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INTRODUCTION: A complete view of human
biology can only be achieved by studying the
molecular components of its smallest func-
tional unit, the cell. Cells are internally organized
into compartments called organelles. The spatial
partitioning provided by organelles creates an
enclosed environment or surface for chemical
reactions tailored to fulfill specific functions.
These functions are tightly linked to a specific
set of proteins. Therefore, resolving the sub-
cellular location of the human proteome pro-
vides information about the function of the
organelle and its underlying cellular mech-

anisms. We present a subcellular map of the
human proteome, called the Cell Atlas, to faci-
litate functional exploration of individual pro-
teins and their role inhumanbiologyanddisease.

RATIONALE: Immunofluorescence (IF)micros-
copywasused to systematically resolve the spatial
distribution of human proteins in cultivated
cell lines and map them to cellular compart-
ments and substructures with single-cell res-
olution. This approach allowed definition of
the precise location of amajority of the human
proteins in their cellular context and explora-

tion of single-cell variations in protein expres-
sion patterns. The proteome-wide information
about protein spatial distributionwas validated
with an orthogonal proteomicsmethod, and the
results were integrated into existing network
models of protein-protein interactions for in-
creased accuracy.

RESULTS: We report a high-resolution char-
acterization of the spatial subcellular distri-
bution of the human proteome based onmore
than 80,000 confocal IF images. A total of
12,003 proteins targeted by 13,993 antibodies
were classified into one or several of 30 cellular

compartments and sub-
structures, altogether de-
fining the proteomes of
13 major organelles. The
organelles with the largest
proteomes were the nu-
cleus and its substruc-

tures (6245 proteins), such as bodies and
speckles, and the cytosol (4279 proteins).
However, smaller organelles such as the mid-
body, rods and rings, and nucleoli also showed
a larger diversity than previously recognized.
Intriguingly, about half of all proteins were lo-
calized tomultiple compartments, showing that
there is a shared pool of proteins even among
functionally unrelated organelles. Single-cell
analysis revealed 1855 proteins with variation
in their expression pattern, either in terms of
expression levels or spatial distribution. Last,
the spatial information was used to refine bio-
logical networks. Our location-pruned network
that restricts protein interaction to the same
organelle improved the accuracy of the human
interactome model. The analysis also included
transcriptomics data for all putative protein-
coding genes (19,628) in 56 human cell lines of
various origins. On average, cell lines expressed
11,490 genes, with half of them (6295) being
expressed across all samples, suggesting a
“housekeeping” role.

CONCLUSION: The cellular proteome is com-
partmentalized and spatiotemporally regulated
to a high degree. The high-resolution subcellu-
lar map of the human proteome that we pro-
vide describes this cellular complexity, withmany
multilocalizing proteins and single-cell variations.
The map is presented as an interactive data-
base called the Cell Atlas, part of the Human
Protein Atlas (www.proteinatlas.org). The Cell
Atlas constitutes a key resource for a holistic
understanding of the human cell and its com-
plex underlyingmolecularmachinery, aswell as
amajor step towardmodeling thehuman cell.▪
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Creation of an image-based map of the human subcellular proteome.The subcellular
locations of 12,003 proteins were determined by IFmicroscopy in cell lines of various origins.
High-resolution IF images such as those shown above enabled mapping of proteins to distinct
subcellular structures.This resulted in the definition of the proteomes of 13major cellular organelles,
revealing multilocalizing proteins, as well as expression variability on a single-cell level.

ON OUR WEBSITE
◥

Read the full article
at http://dx.doi.
org/10.1126/
science.aal3321
..................................................

 o
n 

Ju
ne

 1
, 2

01
7

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

http://science.sciencemag.org/


RESEARCH ARTICLE
◥

PROTEOMICS

A subcellular map of the
human proteome
Peter J. Thul,1* Lovisa Åkesson,1* Mikaela Wiking,1 Diana Mahdessian,1

Aikaterini Geladaki,2,3 Hammou Ait Blal,1 Tove Alm,1 Anna Asplund,4 Lars Björk,1

Lisa M. Breckels,2,5 Anna Bäckström,1 Frida Danielsson,1 Linn Fagerberg,1 Jenny Fall,1

Laurent Gatto,2,5 Christian Gnann,1 Sophia Hober,6 Martin Hjelmare,1 Fredric Johansson,1

Sunjae Lee,1 Cecilia Lindskog,4 Jan Mulder,7 Claire M. Mulvey,2 Peter Nilsson,1

Per Oksvold,1 Johan Rockberg,6 Rutger Schutten,1 Jochen M. Schwenk,1 Åsa Sivertsson,1

Evelina Sjöstedt,4 Marie Skogs,1 Charlotte Stadler,1 Devin P. Sullivan,1 Hanna Tegel,6

Casper Winsnes,1 Cheng Zhang,1 Martin Zwahlen,1 Adil Mardinoglu,1 Fredrik Pontén,4

Kalle von Feilitzen,1 Kathryn S. Lilley,2 Mathias Uhlén,1† Emma Lundberg1†

Resolving the spatial distribution of the human proteome at a subcellular level can greatly
increase our understanding of human biology and disease. Here we present a comprehensive
image-based map of subcellular protein distribution, the Cell Atlas, built by integrating
transcriptomics and antibody-based immunofluorescence microscopy with validation by mass
spectrometry. Mapping the in situ localization of 12,003 human proteins at a single-cell level
to 30 subcellular structures enabled the definition of the proteomes of 13 major organelles.
Exploration of the proteomes revealed single-cell variations in abundance or spatial distribution
and localization of about half of the proteins to multiple compartments.This subcellular map
can be used to refine existing protein-protein interaction networks and provides an important
resource to deconvolute the highly complex architecture of the human cell.

S
patial partitioning of biological functions
is a phenomenon that is fundamental to
life. In humans, this spatial partitioning
constitutes a hierarchy of specialized sys-
tems ranging across scales—from organs

to specialized cells to subcellular structures, down
to macromolecular complexes. At the cellular
level, proteins function at specific times and sub-
cellular locations, such as organelles. These loca-
tions provide a specific chemical environment
and set of interaction partners that are necessary
to fulfill the protein’s function. Mislocalization of
proteins can be associated with cellular dysfunc-
tion and disease (1, 2). Thus, knowledge of the
spatial distribution of proteins at a subcellular
level is essential for understanding protein func-
tion, interactions, and cellular mechanisms.

Several approaches for systematic analysis of
protein localizations have been described. Quan-
titative mass spectrometric readouts allow iden-
tification of proteins with similar distribution
profiles across fractionation gradients (3–7) or
proteins labeled by proximity-dependent enzymat-
ic reactions in cells (8–11). In contrast, imaging-
based approaches using tagged proteins (12–14)
or affinity reagents (15, 16) enable exploration of the
subcellular distribution of proteins in situ in single
cells and can also effectively identify cell-to-cell
variability and multi-organelle distribution. Com-
plementary to these experimental methods, a
number of in silico approaches have been used
to predict subcellular localization in eukaryotic
cells [e.g., (17, 18)]. Themanually curatedUniProt
database (19) is an important resource for pro-
tein localization that collects subcellular data
from literature and external databases for a large
number of species. Despite these efforts, exper-
imental data on subcellular localization are
lacking for the majority of human proteins. To
address this need, pilot studies have been initiated
to probe human proteins by means of immuno-
fluorescence (IF) and high-resolution confocal
microscopy (15, 20, 21) and mass spectrometry
(7). To date, maps of the subcellular proteome
of murine stem cells (6), HeLa cells (7), and rat
liver (22) are the best-characterized data sets
for mammals.
Here we report the establishment of the Cell

Atlas—a comprehensive, proteome-wide knowl-
edge resource for subcellular localization in

human cells—within the framework of theHuman
Protein Atlas (HPA) (23, 24). By integration of
transcriptomics data and an antibody-based
image-profiling approach, we provide experimen-
tal localization data for 12,003 proteins, using a
panel of 22 human cell lines and 13,993 anti-
bodies. The spatial distribution of these proteins
is resolved to 30 cellular structures and substruc-
tures, altogether representing 13 major organ-
elles. Particular emphases were on defining the
organelle proteomes and describing multilocal-
izing proteins and proteins displaying single-
cell variability. We expect the availability of
localization information for the human proteome
to complement other systematic efforts on the
DNA (25, 26), RNA (27, 28), and proteome (19, 29)
levels and aid in the molecular understanding of
the human cell and its interactions.

