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SUMMARY

Despite recent discoveries of genetic variants
associated with autoimmunity and infection, genetic
control of the human immune system during homeo-
stasis is poorly understood.We undertook a compre-
hensive immunophenotyping approach, analyzing
78,000 immune traits in 669 female twins. From the
top 151 heritable traits (up to 96% heritable), we
used replicated GWAS to obtain 297 SNP associa-
tions at 11 genetic loci, explaining up to 36% of the
variation of 19 traits. We found multiple associations
with canonical traits of all major immune cell subsets
and uncovered insights into genetic control for
regulatory T cells. This data set also revealed traits
associated with loci known to confer autoimmune
susceptibility, providing mechanistic hypotheses
linking immune traits with the etiology of disease.
Our data establish a bioresource that links genetic
control elements associated with normal immune
traits to common autoimmune and infectious dis-
eases, providing a shortcut to identifying potential
mechanisms of immune-related diseases.

INTRODUCTION

The immune system has evolved over millions of years into a

remarkable defense mechanism with rapid and specific protec-

tion of the host frommajor environmental threats and pathogens.

Such pathogen encounters have contributed to a selection of

immune genes at the population level that determine not only

host-specific pathogen responses but also susceptibility to

autoimmune disease and immunopathogenesis. Understanding

how such genes interplay with the environment to determine im-
mune protection and pathology is critical for unravelling the

mechanisms of common autoimmune and infectious diseases

and future development of vaccines and immunomodulatory

therapies.

Studies of rare disease established major genes, and their

associated pathways, that regulate pathogen-specific immune

responses (Casanova and Abel, 2004) and genome-wide associ-

ation studies (GWAS) of autoimmune disease have also been

productive for finding common variants (Cotsapas and Hafler,

2013; Parkes et al., 2013; Raj et al., 2014). Despite this progress,

there are still major limitations in our understanding of the ge-

netics of complex autoimmune or infectious diseases. A key

missing piece is the elucidation of the genes controlling critical

components of a normal human immune system under homeo-

static conditions. These include the relative frequencies of circu-

lating immune cell subsets and the regulation of cell-surface

expression of key proteins that we expect have strong regulatory

mechanisms.

Previous studies in humans and rodents have shown that vari-

ation in the levels of circulating blood T cells is in part heritable

(Amadori et al., 1995; Kraal et al., 1983). Identifying the underly-

ing genetic elements would help us understand the mechanisms

of homeostasis—and its dysregulation. Twin studies are ideal to

quantify the heritability of immune traits in healthy humans by al-

lowing adjustment for the influence of genes, early environment,

age, and cohort, plus a number of known and unknown con-

founders (van Dongen et al., 2012). Early studies from our group

demonstrated genetic control of CD8 and CD4 T cell levels in

twins (Ahmadi et al., 2001), and others have shown similar heri-

table effects in non-twins and rodents and with broad white

cell phenotypes (Amadori et al., 1995; Clementi et al., 1999;

Damoiseaux et al., 1999; Evans et al., 1999; Ferreira et al.,

2010; Hall et al., 2000; Kraal et al., 1983; Nalls et al., 2011; Okada

et al., 2011). A recent study, with a family design, was the first to

perform GWAS on a larger range of immune subtypes. The

authors analyzed 272 correlated immune traits derived from 95
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Figure 1. Schematic Representation of Leukocyte Populations Analyzed and Summary Manhattan Plot

(A) This diagram illustrates the approach to analyzing the immunophenotyping data obtained by flow cytometry. It is not meant to convey differentiation stages of

leukocyte populations, though that property is largely reflected in this diagram. Each ‘‘lineage’’ of a subset of leukocytes was identified through hierarchical

gating. Within each of these lineages, all possible combinations of markers with heterogeneous expression within the lineage were analyzed. The number of

subsets identified by this combinatorial approach is shown in various lineages; the trait analyzed was the CSF within its parent lineage. In addition, the cell SPEL

was quantified by the median fluorescence intensity of the antibody staining on a given cell subset; the number of SPEL traits is indicated as well.

(legend continued on next page)
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cell types and described 23 independent genetic variants within

13 independent loci (Orrù et al., 2013).

Here, we report a comprehensive and high-resolution deep

immunophenotyping flow cytometry analysis in 669 female

twins using 7 distinct 14-color immunophenotyping panels that

captured nearly 80,000 cell types (comprising �1,800 indepen-

dent phenotypes) to analyze both immune cell subset fre-

quency (CSF) and immune cell-surface protein expression levels

(SPELs). This gave us a roughly 30-fold richer view of the healthy

immune system than was previously achievable. Taking advan-

tage of the twin model, we used a pre-specified analysis plan

that prioritized 151 independent immune traits for genome-

wide association analysis and replication.

