions with fluxes in agreement with the assigned on or off status (hereafter referred to as fitted 
reactions). The solution also includes a flux distribution, which is not unique, as different distributions can 



satisfy the same objective. We further optimized this solution by a flux minimization approach. This 
method was the same as flux minimization described in section 7 above (Predicted essential genes; optimal 
growth with regular diet) with three exceptions. First, the constraint that was held constant during 
minimization was not the growth rate but was the number of fitted reactions (i.e., the value in Equation S4). 
Second, Equations S7-S9 were also implemented during FBA to meet this constraint (Equations S5 and 
S6 are implemented by default). Third, instead of minimizing flux from all reactions, we minimized only 
reactions with undetermined status (not in on or off category), which are unrestrained during flux fitting 
and make a large portion of the network (>83% of all reactions in the network in all cases). The technical 
reason for not including reactions that belong to on or off category in flux minimization was because the 
fluxes in these reactions are controlled by the integration method (Equations S7-S9), which has to meet the 
constraint on the number of fitted reactions, at the same time as flux minimization.  
 

Optimization for different conditions 

We applied the integration and flux minimization method above to two different stages of life (dauer and 
growing larvae) using three different sources of nutrients (bacteria, storage compounds, and both). A total 
of 395 genes in iCEL1273 were regulated at the selected p-value cutoff (<0.001), with 241 downregulated 
and 144 upregulated in the dauer stage (numbers are reversed for the growing larvae stage). In each stage, 
reactions were assigned to on or off states accordingly as described above. A drawback of our approach is 
that, reactions in the off category (reactions associated with downregulated genes) are forced to have no 
flux. However, downregulation does not necessarily mean switching to an off mode; it may be only 
indicative of a decrease in flux. Reactions associated with the electron transport chain (ETC) and ATP 
synthase are probably of this kind due to their important role in energy generation, and were therefore 
excluded from the fitting, although many genes associated with these reactions were downregulated in the 
dauer stage. Indeed, the relative value of fluxes in predicted distributions for dauer and growing larvae 
were consistent with a reduction in flux in the dauer stage (see below; Figure 6C, O2 usage and ATP 
production), thereby verifying our assumption in retrospect. The final numbers of reactions in the on and 
off categories were 231 and 136 for the dauer, and 230 and 90 for the growth stage, respectively.  

The nutritional conditions were established using the exchange reaction for bacteria (EXC0050) and 
sink reactions for glycogen (SNK0012) and TAG (SNK0014). The exchange of oxygen, water, phosphorus, 
and cholesterol were also allowed. The rates of all these exchange reactions were lower bound by -1000 
units of flux in order not to limit the model by any nutrients, except for cholesterol, which was given in 
small amounts (lower bound by -1 unit) so that its degradation could not compete with other nutrients as a 
source of energy or carbon, while supporting flux in pathways depending on cholesterol. 

The results of data integration and flux minimization for each of the six tests (two stages X three 
nutrient conditions) are shown in Figure S4A. The quality of fitting was initially based on a high number 
of fitted reactions and a low sum of minimized fluxes. For both stages, both the percentage of fitted 
reactions and minimized flux sum increased as the nutritional supply became richer starting from only 
storage and changing to bacteria and then to both storage and bacteria. This is expected as more nutrients 
can support flux in more reactions. However, storage compounds provided a competitive fit at the lowest 
sum of minimized flux, and bacterial diet for the growth stage had a good balance between the two quality 
parameters. In addition, the number of fitted reactions does not necessarily reflect the agreement between 
gene expression and flux distribution, as the relationship between genes and reactions is not one on one. 
We therefore calculated the number of genes that have expression levels compatible with the fluxes. This 
compatibility required an upregulated gene to be active (associated with reactions carrying flux) and a 
downregulated gene to be inactive (only associated with zero flux reactions) in the flux distribution (ETC 
and ATP synthetase genes were excluded as mentioned above). Given the GPR associations, 218 genes in 
the dauer stage and 193 genes in the growth stage dictated reaction status as on or off and therefore could 
be related to reaction fluxes. Among these sets of genes, the percentages of flux-compatible genes are 
shown for all tests in Figure 6B. From these plots we reached a clear conclusion about optimal nutrient 
conditions for each stage (storage compounds for dauer and bacteria for growing larvae). Using the sum of 
flux from all reactions instead of the sum of minimized flux in non-regulated reactions did not change this 
conclusion (Figure S4B).  



Once the optimal points were defined for each stage, key variables plotted in Figure 6C were derived 
from these flux distributions. Biomass production, ATP synthesis, and O2 uptake rates correspond to the 
absolute flux values from reactions BIO0010, RMC0004, and EX00007, respectively. Importantly, the flux 
in BIO0010 for growing larvae came from BIO0101, which is the biomass synthesis reaction for body mass. 
As another side note, using the sum of minimized reactions as in Figure 6C or the sum of all fluxes 
(Figure S4B) did not change the conclusions about overall metabolic activity in the two stages. 

  
10. Compartmentalization of Dauer Metabolism  

FBA was carried out using two different sets of nutritional input and objective function in two 
compartments. In the microaerobic compartment, TAG, glycogen, and oxygen were provided to the model 
by corresponding exchange or sink reactions as described in the previous section, and the objective was set 
to maximize the trehalose output via exchange reaction EX01083. TAG and glycogen consumptions were 
arbitrarily limited to 1 unit of flux each. Oxygen uptake was set at a maximum value of 15 units, which 
made sure this nutrient was limiting (Figure 7B). In the anaerobic compartment, trehalose uptake was set at 
a maximum of 1 flux unit as the only energy source and energy generation was maximized using the 
reaction that consumes ATP (RCC0005) as the objective function.  

Sensitivity analyses in Figures 7B and 7C were carried out by constraining the flux of the variable in 
the x axis and maximizing the variable in the y axis. The grey curve in Figure 7B was derived by 
constraining the flux in glyoxylate cycle reactions to zero.  
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