Cell lines and transcriptomics analysis

The aim in creating the Cell Atlas was to define
the proteomes of organelles and subcellular com-
partments by IF imaging (Fig. 1). To select suitable
cell lines for the effort, transcriptomics analysis
using RNA sequencing (RNA-seq) was performed
on 56 human cell lines from various origins
representing different germ layers and tissues
(table S1). A hierarchical clustering analysis based
on RNA-seq data (Fig. 2A) showed that cell lines
of similar origin or phenotype clustered together,
indicating a common pattern of gene expression.
Prominent clusters included myeloid cell lines,
lymphoid cell lines, endothelial cells, and cells
immortalized by introduction of telomerase.
Twenty-two cell lineswere selected for IF imaging—
together expressing 84% of all protein-coding
genes (16,504 of 19,628) predicted by Ensembl
[version 83.38 (26)]—based on a transcripts-per-
million (TPM) cutoff of ≥1 (table S2). Interesting-
ly, by applying TPM values, the average number
of expressed genes in the sequenced cell lines
was 11,490 (table S2), and the range spanned
from 10,136 in Daudi cells (B lymphoblast) to
12,816 in SCLC-21H cells (small cell lung carci-
noma). This is notably less than the previously
measured average of ~14,000 transcripts obtained
using FPKM values (fragments per kilobase of
transcript per million mapped reads) as a normal-
ization method. However, the TPM-based num-
ber corresponds more accurately to the number
of proteins actually detected in this and other
proteomic studies (30, 31).
A classification of the RNA expression levels

according to the principle previously described
in (24) was performed to define genes expressed
in all cell lines and those expressed in a cell line–
restrictedmanner (fig. S1). About one-third (6295)
of the protein-coding genes were expressed in
all cell lines, suggesting a “housekeeping” role,
whereas 45% showed a more variable expres-
sion. Eleven percent (2090) were not detected
in any of the analyzed cell lines. Of these genes,
1225 were detected in tissues, suggesting that
they code for proteins restricted to a smaller
number of specialized cell types or representing
specific developmental stages (table S3). Functional
annotations from Gene Ontology (GO) support
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this hypothesis, showing enrichment for tissue-
restricted proteins, such as receptors in the sensory
cells or reproduction-related proteins (table S4).

Creation of a subcellular map

As an integrated part of the HPA effort (23), anti-
bodies have been generated, affinity-purified using
the antigen, and validated by protein microarray
analysis to ensure specific and selective binding
to the intended target antigen (32). These anti-
bodies cover the majority of all predicted human
protein-coding genes. A systematic workflow for
subcellular localization of proteins was established
that uses IF and high-resolution confocalmicros-
copy, as described in fig. S2 (15, 16). Altogether,
13,993 antibodies (13,073 antibodies generated
by theHPAproject, complementedwith 920 com-
mercially available antibodies) were selected to
be included in the Cell Atlas after reliability anal-
ysis. Every antibody was used for immunostain-
ing of the bone osteosarcoma–derived U-2 OS
cell line and two additional cell lines from the
panel showing a high expression of the target
gene. In addition to the antibody of interest, ref-
erence markers outlining the nucleus, micro-
tubules, and endoplasmic reticulum (ER) were
included in each sample (fig. S3). For all proteins,
the spatial expression patterns observed in the
confocal images were assigned to one or more of
30 cellular organelles and substructures (Fig. 1
and table S5) and classified by a location-specific
reliability score, as outlined below. The images
and primary data are presented in the Cell Atlas
in a gene-centric manner, including the classi-
fication of all images and a description of the
validation and reliability of the antibodies and
identified locations. Furthermore, the images were
annotated by a citizen science approach through
the ProjectDiscovery platformwithinEVEOnline,
a massive multiplayer online game; more than
180,000 players across the world have contrib-
uted more than 7 million minutes of active par-
ticipation to date (33). In total, the Cell Atlas (in
version 16.1 of the HPA) contains 82,152 high-
resolution annotated images covering 61% of all
human protein-coding genes and 73% of the
genes expressed in the IF cell line panel. The
complete localization data set containing the re-
sults for all proteins in the Cell Atlas, as well as all
successful stainings obtained in the different cell
lines, are given in tables S6 and S7, respectively.

Validation of data in the Cell Atlas

Recently, there have been many articles quest-
ioning the quality and use of antibodies in re-
search [e.g., (34, 35)]. Because off-target antibody
binding can cause false-positive results, efforts
have gone into manually annotating all anti-
bodies regarding their reliability and quality of
the staining. In the Cell Atlas, we provide a re-
liability score for every annotated location and
protein on a four-tiered scale: “validated,” “sup-
ported,” “approved,” and “uncertain.” Locations
obtained the score “validated” if the antibody was
validated according to oneof the validation “pillars”
proposed by an international working group (36)
as suitable for IF: (i) genetic methods using

Thul et al., Science 356, eaal3321 (2017) 26 May 2017 2 of 12

Fig. 1. Subcellular locations in the Cell Atlas. (A) Schematic overview of the cell. Thirteen subcellular
proteomes, as well as a proteome of secreted proteins, were defined in the Cell Atlas by determining
the localization of proteins to 30 subcellular structures. (B) Subcellular structures annotated in the
Cell Atlas by immunofluorescence (IF) microscopy. Examples of proteins (green) localizing to each
annotated structure in the representative set of human cell lines used in the Cell Atlas. Microtubules
are marked with an antibody against tubulin (red); the nucleus is counterstained with DAPI (blue). The
side of an image is 64 mm. Information about cell lines, antibodies, and proteins is given in table S6.
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short interfering RNA (siRNA) silencing (37) or
CRISPR-Cas9 knockout, (ii) expression of a fluo-
rescent protein–tagged protein at endogenous
levels (38), or (iii) independent antibodies target-
ing different epitopes (see fig. S4 for examples).
The second tier, “supported” locations, is defined
by agreement with external experimental data
from the UniProt database. An “approved” lo-
cation score indicates a lack of external experi-
mental information about the protein location.
Last, an “uncertain” location is contradictory to
complementary information, such as literature
or transcriptomics data. “Uncertain” locations are
only shown when it cannot be ruled out that the
data are correct. In fig. S5, the distributions of
scores for all proteins are shown. Forty-three
percent of the protein locations are in the top
two tiers, representing a high degree of certainty
in the results, and half of the proteins are in the
“approved” category. Although these proteins have
no external evidence to support their location, the
antibodies passed our quality tests and showed a
consistent IF staining. Nevertheless, the likeli-
hood of false-positive results may be higher and
should be taken into considerationwhen looking
at individual proteins, whereas the effect on
global proteomic analyses is negligible (fig. S6).