We find 241 genome-wide significant SNPs within 11 genetic

loci, 9 of which are previously unreported. Importantly, they

explain up to 36% of the variation of 19 immune traits (18 previ-

ously unexplored). We identify pleiotropic ‘‘master’’ genetic loci

controlling multiple immune traits and key immune traits under

tight genetic control by multiple genetic loci. In addition, we

show the importance of quantifying cell-surface antigen expres-

sion rather than just cell-type frequency.

Critically, we show overlap between these genetic associa-

tions of normal immune homeostasis with previously established

autoimmune and infectious disease associations. This rich data-

base provides a vital, publicly accessible bioresource as a bridge

between genetic and immune discoveries that will expedite

the identification of disease mechanisms in autoimmunity and

infection.

RESULTS

Subjects
The discovery stage comprised 497 female participants from

the UK Adult Twin Register (TwinsUK). There were 75 complete

monozygotic (MZ) twin pairs, 170 dizygotic (DZ) pairs, and 7 sin-

gletons (arising from quality control [QC] failures in one co-twin).

The mean age was 61.4 years (range: 40–77). The replication

stage comprised a further 172 participants, mean age 58.2

years (range: 32–83), with 46 MZ, 118 DZ, and 8 singletons.

We stained cryopreserved peripheral blood mononuclear cells

(PBMC) from each, using a set of 7 14-color immunophenotyp-

ing panels that delineate a large range of immune subsets (Fig-

ures 1A, S1, S2, and S3 and Table S1). Immune traits analyzed

included the CSF (i.e., the proportionate representation of a

given phenotype) and the SPEL (i.e., a quantitative measure of

gene expression on a per-cell basis). The variability of all traits

was assessed using longitudinal sampling on a small cohort of

individuals as described in the Experimental Procedures; of

the 50,000 traits meeting the first filter criterion (Figure S4),

the mean covariance across samples drawn 6 months apart is

0.86. All trait values and summary analyses, including variability,

are available for download. Data and statistical analysis of the

discovery stage was completed per a pre-defined statistical
(B and C) Summary Manhattan plots: green dots, genome-wide significan

threshold of p < 3.3 3 10�10, which corresponds to the standard geno

The variants shown are MAF R 0.1; call rate R 0.9; HWE p value R 1

associations (C).
analysis plan before samples from the replication stage were

thawed.

GWAS analysis of all 78,000 immune traits is computationally

prohibitive and would require a multiple comparisons correction

that dramatically reduces sensitivity. The ability to infer heritabil-

ity (proportion of variance explained solely by genetic factors) by

the use of twins dramatically enhanced our ability to focus on

those that are most likely to be informative. Co-variation of all

traits was computed; about 1,800 were independent at r < 0.7

(Figure S4).

We found no significant association of the analyzed traits with

self-reported tobacco use or alcohol consumption and so did not

include those behaviors as covariates. We identified many traits

associated with age and included age as a covariate in all ana-

lyses. Notably, an advantage of using a twin-based cohort is to

render age and other cohort effects minimally impactful. The

age range of our cohort was optimal for our goal of identifying im-

mune traits associated with genetic elements that show a risk for

autoimmune diseases. Because incidence for such diseases

often increases with age, the greatest power for such correla-

tions will be obtained using samples measurements most prox-

imal to the common onset of disease.

Heritability
Falconer’s traditional formula (twice the difference in intraclass

correlations) was used to roughly estimate the heritabilities of

all 78,000 immune traits; after ranking, traits were selected for

further pre-specified analyses (Figure S4). Variance components

analysis (additive genetics, common environment, and unique

environment, or ACE model) was used to more precisely esti-

mate heritabilities of chosen traits. The heritabilities ranged

widely from 0%—suggesting purely environmental or stochastic

influences—to 96% (e.g., CD32 expression on dendritic cells),

indicating a strong genetic effect. Figure S5 shows the range

of heritabilities for selected traits, and the components of the

model are tabulated in Table S2 with full trait descriptions.

GWAS of Immune Traits
Single-variant associationswereperformedon151 immune traits

selected for high heritability or biological interest, comprising

cell frequency (129 CSFs) and cell-surface protein expression

(22 SPELs). Many significant associations were found despite

the stringent Bonferroni multiple testing threshold of p < 3.3 3

10�10. We also performed a conditional analysis, including the

top SNP of each locus as a covariate, to identify potential

independent secondary signals. This analysis did not reveal any

significant evidence for additional independent signals.

Six SPELs were significant (Table 1), with the strongest be-

tween MFI:516 (CD39 SPEL on CD4 T cells) and the ENTPD1

(CD39 gene) SNP rs7096317 (p = 9.4 3 10�40). Many other var-

iants of ENTPD1 were also associated with this trait (Table S3).

Expression of five others (MFI:189, MFI:212, MFI:231, MFI:504,

and MFI:552, which include CD27 expression on B and T cell
t associations (p < 5 3 10�8). The red line indicates the significance

me-wide threshold after further adjustment for 151 independent tests.

3 10�8. Shown are separate plots for SPEL associations (B) and CSF

Cell 161, 387–403, April 9, 2015 ª2015 Elsevier Inc. 389



Table 1. Discovery and Replication Results for the Top Significant SNPs at Each Locus for Each Immune Trait

Locus:Genes Trait ID Trait Phenotype Marker Chr EA/NEA EAF Beta (SE) p Value Beta (SE) p Value Beta (SE) p Value

1: FCGR2A, FCGR2B, FCRLA MFI:189 CD27 on IgA+ B rs1801274 1 A/G 0.49 0.128 (0.02) 6.48E�11 0.07 (0.03) 3.70E�02 0.11 (0.02) 2.8E�11

1: FCGR2A, FCGR2B, FCRLA MFI:212 CD27 on IgG+ B rs1801274 1 A/G 0.49 0.136 (0.02) 5.38E�12 0.12 (0.03) 1.11E�04 0.13 (0.02) 2.9E�15

1: FCGR2A, FCGR2B, FCRLA MFI:231 CD161 on CD4 T rs1801274 1 A/G 0.49 0.131 (0.02) 2.64E�11 0.12 (0.03) 2.17E�04 0.13 (0.02) 2.7E�14

1: FCGR2A, FCGR2B, FCRLA MFI:504 CD27 on CD4 T rs1801274 1 A/G 0.49 0.145 (0.02) 5.42E�14 0.14 (0.03) 4.20E�05 0.14 (0.02) 1.1E�17

1: FCGR2A, FCGR2B, FCRLA MFI:552 CD27 on CD8 T rs1801274 1 A/G 0.49 0.186 (0.02) 1.26E�21 0.12 (0.03) 1.72E�04 0.17 (0.02) 4.2E�24

1: FCGR2A, FCGR2B, FCRLA P7:110 iMDC: %CD32+ rs10494359 1 C/G 0.12 0.343 (0.03) 2.52E�29 0.43 (0.05) 1.05E�15 0.36 (0.03) 5.9E�43

1: FCGR2A, FCGR2B, FCRLA P7:224 CD1c+ mDC: %CD32 rs4657090 1 A/G 0.27 �0.174 (0.02) 1.30E�14 �0.19 (0.04) 3.86E�06 �0.18 (0.02) 2.7E�19

2: NFIA P4:3551 NK: %CD314�CD158a+ rs12072379 1 G/C 0.16 �0.131 (0.02) 1.73E�10 �0.10 (0.05) 4.87E�02 �0.13 (0.02) 2.7E�11

3: NRXN1 P4:3551 NK: %CD314�CD158a+ rs17040907 2 T/C 0.07 �0.208 (0.03) 2.68E�10 �0.16 (0.08) 4.22E�02 �0.02 (0.03) 3.9E�11

4: PRKCI P4:3551 NK: %CD314�CD158a+ rs2650220 3 G/A 0.16 �0.15 (0.02) 3.18E�10 �0.10 (0.05) 4.55E�02 �0.14 (0.02) 6.0E�11

5: NT5E P2:4195 CD4 T: %CD39-CD73+ rs9444346 6 G/A 0.19 �0.2 (0.03) 1.18E�14 �0.12 (0.04) 4.98E�03 �0.18 (0.02) 8.8E�16

RP11-30P6 P2:4204 CD4 T: %CD73+ rs9444346 6 G/A 0.19 �0.195 (0.03) 5.85E�14 �0.12 (0.04) 2.82E�03 �0.18 (0.02) 1.8E�15

6: SLC18A1 P4:3551 NK: %CD314�CD158a+ rs1390942 8 T/C 0.15 �0.163 (0.02) 1.39E�15 �0.20 (0.05) 1.70E�04 �0.17 (0.02) 1.4E�18

7: SLC25A16 P4:3551 NK: %CD314�CD158a+ rs3017072 10 T/C 0.15 �0.153 (0.02) 2.75E�13 �0.15 (0.05) 2.08E�03 �0.15 (0.02) 2.2E�15