The human organelle proteomes

The spatial information provided by the IF images
enabled the development of a subcellular map.
The distribution of 12,003 proteins into 30 cel-
lular compartments and substructures is shown
in Fig. 2B and detailed in table S8. We were able
to describe the proteomes for 13 major organ-
elles. In addition, we defined a secretome con-
taining proteins secreted through the classical
pathway by combining three bioinformatic meth-
ods for signal peptide recognition with seven pre-
diction methods for transmembrane regions (24),
which indicated that 2918 proteins are secreted
(table S9). Most proteins in the Cell Atlas were
found in the nucleoplasm and its substructures
(6245). The number of nuclear proteins consider-
ably exceeds previously reported numbers. Al-
though false nuclear localizations can be observed
because of cross-reactivity of antibodies (21), the
fraction of nuclear locations are similar in the
higher- and lower-reliability tiers. The second
largest number of proteins was identified in the
cytosol (4279), followed by vesicles (1806), includ-
ing transport vesicles and small membrane-bound
organelles such as endosomes or peroxisomes.
The nucleoli, including their fibrillar center, con-
tained 1270 different proteins, which is a more
diverse proteome than that of the mitochondria
or Golgi apparatus, although nucleoli are more
restricted in their known function. In total, we
acquired subcellular experimental evidence for
5662 proteins (47%) lacking an experimentally
determined GO term for a cellular compartment.
Furthermore, we refined or confirmed subcellular
locations for 6341 (53%) proteins already clas-
sified by experimentally determined GO terms
(fig. S7).
We further investigated the enrichment of RNA

classification categories for the defined organelle

proteomes. Figure 2C shows that proteins lo-
cated in the mitochondria, nucleus, nucleoli, and
ER are more often expressed in all cell lines,
which emphasizes their housekeeping role and
important function for cellular survival. In con-
trast, proteins with RNA expression patterns cat-
egorized as “enriched” (expression in a cell line at
least five times as high as in all other cell lines)
and “enhanced” (expression in one or more lines
five times as high as the mean expression across
all cell lines) are more commonly secreted or
located in the plasma membrane, vesicles, and
cytoskeleton, which indicates that these com-
partments play important roles in intercellular
communication and adaptation to the surround-
ing microenvironment. An analogous pattern
was seen in the RNA class distribution across
59 human tissues (fig. S8), indicating general
similarities in organelle organization between
cell lines and tissues.
The goal of proteomic studies lies in the large-

scale localization of previously uncharacterized
proteins to achieve a complete picture of orga-
nelle function. IF images are particularly advan-
tageous in the identification of protein constituents
of compartments that are challenging to purify
or have distinct substructures. For example, spe-
cialized domains within a compartment, such as
cell junctions in the plasmamembrane, are easily
visible in IF—for example, in the case of the
uncharacterized protein C4orf19 (Fig. 2D). Other
compartments, such as the cytokinetic bridge,
correspond to a rare cellular event and are thus
challenging for proteomic studies. However, with
our high-resolution images, we were able not
only to identify 88 proteins located in the cyto-
kinetic bridge (Fig. 2E), but also to analyze the
underlying components midbody (36 proteins;
Fig. 2F) and midbody ring (12 proteins; Fig. 2G).
The detection of well-known constituents such
as CHMP1B in the midbody, as well as less well-
characterized proteins such as APC2 in the mid-
body ring or CCSAP in the cytokinetic bridge,
provides an enhanced understanding of the final
step of cell division. In nucleoli, we identified pro-
teins such as MKI67 that are localized in the rim
around the nucleolus and reorganize to line the
condensed chromosomes during mitosis (Fig. 2H).
As described below, additional tailored assays to
complement the Cell Atlas further increase the
available information about subcellular locations.
The largely uncharacterized dynamic structure
termed rods and rings (RR) previously had only
three known members, including IMPDH1 and
IMPDH2 (Fig. 2I) (39). We discovered and con-
firmed 21 RR candidates by actively inducing RR
formationwith the compound ribavirin (39). The
assignment of additional proteins to the RR sheds
new light on this structure and provides oppor-
tunities for better understanding its origin, com-
position, and function. In the nucleus, the PML
body (marked by SP100; Fig. 2J) was a prominent
substructure. This location can be further ex-
plored for selected proteins, because the Cell
Atlas contains additional images generated by
superresolution microscopy, allowing a distinc-
tion between proteins localizing to the surface

(SP100; Fig. 2K, lower image) versus to the core
(ZBTB8A; Fig. 2K, upper image) of the PML body.

Validation with other proteome-wide
data sets

To evaluate the overall validity of our data, we
assessed its agreement with functional protein
information from independent proteome-wide
databases. First, we performed a GO “biological
process” term analysis of the proteome of each
organelle. The significantly enriched terms were
all related to known key processes of the respec-
tive organelle (table S10). Second, we analyzed
the location enrichment of a set of proteins by a
hypergeometric statistical test. In thismanner, we
could demonstrate that the nuclear receptors ac-
cording to nucleaRDB (40) and their co-regulators
as defined by the Nuclear Receptor Signaling
Atlas (41) were enriched in the nucleus (Fig. 3A
and fig. S9) and that the group of predicted se-
creted proteins were enriched in the organelles of
the secretory pathway (Golgi apparatus, vesicles,
and ER) (Fig. 3A). Third, enrichment tests with
the mammalian complex database CORUM
(42) showed similar results (Fig. 3A and fig. S9).
Known complexes were significantly enriched
in the respective organelle, with the exception of
the cytoskeleton.

Validation by mass spectrometry

Proteome databases contain information about
the subcellular localizations of already character-
ized proteins; however, our data set contains a
large portion of proteins with a previously un-
characterized location. Therefore, we used an
independent approach to reliably validate our
annotations. The Cell Atlas data were com-
paredwith a high-resolution spatial proteinmap
generated by a mass spectrometry–based meth-
od called hyperLOPIT (hyperplexed localiza-
tion of organelle proteins by isotope tagging).
HyperLOPIT aims to resolve all subcellular com-
partments in a single experiment by combining
biochemical cell fractionation with quantitative
mass spectrometry and robust multivariate sta-
tistical analysis (3, 6). This enables global iden-
tification and quantification of proteins and
assignment to their respective subcellular com-
partments (43). The technique does not rely on
absolute organelle purification but is based on
the measurement of the distribution of cellular
proteins across multiple density gradient frac-
tions. Protein localization is assigned by compar-
ing the distributions of proteins of unknown
subcellular location with those of unambiguous
organelle markers.
The hyperLOPIT approach was applied to

create a subcellular map of the U-2 OS cell line.
Spatial distribution profiles of 5020 proteins were
determined, and a support vector machine was
used to classify 1971 proteins to 12 discrete sub-
cellular compartments, which were customized to
match with the annotations in the Cell Atlas (Fig.
3B). Localization information for a total of 3626
proteins was available in both the Cell Atlas (U-2
OS only; table S11) and hyperLOPIT results (table
S12). Of these, 1426 proteins were unambiguously
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Fig. 2. Transcriptomics and pro-
teomics. (A) mRNA deep sequenc-
ing was performed for 56 cell lines.
The cell lines were clustered on the
basis of gene expression patterns.
The color of the cell line name
represents its origin: red, myeloid;
yellow, lymphoid; brown, lung; peri-
winkle, brain; turquoise, renal,
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tem; green, breast and female
reproductive system; pink, sarcoma;
purple, fibroblast; blue, abdominal;
orange, skin; black, miscellaneous.
Cells immortalized by the introduc-
tion of telomerase are indicated
by an asterisk. Cell lines in bold
are included in the Cell Atlas cell
line panel. (B) Number of proteins
per subcellular location. A total of