8: FAS, ACTA2 P1:6601 CD8 T: %TSCM rs7097572 10 C/T 0.48 �0.168 (0.02) 8.51E�16 �0.18 (0.03) 2.72E�06 �0.17 (0.02) 1.3E�20

9: ALDH18A1, ENTPD1, ENTPD1-AS1,

RP11-7D5, SORBS1, TCTN3

MFI:516 CD39 on CD4 T rs7096317 10 G/A 0.42 �0.255 (0.02) 9.40E�40 �0.30 (0.04) 9.92E�17 �0.27 (0.02) 1.6E�54

9: ALDH18A1, ENTPD1, ENTPD1-AS1,

RP11-7D5, SORBS1, TCTN3

P2:10491 CD8 T: %CD39+ rs4074424 10 G/C 0.42 �0.219 (0.02) 4.11E�27 �0.19 (0.04) 2.40E�07 �0.21 (0.02) 8.2E�33

9: ALDH18A1, ENTPD1, ENTPD1-AS1,

RP11-7D5, SORBS1, TCTN3

P2:3460 CD4 T:%CD39+CD38+

PD1�
rs4582902 10 C/T 0.47 �0.164 (0.02) 4.55E�16 �0.19 (0.03) 2.58E�08 �0.17 (0.02) 9.2E�23

9: ALDH18A1, ENTPD1, ENTPD1-AS1,

RP11-7D5, SORBS1, TCTN3

P2:4159 CD4 T:%CD39+CD73� rs6584027 10 G/A 0.47 �0.212 (0.02) 1.54E�25 �0.20 (0.04) 1.09E�08 �0.21 (0.02) 1.1E�32

9: ALDH18A1, ENTPD1, ENTPD1-AS1,

RP11-7D5, SORBS1, TCTN3

P2:4186 CD4 T:%CD39+ rs6584027 10 G/A 0.47 �0.215 (0.02) 2.20E�26 �0.21 (0.04) 5.27E�09 �0.21 (0.02) 7.8E�34

9: ALDH18A1, ENTPD1, ENTPD1-AS1,

RP11-7D5, SORBS1, TCTN3

P2:4213 CD4 T:%CD39+CD73+ rs10882676 10 A/C 0.47 �0.195 (0.02) 6.76E�22 �0.19 (0.04) 2.19E�07 �0.19 (0.02) 9.0E�28

10: KLRC1, KLRC2, KLRC4, KLRK1,

RP11-277P12

P4:3551 NK: %CD314�CD158a+ rs2734565 12 C/T 0.3 �0.144 (0.02) 1.34E�10 �0.18 (0.04) 1.67E�05 �0.15 (0.02) 1.4E�14

10: KLRC1, KLRC2, KLRC4, KLRK1,

RP11-277P12

P4:4832 NK: %CD314�CCR7� rs2734565 12 C/T 0.3 �0.233 (0.02) 1.27E�24 �0.33 (0.04) 3.95E�15 �0.26 (0.02) 2.7E�37

10: KLRC1, KLRC2, KLRC4, KLRK1,

RP11-277P12

P4:5538 NK: %CD314�CD335+ rs2734565 12 C/T 0.3 �0.275 (0.02) 3.40E�34 �0.38 (0.04) 2.27E�19 �0.30 (0.02) 6.4E�51

11: FTO P4:3551 NK: %CD314�CD158a+ rs1420318 16 A/G 0.1 �0.146 (0.02) 9.34E�11 �0.19 (0.06) 4.05E�02 �0.14 (0.02) 1.2E�11

For the Discovery stage, we used a significance threshold of p < 3.3 3 10�10. This threshold corresponds to the standard genome-wide threshold of 5 3 10�8 after further adjustment for 151

independent tests. Orrù et al. (2013) also identified Locus 1 (associated with a single trait, CD62L– dendritic cells, not measured in our panel), and Locus 9 (associated with a single trait: CD39+

CD4 T cell frequency, P2:4186 in our list). The trait ID is fully described in Table S2.
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subsets, and CD161 expression on CD4 T cells) were associated

with variants on chromosome 1q23 in a genetic region contain-

ing the important immune-regulating genes FCGR2A, FCGR2B,

and FCRLA (Table 1). These associations were independently

verified in the replication cohort, and the combined discovery

and replication set p values of the 6 SPELs ranged from 2.8 3

10�11 to 1.63 10�54 (Table 1 and Figure 1B). Table S3 illustrates

other examples of genetic control of cell-surface expression,

including the expression of CD11c, CD123, and CD274 on

myeloid subsets.