12,003 proteins were localized to one or more subcellular compartments in this
study. Locations are sorted and color-coded according to the number of
proteins and the meta-compartments in which they occur [cytoplasm (cytosol
and embedded organelles; shades of blue), nucleus (nuclear and nucleolar
structures; shades of red), and secretory pathway (ER,Golgi apparatus,vesicles,
and plasma membrane; shades of yellow)]. Some locations are merged:
aggresomes and RR to cytosol, microtubule ends and mitotic spindle to
microtubules, and midbody ring to midbody. (C) RNA classification categories
per major organelle (nucleus and nuclear membrane are merged) compared
with the background of genes in the Cell Atlas. Genes with a TPM value of ≥1
were considered as expressed and classified either as expressed in all cell lines,
enriched (expression in one cell line at least fivefold as high as in all other cell
lines), enhanced (average TPM level fivefold as high in one or more cell lines as
the mean TPM of all cell lines), or mixed (expressed, but not in one of the other

categories). (D) C4orf19 (detected by antibody HPA043458 in RT4 cells)
localized to cell junctions, a subdomain of the plasma membrane. (E to G)
Protein localization at the final stage of cytokinesis: (E)CCSAP to the cytokinetic
bridge (detected by HPA028402 in U-2 OS cells) (E), CHMP1B to the midbody
(detected by HPA061997 in SiHa cells) (F), and APC2 to the midbody ring
(detected by HPA078002 in U-2 OS cells) (G). (H) MKI67 (detected by
CAB000058 in U-251 MG cells) localized to the rim of nucleoli. (I) Previously
uncharacterized protein C21orf59 (detected by CAB034170 in U-2 OS cells)
localized to RR, whose formation was induced by ribavirin. (J and K)
Conventional IF images in theCell Atlas (J) and superresolution images acquired
by stimulated emission depletion microscopy (K) of a PML body (a type of
nuclear body) show the surface of the body marked by PML (red) and the shell
protein SP100 (HPA016707, green) or the core protein ZBTB8A (HPA031768,
green). Scale bars, 10 mm in (J) [applicable to (D) to (I)] and 0.05 mm in (K).
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classified to a single location by hyperLOPIT.
Within this group, 799 were also assigned a
single location in the Cell Atlas, whereas the re-
maining 627 proteins had Cell Atlas annotations
for more than one location.
Two comparisons between the data sets were

performed: First, a comparison of proteins shown
to be present in only one location in the Cell Atlas
data (“unique match,” table S13), and second, a
comparison of all available proteins—including

those shown to reside in more than one sub-
cellular class in the Cell Atlas—with one un-
ambiguous assignment in the hyperLOPIT data
set (“partial match,” table S13). Of the 799 pro-
teins assigned by the Cell Atlas to a single loca-
tion we found 76% agreement (unique match)
with hyperLOPIT subcellular assignments. For
the 1426 proteins common between the two data
sets, 82% agreement (partial match) was observed
between subcellular assignments. However, the

overall agreement differed between the four
reliability tiers of the Cell Atlas and was only
46% for the “approved” tier, which makes up
51% of the Cell Atlas data set (table S13). At the
organelle level (table S13), the agreement ranged
from 91 and 92% for the ER and mitochondria,
respectively, to 60% for vesicles. This lower over-
lap is expected, because vesicles, as defined in the
Cell Atlas, group together several organelles and
structures that could be analyzed separately using
hyperLOPIT. It is clear from the principal com-
ponents analysis (PCA) shown in Fig. 3C that
many Cell Atlas “vesicular” proteins reside in the
unclassified intermediate area of the hyperLOPIT
data set. Vesicles are highly dynamic structures
that are generated in, and traffic between, dif-
ferent parts of the cell, and hence the steady-
state location of their protein constituents is
likely to involve multiple locations, which in the
hyperLOPIT data would result in no single,
unique classification. The hyperLOPIT workflow
involves fractionation of chromatin-associated
proteins and nucleoplasm and nucleolus, and this
additional fractionation manifests itself as dis-
crete protein correlation patterns. Interrogation
of the hyperLOPIT data with Cell Atlas nuclear
assignments revealed a nucleolar-like subcluster
in the hyperLOPIT data; this demonstrates the
power of combining data obtained using orthog-
onal methods (Fig. 3D).
In the hyperLOPIT data set, 60% of the pro-

teins identified fell into the “unclassified” category.
This unclassified category may represent several
dynamic scenarios, such as proteins localized to
unannotated subcellular structures or multilo-
calizing proteins. A separate analysis was con-
ducted for the 1755 proteins that were labeled
by hyperLOPIT as “unclassified” but that con-
tained subcellular information in the Cell Atlas
(fig. S10). Interestingly, the majority of the
hyperLOPIT-unclassified proteins were found
in the HPA classes “nucleoplasm,” “vesicles,”
“nucleoplasm and cytosol,” and “plasmamem-
brane and cytosol,” reflecting the highly dynamic
localization of the majority of cellular proteins.
To show the complementary nature of the Cell

Atlas and hyperLOPIT for predicting subcellular
location, we applied a transfer learning method
(44) to integrate the two data sources. Transfer
learning allows one to meaningfully integrate
heterogeneous data. By combining labeled marker
proteins common to both data sets, a significant
increase in classifier accuracy was obtained (fig.
S11) relative to that obtained using the Cell Atlas
alone (P < 2 × 10–16). This highlights the strength
of integrating the two approaches for the optimal
classification of proteins to organelles.

Proteins localized to
multiple compartments

In a pilot for this study (15), we concluded that
many of the studied proteins are not restricted to
a single organelle but rather localized to one or
more additional locations. This observation is sup-
ported by the hyperLOPIT data described above
and by data for yeast, in which 54.3% of the pro-
teins were assigned tomultiple localizations (14).
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Fig. 3. Validation by proteome-wide databases and hyperLOPIT. (A) Location enrichment
analyses of different protein sets. Hypergeometric tests were performed to evaluate subcellular
locations (P < 0.05). Nuclear receptors were enriched in the nucleus meta-compartment. Predicted
secreted proteins were enriched in organelles of the secretory pathway: ER, Golgi apparatus, and
vesicles. Members of known complexes according to the CORUM database were enriched in the
respective organelles—for instance, mitochondria and ER. Color-coding is as in Fig. 2. (B) A PCA
representation of the human U-2 OS cell hyperLOPIT data (5020 proteins common across two
hyperLOPIT replicates). One point represents one protein, and proteins cluster according to their
density gradient distribution. Colored circles correspond to subcellular compartments that have
been classified by a support vector machine. For the statistical comparison to the Cell Atlas,
hyperLOPIT subcellular annotations were matched with their equivalent Cell Atlas definition. (C to
E) PCA plots of the U-2 OS human data set for (C) vesicles, (D) nucleoli, and (E) the ER. Proteins
occurring in both the Cell Atlas and hyperLOPITdata sets are visualized (3626 proteins). Black stars
represent partial matches (a single assignment in the hyperLOPIT data, more than one in the HPA
data set), and red triangles represent unique matches (a single assignment in both the HPA and
hyperLOPIT data sets). PM, plasma membrane.
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Fig. 4. Multilocalizing proteins in the human proteome. (A to D)
ZNF554 is an example of a protein with a cell line–dependent subcellular
localization. Two antibodies, HPA060247 [left, (A) and (B)] and HPA063358
[right, (C) and (D)], binding different epitopes detected ZNF554 in both
the nucleoplasm and nucleoli in U-2 OS cells, whereas it was only detected
in the nucleoplasm in RT4 and SH-SY5Y (not shown). The nucleolar
expression was detected in just a fraction of the U-2 OS cells and thus
additionally showed a single-cell variation. Scale bar, 10 mm. (E to G) Circular
plots with the identified proteins of each compartment presented and
sorted by meta-compartments. Multilocalizing proteins appearing more than

once in the plots are connected by a line. Color-coding is as in Fig. 2, with
secondary colors representing multilocalization across meta-compartments.
The plots show (E) connections among all meta-compartments and proteins,
(F) connections only within a meta-compartment, and (G) connections only
across meta-compartments. (H to K) Examples of dual localizations: (H)
UBE2L3 in nucleus and cytosol (detected by HPA062415 in A-431 cells), (I) 60S
ribosomal protein L19 in nucleoli and cytosol (detected by HPA043014 in
U-2 OS cells), (J) MTIF in nucleus andmitochondria (detected by HPA039791 in
U-2 OS cells), and (K) CCAR1 in Golgi apparatus and nucleoplasm (detected
by HPA007856 in U-251 MG cells). Scale bar, 10 mm.
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One of the strengths of imaging-based spatial
protein analysis is the ability to localize a pro-
tein in situ and simultaneously visualize protein
distribution among multiple cellular struc-
tures, thus identifying multilocalizing proteins
(MLPs). Here we have classified the main and
additional locations for each protein on the basis
of a clear difference either in the signal strength
or in the occurrence across the tested cell lines.
More than 50% (6163) of the proteins were de-
tected at more than one location, of which 27%
(1649) were detected at three or more locations
(table S8). ER and mitochondria mainly con-
tained specifically located proteins, whereas the
proteomes of the plasma membrane and the
nuclear substructures contained mainly MLPs,
consistent with the hyperLOPIT data (Fig. 3E
and fig. S12). This finding is consistent with the
known biological function of the organelles.
Whereas the proteome of the mitochondria is
more self-contained, the nucleus, plasmamem-
brane, and cytosol contain many proteins that
operate across organelles to regulate metabolic
reactions or gene expression or to transmit in-
formation from the surrounding environment.
Also observed wereMLPs that varied in their cell-
to-cell spatial distribution, as well as MLPs such

as ZNF554 that showed a cell line–dependent
location, with different localization in the three
cell lines tested (Fig. 4, A to D). In total, 3546
MLPs showed a cell line–dependent localization
(table S14).
To investigate whether MLPs are organized in

superordinate structures, we grouped the indi-
vidual organelles and substructures into three
meta-compartments—nucleus (nuclear and nuc-
leolar structures), cytoplasm (cytosol, mitochon-
dria, and the different types of cytoskeleton), and
the secretory pathway (ER, Golgi apparatus, ve-
sicles, and plasmamembrane)—and searched for
distinct patterns within and across these meta-
compartments by aligning the proteins on a cir-
cular plot (Fig. 4, E to G). Within the cytoplasm
meta-compartment,mostMLPs appeared between
the cytosol and the cytoskeletal structures and
other organelles embedded in it (Fig. 4F). Sim-
ilarly, most MLPs in the nucleus could be iden-
tified as a combination of nucleoplasm and the
fine structureswithin, such as nucleoli or nuclear
bodies, and likely reflect dynamic translocations
of proteins between these proximal compartments
(Fig. 4F). The MLPs in the secretory pathway ex-
hibit a sequential pattern, likely reflecting the
directional protein trafficking (Fig. 4F). This

analysis was repeated with stratification ac-
cording to the reliability of locations to control
for the effect of data quality on our results (fig. S6).
The patterns ofmultilocalizationwere highly sim-
ilar regardless of the data set used.
Frequent patterns of multilocalization across

meta-compartments included cytosol and nucleus,
cytosol and nucleoli, and mitochondria and nuc-
leoli (Fig. 4G). Enrichment analysis of GO “bio-
logical process” terms of these proteins (table S15)
revealed thatMLPs of the nucleus and the cytosol
are related to transcription and cell cycle regu-
lation, such as UBE2L3 (Fig. 4H); MLPs of the
cytosol and nucleoli are enriched for ribosomal
proteins, such as 60S ribosomal protein L19,
which can be also found on the ER (Fig. 4I);
and proteins found in both the mitochondria and
nucleus are related to protein translation and cel-
lular respiration, such as MTIF3 (Fig. 4J) and
NDUFA9, respectively. Intriguingly, the meta-
compartments secretory pathway and nucleus
shared a very high number of MLPs, despite not
being in direct physical contact with each other.
These MLPs are characterized by their involve-
ment in the regulation of transcription or cell
cycle–dependent processes—for example, CCAR1
(Fig. 4K). This indicated that the proteomes of
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Fig. 5. Protein-protein interactions. (A and B) Information on
protein-protein interaction pairs from the independent Reactome
database was used to assess the quality of annotations in the
Cell Atlas and identify potential interacting compartments. The
Bonferroni-corrected binomial test (P value) heat maps describe
the probability of observing at least as many proteins in a given
organelle (y axis) by chance, given the location of each protein’s
interaction partner (x axis). For clarity, only combinations of protein-
protein interaction localization pairs that are significantly enriched
are shown. The analysis of direct protein-protein interactions
(defined by Reactome) is shown in (A). Protein-protein interaction
within the same reaction (defined by Reactome) is shown in (B).
(C) The human interactome, pruned by the protein subcellular
localization data, reveals hub proteins for each compartment (top
10 hub proteins, based on their degree of connectivity). The full scale
of the pruned interactome with nodes colored by subcellular local-
izations is shown. Lines between same-colored nodes indicate
protein interactions within that compartment; lines between differ-
ently colored nodes indicate possible linkages across different
compartments because of multilocalized proteins.
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the ER, Golgi apparatus, and vesicles are more
functionally versatile and should not be reduced
to their role in protein secretion. In fact, the
MLPs create a range of interactions between
functionally distant organelles and include them
in a network of regulatory processes, which are
primarily associated with the nucleus. This may
be an indication of the complex network of events
surrounding how the cell conveys signals from
the exterior to the nucleus.

Spatial information refines
biological networks

The biological function of an organelle is not only
definedby the presence or absence of proteins, but
also by its underlying chain of reactions, which
in turn are often conducted by protein-protein
interactions. We used the spatial information
of the Cell Atlas to examine the relationship
between protein interaction partners. For every
annotated structure in the Cell Atlas, we investi-
gated the subcellular locations for the direct
protein interaction partners, according to the
Reactome database (45). Figure 5A shows a
heat map of the probability that proteins in
one cellular compartment interact directly with
proteins in the same or other compartments.
Within this stringent constraint, the majority
of the significant enrichments (P < 0.05) for an
interaction pair were found within the same
organelle. This compartmental enrichment was
even observed for small structures such as nu-
clear bodies and nucleoli fibrillar centers. The
exception was the microtubule-organizing cen-
ter (MTOC), which showed significant enrich-
ment for interactors found in the centrosome
andmicrotubules. For some structures, proximal
structures were also found to be significantly en-
riched. Proteins in the plasma membrane, for ex-
ample, showed increased probability of directly
interacting with proteins in the plasma mem-
brane, cell junctions, Golgi apparatus, vesicles,
focal adhesions, and cytosol. These results sup-
port the quality of the locations annotated in
the Cell Atlas, given that direct protein-protein
interactions occur in the same or connected
compartments. To explore how cellular signal-
ing expands across cellular compartments through
reaction pathways, the same analysis was per-
formed for the organelle proteomes, looking at
protein interactions within reaction pathways de-
fined by Reactome (Fig. 5B). In this analysis, the
meta-compartments becamemore prominent, es-
pecially in terms of interactions between the or-
ganelles of the secretory pathway and signaling
between compartments. Unexpected cross-talk
between compartments included apparent inter-
actions between the cytokinetic bridge and nu-
clear bodies.
We examined whether existing protein-protein

interaction networks would benefit from a more
comprehensive annotation of a protein’s subcel-
lular location, given that it constrains the possible
number of interaction partners. The localization
data was integrated, as spatial boundaries, into
the human interactome that was recently used to
systemically uncover the molecular background

of humandiseases (46). The interactome included
annotations for 79,020 interactions of 7827 pro-
teins. By taking the subcellularmain location into
account, the number decreased to 51,885 (65.7%)
interactions of 6985 proteins that were found to
be likely to occur in vivo (fig. S13). However, a
substantial number of protein interactions were
found when additional locations were included,
raising the total to 62,352 (78.9%) interactions
of 7494 proteins (fig. S13). This further supports
the important functional role of MLPs. With this
new location-pruned interaction data set, we gen-
erated a map to identify the most connective
proteins, also called hub proteins, of each com-
partment (Fig. 5C). The hub proteins of each
compartment were mostly different from hubs
of the original, nonannotated interactome (table
S16); hence, our data set led to the identification
of previously unrecognized driver genes within
the network. The localization-annotated interac-
tome is available in table S17.