Overall, 241 SNP variants with a minor allele frequency above

5% were significantly associated with various SPELs (Table S3);

of these, 35 SNPs were pleiotropically associated with multiple

SPELs.

Genetic control of SPEL may simply be due to promoter/

enhancer element variants or more complex regulation of tran-

scription, translation, or protein localization. In contrast, genetic

control of CSF may reveal homeostatic mechanisms regulating

cell subset representation in the blood. Genome-wide significant

associations were identified with 13 different CSFs (Figure 1C

and Table 1). Nearly all were verified in the replication cohort

(Table 1), and some reached a p value of 10�43.

Suggestive associations, which did not meet the conservative

significance threshold of 3.3 3 10�10, were also identified for

numerous SPELs and CSFs (Tables S3 and S4). The associa-

tions that were independently replicated (replication p < 0.05),

as well as meta-analyzed variants reaching p < 5 3 10�8, are

reported in Table S6.

Genetic Control of TREG Cells
One of the most heritable traits identified from our staining

panels was the frequency of CD39+ cells within the CD4

compartment (Figure 2), as previously reported (Orrù et al.,

2013). CD39+CD4 T, as well as CD73+ CD4 T cells, have been

identified functionally as T regulatory (TREG) cells (Borsellino

et al., 2007), a key subset in the modulation of immune re-

sponses (Antonioli et al., 2013).

The heritability of CD39+CD4 T frequency was 89% (95% CI:

66%–93%) (Figure 2A). GWAS analysis revealed a single locus

on chromosome 10 that was highly associated with the trait (Fig-

ure 2B); this locusmaps to the CD39 gene itself. Quantification of

the expression of CD39 on a per-cell basis (i.e., SPEL) revealed

that the basis for this association was an ‘‘on/off’’ control of the

expression of the CD39 molecule on the cells, rather than a

homeostatic regulation of the circulating levels of these cells

(i.e., CSF). Specifically, individuals who are homozygous for

rs7096317A express the highest amount of this protein on the

cell surface; heterozygotes expressed half as much; and

rs7096317G homozygotes expressed virtually none (Figures

2C and 2D). Although the A/G heterozygotes have a significantly

decreasedCD39 SPEL, the cells express enough so as to remain

CD39+. Thus, in the analysis of the CD39 CSF by genotype, only

the G/G homozygotes have a reduced frequency of this popula-

tion (Figure 2E). This illustrates the power of the SPEL analysis to

de-convolute potential mechanisms of genetic control that are

missed by simple analysis of CSF.

Similarly, the frequency of CD4 T cells that are CD25+CD127–

CD45RO+ but do not express CD39 was also strongly associ-
ated with this same locus, showing the opposite association

(Figure 2F). In other words, genetic control is not over the fre-

quency of TREG (CD4+CD25+CD127–CD45RO+) but over the

quantitative expression of CD39 (the cell phenotype). Notably,

this genetic control also extends to lymphocytes that are not

TREG: a similar genotypic association (Figure S6) was found for

the relatively rare CD8+ and CD4–CD8– T cells expressing

CD39 (Figures S7A and S7B). Finally, CD73 is an ectonuclease

similar to CD39, and its expression has also been associated

with TREG cells (Antonioli et al., 2013). The expression of CD73

was also found to be genetically controlled (Figure S7C) and

associated with a single locus on chromosome 6 mapping to

the CD73 gene itself.

Thus, the main genetic control of CD39+ TREG appears to orig-

inate from a transcriptional or post-transcriptional regulation

leading to the presence or absence of this protein on the cell sur-

face of TREG cells; for those TREG defined on a basis independent

of CD39, we found no evidence of genetic control over their rep-

resentation in blood.

Genetic Influences on Leukocyte Differentiation
In virtually every leukocyte population, we found examples in

which the frequency of certain differentiation stages was herita-

ble (Figure 3). In some cases, despite a very high heritability, we

were unable to identify genetic variants that correlated with the

trait. For example, the frequency of a CD4 transitional memory

(TTM) phenotype (CD28+CD127–), which comprises 15% to

20% of CD4 T cells, was very strongly heritable (Figure 3A) but

did not correlate with any SNP genotypes. We found similar ex-

amples of strong heritability without genetic associations for

other T cell stages, including recent thymic emigrants (RTE)

and central memory (TCM). This was not unexpected—our study

was only powered to find large effect sizes of gene variants,

which is unusual for most traditional disease GWASs that need

thousands of subjects per association. This suggests that

possibly multiple genes of modest influence act on these pheno-

types. Despite the lack of defined genetic association, the obser-

vation of strong heritability indicates that these cell types play an

important and unique role in immunity, such that their numbers

are strongly regulated.

For a number of leukocyte lineages, we were able to identify

genetic associations with differentiation stages and illustrate

four examples. (1) Within B cells, the proportion that is immature

(CD10+) is associated with the genotype of the membrane

metallo-endopeptidase (MME) gene (Figure 3B). (2) The propor-

tion of Th22 CD4 T cells (CXCR3–CCR4+CCR6+CCR10+) is

strongly associatedwith a single locus on chromosome 16,map-

ping to the SPG7 gene, which codes for paraplegin, an important

protein in mitochondrial function (Figure 3C). (3) Within natural

killer (NK) cells, the proportion of cells that express CD335 but

not CD314 (Figure 3D) maps to the KLRC4 gene (Figure 3E).

This association is much more profound for NK cells that are in

an early differentiation stage (CD56+CD16–) and becomes less

strong as the cells mature (Figure 3F). This indicates that amech-

anism evinced in a differentiation stage-specific manner. (4) The

proportion of T cells that are ‘‘stem cell memory’’ cells (TSCM; the

earliest memory stage) is heritable (Figure 3G) and associated

with a genetic locus containing FAS (CD95) (Figure 3H). This
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Figure 2. Genetic Associations with Treg Phenotype Cells

(A) The correlation of the fraction of CD4 T cells that are CD39+ in dizygotic twins (top) and monozygotic twins (bottom). The linear correlation, r, is shown for each

comparison.

(B) Locus plot showing significant effect of individual SNPs on CD39 expression on CD4 T cells.

(C) Shown are the expression profiles of CD39 and CD25 for the subset of CD4 T cells that are CD45RO+CD127– for two pairs of dizygotic twins discordant for the

rs7096317 allele (in the CD39 gene locus). Within each graphic is shown the fraction of cells in the upper two quadrants and the surface protein expression level

(SPEL) of CD39 for the cells in the upper right quadrant, as well as the genotype of each individual.

(legend continued on next page)
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association was much stronger for CD4 than for CD8 T cells.

TSCM are precursor cells that have tremendous proliferative ca-

pacity and can regenerate all other memory T cell populations

(Gattinoni et al., 2011; Lugli et al., 2013). Interestingly, this

same locus also has a significant association with the fraction

of T cells that are CD8 (Figure 3I), demonstrating multiple (pleio-

tropic) effects of the FAS gene on T cell differentiation.

Pleiotropic Impact of the FcRG2 Locus
The locus with the widest range of impacts on leukocyte subset

phenotype and frequency was on chromosome 1, a region

including the FcRG2 gene. This locus is well known for its

association with a variety of autoimmune and inflammatory dis-

eases, including systemic lupus erythematosus (SLE), Kawasa-

ki’s disease, inflammatory bowel disease, Crohn’s disease,

type 1 diabetes, and HIV disease progression. Despite the genes

in this locus being primarily expressed on myeloid and B

lymphoid cells, many of these diseases are traditionally associ-

ated with T cell dysregulation.

The strongest association (e.g., SNP rs1801274) we identified

for this locus was with the expression of CD32 (FcRG2a and/or

FcRG2b: these are indistinguishable by themonoclonal antibody

used in our panel) on the surface of inflammatory myeloid den-

dritic cells (imDC; Figures 4A and 4B). The heritability of this trait

was extremely high at 96% (CI: 81%–97%).

The genetic control of the expression of CD32 on imDCs was

not seen in all cell populations. For example, B cells showed no

control (Figure 4C), whereas the expression of CD32 on imDCs is

associated with the number of rs1801274 ‘‘T’’ alleles (Figures 4C

and 4D).

The rs1801274 genotype has been strongly associated with

susceptibility to SLE, as well as another SNP in the same locus,

rs10800309. This latter SNP has also been associatedwith ulcer-

ative colitis. The frequency of CD32+ iMDCs is strongly affected

by the genotypes at both of these loci (Figures 4D and 4E); how-

ever, the distribution of expression for either locus is not uniform:

high, intermediate, and low expressors can be found within all

genotypes with differing frequencies. However, when the two

genotypes are taken together as a diplotype, a powerful and

replicated association becomes evident for CD32+ imDCs (Fig-

ures 4E and S8C). The impact of this diplotype on CD32 expres-

sion extends to other myeloid subsets (Figures 4F and S8A).

Statistical significance of the association is greatest for mono-

cytes, although the dynamic range in the expression levels

is not as wide as it is for imDCs. Other subsets, such as the pro-

fessional antigen presenting mDC, show a muted control of

expression; CD11c+CD123+ DC, like B cells, show no differential

regulation of CD32 expression at all.