Single-cell variations in protein expression

Protein profiling by IF microscopy allows analy-
sis of expression patterns on a single-cell level to
reveal variations in a protein’s expression across
the analyzed cells. In the Cell Atlas, we labeled
proteins with an observed single-cell variation
(SCV), such as the nucleolar localization of ZNF554
(Fig. 4, A and C). SCV can be observed either in
protein expression levels (IF signal intensity) or in
the spatial distribution pattern. Of the 12,003 de-
tected proteins, 1855 (15%) showed a SCV (table
S18). Further studies are needed to revealwhether

SCV is due to dynamic protein regulation or
stochastic events. The majority of these proteins
showed a variation in protein expression levels
(1671)—for example, CRYAB (Fig. 6A)—whereas
222 proteins showed a variation in spatial distri-
bution (38 proteins fall into both categories). The
organelles with the most SCV proteins were the
cytosol (394), nucleoplasm (381), nucleoli (230),
and mitochondria (206) (table S8)—organelles
that also containmost knowncell cycle–dependent
proteins.
In addition to being related to the subcellular

structures that only appear during cell division
(mitotic spindle, cytokinetic bridge, midbody, and
midbody ring), it is plausible to expect a majority
of these SCVs to also be related to the cell cycle,
because the cells in the images were growing
under asynchronous conditions. To confirm this,
we used two approaches for a subset of the pro-
teins. First, we stained selected proteins with an
observed SCV in the U-2 OS FUCCI [fluorescence
ubiquitination cell cycle indicator (47)] cell line,
which allows monitoring of the cell cycle; by this
method, we verified a cell cycle–dependent ex-
pression of 64 proteins, including, for example,
ANLN (Fig. 6, B and C; see the list of proteins in
table S19). The second approach used a compu-
tational model to infer the cell cycle position on
the basis of features of the microtubule and nu-
cleus reference markers. In this manner, the cell
cycle position of the cells in the images could be
determined in a continuousmodel, and a pseudo-
temporal reconstruction allowed the pattern of
cell cycle dependency to be modeled. Figure 6D
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Fig. 6. Single-cell variation in protein expression. (A) CRYAB (detected by CAB002053 in U-2 OS
cells) showed a single-cell variation in the cytosolic signal strength. (B and C) U-2 OS FUCCI cells
expressed the cell cycle regulators CDT1 (red) during the G1 phase and geminin (green) during the
S and G2 phases. An antibody targeting ANLN (yellow) stained only cells in the S and G2 phases, marked
by the green fluorescence. (D) Pattern of expression of ANLN across the cell cycle in U-2 OS cells by
pseudo-temporal analysis using a time-regressive computational model. (E) The protein abundance
of PCNA (detected by HPA030522 in U-2 OS cells) at nuclear bodies varied during the cell cycle.
(F) PSMC6 (detected by HPA042823 in U-2 OS cells) changed its spatial distribution from nucleoplasm
to cytosol during the cell cycle, based on data from U-2 OS FUCCI cells. Scale bars, 10 mm in
(A) and (F) [applies to (E)] and 50 mm in (C) [applies to (B)].
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shows such a plot for ANLN, which is expressed
in cells in the S and G2 phases, according to both
FUCCI colocalization and the pseudo-temporal
computational modeling. Like for SCV, cell cycle–
dependent variation could be observed either in
a change of the intensity—for example, in the
case of PCNA (Fig. 6E)—or in a change of the
localization, illustrated by the translocation of
PSMC6 from nucleoplasm to cytosol (Fig. 6F).

Discussion

Here we present the most comprehensive map
of the subcellular distribution of the human pro-
teome, generated by high-resolution IF images
on a single-cell level. The results are presented in
an interactive resource, the Cell Atlas, as part of
the Human Protein Atlas (www.proteinatlas.org).
This allows exploration of the organelle pro-
teomes, their substructures, single-location and
multilocalizing proteins, and proteins exhibiting
single-cell variations in expression or cell cycle–
dependent expression. These defined categories
can furthermore be explored in terms of gene ex-
pression patterns across a multitude of cell lines
on the basis of transcriptome data. To facilitate
integration with other biological resources, all
data are available for download from the Human
Protein Atlas and through collaborations with ef-
forts such asUniProt (19), NextProt (29), GO (48),
and the pan-European ELIXIR project (49).
Spatial partitioning of biological reactions by

compartmentalization is an important cellular
mechanism for allowing multiple cellular reac-
tions to occur in parallel while avoiding cross-
talk. Intriguingly, we identified more than 50%
of the analyzed proteins as localizing to more
than one compartment at the same time. The
fact that proteins are localized at multiple sites
increases the complexity of the cell from a sys-
tems perspective. On one level, it can function as
a spatial confinement to control the timing of the
molecular function in the designated compart-
ment. On another level, multilocalizing proteins
are more prone to have diverse protein-protein
interactions because of an increased number of
potential interaction partners. This is of partic-
ular relevance for network analyses and the iden-
tification of key hub proteins that play a crucial
role in linking complexes to smaller subnetworks,
leading to a cellular-wide network. Moreover,
proteins that localize to more than one compart-
ment may have context-specific functions, increas-
ing the functionality of the proteome. The fact
that proteins “moonlight” in different parts of the
cell is now well accepted (50, 51). The high per-
centage of proteins in multiple locations, as in-
dicated by the complementary IF and hyperLOPIT
data sets,may be an indicator of the scale onwhich
moonlighting occurs. The more complex a sys-
tem is, the greater the number of parts thatmust
be sustained in their proper place, and the lesser
the tolerance for errors; therefore, a high degree
of regulation and control is required. To under-
stand cellular function, and particularly in the
context of health and disease, detailed knowl-
edge about the cellular system is needed.We dem-
onstrated that current network models benefit

from integration of the Cell Atlas localization
data as spatial boundaries to remove false-positive
interactions.
The proteome of a single cell is compartmen-

talized and spatiotemporally regulated to a high
degree. Protein expression and localization change
over time and enable the cell to react to intrinsic
or extrinsic factors. Although only presenting a
snapshot of the current state of a few cells, our
single-cell analysis gives insight into this dyna-
mic process. The high-resolution map of the sub-
cellular localization of 12,003 human proteins
provided by the Cell Atlas is a key resource for a
comprehensive understanding of the human cell
and its complex underlying molecular machin-
ery, as well as a major step toward modeling the
human cell.

Material and methods
Tissue culture cell line cultivation

All cell lines were cultivated at 37°C in a 5% CO2

humidified environment in the following growth
media: Roswell Park Memorial Institute medium
(A-431, REH, RH-30, SiHa, SK-MEL-30; Sigma-
Aldrich); Dulbecco’s Modified Eagle Medium
(A549, BJ, HaCaT, HeLa, NTERA, SH-S5Y5; Sigma-
Aldrich); Eagle’s Minimal Essential Medium
(CACO-2, HEK293, HepG2, MCF-7, U-251 MG;
Sigma-Aldrich); McCoy’s 5A modified (RT-4, U-2
OS; Sigma-Aldrich). Media were always supple-
mentedwith 10% fetal bovine serum (FBS, Sigma-
Aldrich); additional cell line-specific supplements
were: 1% non-essential amino acids (CACO-2,
HeLa, HRK293, HepG2, MCF-7), 1% L-glutamine
(CACO-2, HaCaT, HepG2, MCF-7, NTERA, RT-4,
U-2 OS), 5% horse serum (NTERA). No antibiotics
were used.
AF22 cells were kindly provided by A. Falk.

They were cultivated in DMEM/F12 supple-
mented with N-2 (Cat#17502048, Thermo Fisher)
andPen/Strep (Sigma-Aldrich), with freshly added
B-27 (1:1000, Cat#12587010, Thermo Fisher), EGF
(10 ng/ml, AF-100-15, PeproTech) and FGF2
(10 ng/ml, 100-18B, PeproTech), flask and plates
were coated in two steps with poly-N-ornithine
(Sigma-Aldrich) and laminin (Sigma-Aldrich).
Telomerase-immortalized cell line HUVEC/TERT2
(Cat# MHT-006-2) and ASC/TERT1 (Cat# MHS-
001) were a kind gift by Evercyte GmbH, Vienna,
Austria, and were cultured in EndoUp2 and
AdipoUp, respectively. U2-OS FUCCI cells were
developed and kindly provided by A. Miyawaki
(47). The cells were cultivated in McCoy’s 5A mod-
ified medium supplemented with 1% L-glutamine
and 10% FBS. HeLa-Kyoto cell lines stably ex-
pressing an enhanced green fluorescent protein
(EGFP)–tagged protein encoded on Bacterial Ar-
tificial Chromosome (BAC) were a kind gift from
A.Hyman,MaxPlanck InstituteDresden,Germany,
and were cultivated as described in Skogs et al.
(38,46). CRISPR-Cas9knockoutandGFP-expressing
cells were a kind gift by Horizon Discovery,
Cambridge, UK. Their designed HAP1 cell lines
were cultivated in IMDM (Iscove's Modified
Dulbecco's Medium, Sigma-Aldrich) media sup-
plemented with 10% FBS and 1% Pen/Strep. All
cells were harvested at 60 to 70% confluency

by trypsinization (Trypsin-EDTA solution from
Sigma-Aldrich) for splitting or preparing in glass
bottom plates.

Antibodies

All antibodies generated and validated within the
HPA project were rabbit polyclonal antibodies.
They were designed to bind specifically to as many
isoforms of the target protein as possible. The anti-
gens consisted of recombinant protein epitope sig-
nature tags (PrEST) with a typical length between
50 and 100 amino acids (52). The resulting anti-
bodies were affinity purified using the antigen as
affinity ligand (32). All antibodies used were first
approved for sensitivity and lack of cross-reactivity
to other proteins, on arrays consisting of glass
slides with spotted PrEST fragments. Commercial
antibodies were provided by the suppliers and
used according to the supplier’s recommendations.

Sample preparation for indirect
immunofluorescence

A standardized protocol optimized for proteome-
wide immunofluorescence localization studies
was used, which has previously been described in
detail by Stadler et al. (16). Briefly, cells were
seeded in 96-well glass bottom plates (Whatman,
Cat# 7716-2370, GE Healthcare, UK, and Greiner
Sensoplate Plus, Cat# 655892, Greiner Bio-One,
Germany) coated with fibronectin (VWR, Sigma-
Aldrich) and grown to a confluency of 60 to 70%
(log-phase growth). PBS-washed cells were fixed
in 4% paraformaldehyde (PFA) in growth media
supplemented with 10% FBS for 15min, followed
by permeabilization with 0.1% Triton X-100 in
PBS for 3×5 min. After a washing step with PBS,
cells were incubated with the primary antibody
overnight at 4°C. Rabbit polyclonal HPA anti-
bodies were diluted to 2 to 4 mg/ml in blocking
buffer (PBS with 4% FBS) containing 1 mg/ml
mouse anti-tubulin (Abcam, ab7291, RRID:AB_
2241126, Cambridge, UK), and 1 mg/mL chicken
anti-calreticulin (Abcam, ab14234, RRID:AB_
2228460) or rat anti-KDEL antibody (MAC 256)
(Abcam, ab50601, RRID:AB_880636), respective-
ly. On the next day after 4×10 min washes with
PBS, the cells were incubated for 90min at room
temperature with the following secondary anti-
bodies (all from ThermoFisher Scientific) diluted
to 1 mg/ml in blocking buffer: goat anti-rabbit
AlexaFluor 488 (A11034, RRID:AB_2576217), goat
anti-mouse AlexaFluor 555 (A21424, RRID:AB_
2535845), and goat anti-chicken AlexaFlour 647
(A-21449, RRID:AB_2535866), or goat anti-rat
AlexaFluor 647 (A21247, RRID:AB_1056356),
respectively. Cells were subsequently counter-
stained with 4′,6-diamidino-2-phenylindole (DAPI)
for 10 min. After washing with PBS, the wells
were completely filled with 78% glycerol in PBS
and sealed.

Fluorescence image acquisition

Fluorescent images were acquired with a Leica
SP5 confocal microscope (DM6000CS) equipped
with a 63× HCX PL APO 1.40 oil CS objective
(LeicaMicrosystems, Mannheim, Germany). The
settings for each image were as follows: Pinhole
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1 Airy unit, 16-bit acquisition, and a pixel size of
0.08 mm. The detector gain measuring the signal
of each antibody was adjusted to a maximum of
800V to avoid strongbackgroundnoise. Themajor-
ity of the images were acquired manually from
at least two representative field-of-views (FOVs).
For proteins displaying single cell variations in
their expression pattern, at least six different FOVs
were acquired. A small part of the plates were
imaged automatically using the MatrixScreener
M3 in LAS AF software (Leica Microsystem,
Mannheim, Germany). Here, z-stacks at six FOVs
were acquired and afterward two images were
manually selected for display in the Cell Atlas. All
images on the Cell Atlas are unprocessed with a
small compression due to conversion from TIFF
to JPEG file format.

IF image annotation

The subcellular location of each protein wasman-
ually determined based on the signal pattern and
relation to the markers for nucleus (DAPI), mi-
crotubules, and endoplasmic reticulum. The an-
notated locations were as follows: actin filaments,
aggresome, cell junctions, centrosome, cytokinetic
bridge, cytoplasmic bodies, cytosol, endoplasmic
reticulum, focal adhesions, Golgi apparatus, inter-
mediate filaments, lipid droplets, microtubule
organizing center (MTOC), microtubules, micro-
tubule ends, midbody, midbody ring, mitochon-
dria, mitotic spindle, nuclear bodies, nuclear
membrane, nuclear speckles, nucleolar fibrillar
center, nucleolar rim, nucleoli, nucleoplasm, nu-
cleus, plasma membrane, rods and rings, and
vesicles. If more than one location was detected,
they were defined as main or additional location
depending on the relative signal strength between
the location and themost common locationwhen
including all cell lines. Variation between single
cells were annotated either as a variation in the
intensity or spatial distribution based on a visual
inspection. The staining was not annotated if
considered negative or unspecific.

Prediction of the human secretome

For the prediction of the human secretome, the
analysis was performed as previously described
(24). Briefly, a majority decision approach was
used based on results from threemethods for the
prediction of signal peptides (SP): SignalP4.0 (53),
Phobius (54), and SPOCTOPUS (55). SignalP4.0
is solely focused on the prediction of SPs whereas
the two latter combine the prediction of trans-
membrane (TM) segments and SPs. In addition,
results from the prediction of the human mem-
brane proteome (56) were included to classify
proteinswith a predicted SP aswell as one ormore
TM regions as membrane-spanning. The result-
ing list of potentially secreted proteins consists of
all proteins with a predicted signal peptide by
two out of three methods and not including a
predicted TM region.

Classification of location reliability

Detected locations were classified based on the
reliability of the antibodies and their respective
stainings. A score was used for the classification,

which incorporated several factors: reproduci-
bility of the antibody staining in different cell
lines (also taken in account when the signal
strength correlates with RNA expression); repro-
ducibility of the staining using antibodies bind-
ing to different epitopes on the target protein;
validation data for the specificity of the antibody
(knockdown by siRNA or CRISPR-Cas9 knock-
out mutants, matching signal with fluorescent-
tagged protein); experimental evidence for location
described in literature. There were also soft fac-
tors such as antibody validation bynon–IF-related
methods such as Western blot or immunohisto-
chemistry. The final score led either to the failing
of the antibody (~50% of all tested antibodies
failed) or to the assignment into one of the fol-
lowing four classes: (i) “validated,” if at least one
antibody is validated—for example, two inde-
pendent antibodies show the same localization,
that was also observed in experiments outside
the HPA or it was supported by, e.g., siRNA
silencing; (ii) “supported,” if there is external
experimental data for the location; (iii) “approved,”
if the localization of the protein has not been
previously described and was detected by only
one antibody without additional validation; and
(iv) “uncertain,” if the antibody staining is con-
tradictory to experimental data or no expression
is detected on the RNA level.