Given the profound impact of these genotypes on particular

subsets, it raises the possibility that part of the increased sus-

ceptibility to associated autoimmune diseases may be a conse-

quence of the altered function of cells like imDCs by virtue of a

differential expression of the activating (CD32a) or repressing
(D) The CD39 SPEL of CD39 positive cells is graphed by the genotype o

which a cell was considered CD39+. In the C/C genotype, relatively few cells a

robust.

(E and F) The fraction of CD4 T cells of the designated phenotype is graphed by
(CD32b) proteins that we identify here. This is perhaps driven

by a SNP in the promoter/enhancer areas in high linkage disequi-

librium to the commonly studied coding SNP rs1801274.

We also found a remarkable range of effects of the FcRG2 lo-

cus on a variety of lymphocyte subsets (Figure 5). For example,

the proportion of early NK cells that are CD2+CD158a+CD158b+

is strongly associated with SNP rs365264 (Figure 5A), located

between CD32a and CD16 (Figure 4B). The rs1801274 coding

SNP in the locuswas associatedwith phenotypes on both B cells

and T cells, including the fraction of memory IgG+ (Figure 5B) or

IgA+ (Figure S8B) B cells that express CD27, as well as the CD27

expression level on a per cell basis. Interestingly, in this case, the

higher surface expression levels of CD27 (SPEL) are associated

with lower frequencies of cells that express CD27 (CSF). Thus, in

contrast to the example of CD39+ TREG (Figure 2), differential

regulation of CD27 protein expression does not account for dif-

ferential frequency of these cell subsets.

T Cells, FcRG2, and Autoimmune Disease
Similar to the case for IgG+ B cells, CD8 T cells also exhibited

higher CD27 expression in association with rs1801274T allele

(Figure 5C); this was also true for other T cell lineages (Figure S8).

Furthermore, a population of CD4 T cells that express CD161 is

also strongly associated with this same genotype (Figure 5D).

Importantly, CD161+ T cells are either Th17 or mucosal-associ-

ated innate T (MAIT) cells, important for maintenance of mucosal

integrity. Thus, we define an impact of specific gene variants on

important T cell phenotypes closely related to their activation po-

tential, which may underlie the associations with T-cell-based

autoimmune diseases.

Finally, Starbeck-Miller et al. (2014) recently demonstrated

that CD8 T cells can express CD32b and that this expression

was functionally important in modulating cytolytic T cell re-

sponses. Here, we demonstrate that expression of CD32 on

CD8 T cells is low and variable between individuals (Figure 5E).

Notably, this expression shows a very strong association with

the rs1801274:rs10800309 diplotype of the FCRG2 gene locus

(Figure 5F). This suggests that the regulation of surface expres-

sion of this negative regulatory molecule on CD8 T cells (Star-

beck-Miller et al., 2014) has a common expression mechanism

to that in myeloid populations. Gene variants increasing suscep-

tibility to SLE also associate with lower levels of this negative

regulatory protein on CD8 T cells and imDC. Together, these

data provide a possible direct link between the SNPs highly

associated with autoimmune diseases and T cell phenotypes

that might account for the pathogenesis.

Overlap with Disease Associations
The Catalog of Published Genome-wide Association Studies

(http://www.genome.gov/gwastudies/) and ImmunoBase (http://

www.immunobase.org/) were used to evaluate the overlap be-

tween genetic variants associated with CSFs and SPELs in our

study and those reported to be suggestively or statistically
f rs7096317; the dotted line indicates the threshold of positivity above

re above this threshold and the median fluorescence intensity values are not

the rs7096317 genotype. Bars indicate interquartile range.
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Figure 3. Genetic Associations with Lymphocyte Differentiation

(A) The proportion of CD4 T cells that are ‘‘transitional memory’’ (CD28+CD127–) is shown for DZ and MZ twins.

(B) The proportion of B cells that are immature is shown for twins (left) and is strongly associated with the genotype of rs10513469 (MME gene) (right).

(C) The proportion of CD4 T cells that are Th22 (CXCR3–CCR4+CCR6+CCR10+) is associated with the genotype of rs2019604 (SPG7 gene).

(D) A frequency of four phenotypes within NK cells (designated as ‘‘A’’.‘‘D’’ based on the expression of CD314 (KLRC4) and CD335 is shown for ‘‘early’’

(CD56+CD16+) differentiated NK cells.

(E) The proportion of early NK cells that are CD314–CD335+ (population ‘‘A’’) is shown for DZ and MZ twins (left). (Right) The genotypes of rs1841957 (near the

KLRC4/CD314 locus) strongly associate with the frequency of CD314–CD335+ cells among early NK.