RNA sequencing

Cell lines were selected for IF imaging based on
RNA expression of genes (57). RNAwas extracted
from the cells using the RNeasy kit (Qiagen),
generating high-quality total RNA (i.e., RIN > 8)
that was used as input material for library con-
struction with Illumina TruSeq Stranded mRNA
reagents. Duplicate samples were sequenced on
the Illumina HiSeq2500 platform. Raw sequen-
ces weremapped to the human reference genome
GrCh38 and further quantified using the Kallisto
software (58) to generate normalized transcript
per million (TPM) values. TPM values for genes
were generated by summing up TPM values for
the corresponding transcripts generated by
Kallisto. Genes with a TPM value ≥1 were con-
sidered expressed.

Location enrichment of protein sets by
hypergeometric test

Enrichment of a group of proteins in subcellular
locations was examined by hypergeometric tests.
In each subcellular location enrichment test, only
proteins with subcellular location annotated were
considered. Predicted secreted proteins were col-
lected from the HPA (24), nuclear receptors from
nucleaRDB (40), nuclear receptor co-regulators
from nuclear receptor signaling atlas (41), and
subcellular location-specific protein complexes
fromCORUM (42). In CORUMdatabase, nuclear
complex proteins were taken from a term “nu-
cleus” in the database; nucleoli complex proteins
from “nucleolus”; cytoskeleton complex proteins
from “actin cytoskeleton,” “microtubule cyto-
skeleton,” and “centrosome” complexes; mito-
chondria complex proteins from “mitochondrion”;
vesicle complex proteins from “intracellular trans-

port vesicle,” “peroxisome,” and “vacuole or lyso-
some”; ER complex proteins from “endoplasmic
reticulum”; plasma membrane complex proteins
from “plasma membrane/membrane attached”
and “cell junction”; and cytoplasm complex pro-
teins from “cytoplasm.”

HyperLOPIT comparison with Cell
Atlas annotations

To compare the subcellular assignments by both
methods it was necessary to match the 12 sub-
cellular organelle definitions used by hyperLOPIT
to the 30 image categories defined in the Cell
Atlas. The comparison was broken down into the
following subclasses: all Cell Atlas subnuclear
categories (“nucleus,” “nucleoplasm,” “nuclear
speckles,” “nuclear bodies,” “nucleoli,” “nucleoli
fibrillar center,” and “nuclear membrane”) were
individually compared with a single hyperLOPIT
nuclear class encompassing both hyperLOPIT
terms “nucleus” and “nuclear chromatin”; the Cell
Atlas term for “vesicles” was compared with the
combined hyperLOPIT terms for “lysosome” and
“peroxisome” (consistent with the Cell Atlas de-
finition for vesicles); and the Cell Atlas class “cell
junctions” was compared with the hyperLOPIT
term “plasma membrane.” For the Cell Atlas
terms called “plasma membrane,” “mitochon-
dria,” “endoplasmic reticulum,” “Golgi appara-
tus” and “cytosol/cytoplasm,” the same terms
are also available for hyperLOPIT and thus a
direct comparison was performed. Proteins that
were assigned by hyperLOPIT to the large pro-
tein complexes such as ribosomal subunits and
proteasomewere excluded from the comparison.
Adetaileddescription of thehyperLOPIT approach
is provided in the supplementary materials.

Heat maps for protein-protein interaction

Protein-protein interaction pairs were obtained
from the independent Reactome database (down-
loaded 20 September 2016) (45). A binomial test
was used to compare the observed frequency of a
target protein (Protein B) localizing to a given
compartment with the expected frequency based
on all annotations in the Cell Atlas. Here, the
likelihood of localizations of the first protein in
the pair (Protein A) can be ignored, as under the
null hypothesis it has no impact on the localiza-
tion of Protein B. The test therefore becomes the
probability that we observe at least as many in-
stances of Protein B in a specific compartment
given the number of “tries” (instances of Protein
A) and the background distribution of proteins
over the locations in the Cell Atlas. The back-
ground distribution of locations was constructed
by taking the frequency of each annotated loca-
tion for proteins in in the Cell Atlas over the total
number of proteins annotated in the Cell Atlas.
The results of the test were visualized using

a heat map of P values (Fig. 5, A and B) where
rows represent the location of Protein A and
columns represent the location of ProteinB. Values
are therefore the probability of seeing Protein B in
the given compartment at least as frequently as it
was actually observed assuming the background
distribution. The Bonferroni multiple-hypothesis

Thul et al., Science 356, eaal3321 (2017) 26 May 2017 10 of 12

RESEARCH | RESEARCH ARTICLE

 o
n 

Ju
ne

 1
, 2

01
7

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

http://science.sciencemag.org/


correction applied per-row to correct for the num-
ber of locations being tested for in each pairing.
By then considering the correlation of the protein-
protein interaction pair locations, key insights
into the nature and quality of the data in the Cell
Atlas can be gained.
The Reactome database contains several types

of protein-protein interactions that can be used to
assess different properties of the Cell Atlas an-
notations. To assess the quality of annotation, we
first analyzed direct interactions reasoning that
interacting proteins must occupy the same phys-
ical space at some point in the cell cycle and
therefore should be localized either to the same
compartment or adjacent compartments (Fig. 5A).
The same analysis was further performed for

protein pairs listed as belonging to the same re-
action pathway as defined by the Reactome data-
base to assess what compartments potentially
interact through signal cascades (Fig. 5B). This
analysis was created using MATLAB2016a.

Figure generation

Plots were generated using R studio (v. 3.3.1) and
the additional ggplot2 package. The cell line hier-
archical clustering was based on the Spearman
correlation of the RNA sequencing data for each
cell line. The average distance was used to de-
termine the hierarchical clusters and visualized
then by the R package ggdendro. The circular
plots showing distribution of multilocalizing
proteins were created using the Circos software
(v. 0.69) (59). The image montages were created
using FIJI ImageJ (v. 2.0.0-rc-49/1.51f).

Gene Ontology terms and
functional enrichment

To check the overlap with GO annotations for
proteins in the Cell Atlas, the web-based tool
QuickGO (60) was used to acquire GO annota-
tions for all genes using filters for cellular com-
ponent and information source (downloaded
15 February 2017). The GO annotations based
on data from the Cell Atlas were removed, and
the Ensembl IDs for all Cell Atlas genes were
then used for checking the overlap of genes
with experimental evidence for any GO annota-
tion. The functional annotation clustering for the
genes not expressed in the Cell Atlas cell line
panel was performed using the web based tool
DAVID (Database for Annotation, Visualization,
and Integrated Discovery v. 6.8) (61). All human
genes were used as a background and the GO
domain “biological process” termswithBonferroni
value of less than 0.01 were regarded as signifi-
cantly enriched.

Location-pruned protein-protein
interactions

Proteins interactions were obtained from pub-
lishedprotein interactomedata (46); among those
protein interactions, only interactions with “sig-
naling,” “kinase,” “complex,” “literature,” and “bi-
nary” types were taken; this indicates direct
protein interactions. Those protein interactions
were pruned to proteins localized in the same sub-
cellular locations, in either cytoplasm or plasma

membrane, or in either cytoplasm or cytoske-
leton. Location-pruned protein interactions were
visualized (Fig. 5C) through the edge-weighted
spring embedded layout of Cytoscape (62) and
their nodes were colored by the least frequent
one of subcellular locations they have. In each
subcellular location, hub proteins from protein
interactions of given subcellular locations were
examined based on their degree connectivity.
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