(F) The associations of rs1841957 with all four phenotypes within differentiation stages of NK cells are shown by p value.

(legend continued on next page)
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significant in candidate SNP, candidate gene, or genome-wide

association studies of complex and infectious diseases.

SNPs that were highly correlated variants (r2>0.8) with our sig-

nificant immune traits were also interrogated for overlap with re-

ported disease associations using the appropriate thresholds for

the number of tests. A number of gene variants significantly and

suggestively (p < 10�3) correlated with CSFs and SPELs have

been reported in associations of complex and infectious dis-

eases, as shown in Table 2. The different gene variants of

FCGR2A, associated with a range of myeloid and T cell pheno-

types in our data, were reported to be associated with increased

risk of a number of diseases, including inflammatory bowel dis-

ease, ulcerative colitis, SLE, Kawasaki disease, ankylosing-

spondylitis, and HIV progression (Table 2). An additional variant

of FCGR2A, rs10494359 (associated with P7:100 [CD64–CD274–

imDCs]), is closely correlated (in linkage disequilibrium) with

rs10494360 (r2 = 0.941) and has been associated with rheuma-

toid arthritis. Juvenile idiopathic arthritis and chronic lympho-

cytic leukemia susceptibility loci in the ACTA2/FAS region of

chromosome 10q23.31 were also associated with the frequency

of P1:6601 (CD4 TSCM) (p = 4.1 3 10�12; Table 2). The Behçet’s

disease susceptibility variant in the killer cell lectin-like receptors

gene region corresponded with the frequencies of P4:3551,

P4:4832, and P4:5538 (all three are CD314– subsets of NK cells).

The correlations of variants association with tuberculosis, ma-

laria, leprosy, HIV, and hepatitis B and C our immune traits are

presented in Table 2.

DISCUSSION

Understanding the fundamental principles of how the immune

system protects the host from infection yet also contributes to

autoimmunity and other disease pathogenesis is essential for

the development of novel diagnostics and medicines. There re-

mains a major gap in our understanding of genetic determinants

of a normal human immune system and its main coordinates

such as the frequency of immune cells and expression of rele-

vant proteins. Using 669 twins and the richest immunophenotyp-

ing performed to date, we investigated the genetic architecture

of immune traits. We describe multiple independent genetic var-

iants at several genetic loci explaining a substantial proportion

(up to 96%) of the genetic variation. We identify both pleiotropic

genetic loci that control multiple immune traits and single im-

mune traits under genetic influence by multiple loci. For certain

canonical immune traits, genetic control is exerted at the level

of immune cell-surface protein expression (i.e., a consequence

of promoter/enhancer or signaling mechanisms) rather than at

the level of cell subset frequency (i.e., homeostasis or differenti-

ation mechanisms). We further describe multiple genetic associ-

ations with common canonical immune traits related to leuko-

cyte lineage and differentiation of major immune cell subsets

such as B cells, T cells, and natural killer cells. Finally, we identify

genetic elements associated with both immune traits and auto-
(G) The proportion of CD4 T cells that are ‘‘stem cell memory’’ (TSCM: CD45RA
+C

(H and I) The genotypes of rs7069750 (FAS gene) are associated with the proport

that are CD8.

Bars indicate interquartile ranges.
immune and infectious diseases. Providing the heritabilities of

thousands of cell subtypes plus a basis to uncover the genetic

architecture of the numerous gene-immune associations estab-

lishes this data set as an essential bioresource for researchers.

The remarkably strong associations we find for genetic traits

linked to disease illustrate the power of our approach by using

twins and optimized high-quality immune phenotyping.

Some limitations of our study should be noted: the cohort used

is all female, it is (for GWAS) a relatively limited sample size, and it

is relatively homogeneous in terms of environmental exposure.

The low numbers of genetic associations on chromosome 6

(the major histocompatibility region) is possibly explained by

the considerable complexity and polymorphism in this gene re-

gion, which would require larger sample sizes to obtain statisti-

cally significant genetic associations. With regard to immunolog-

ical traits, it should be noted that our discovery cohort ranges in

age from 41 to 77. It is possible that analysis of a younger cohort,

for which less environmental pressure on the immune system

has occurred, would reveal stronger associations; on the other

hand, it is likely that the greatest power to detect immune corre-

lates related to disease will come from measurements at a time

most proximal to the typical onset. Nevertheless, our success in

identifying a large number of genetic variants with genome-wide

significance validates our approach of focusing on well-defined

and curated immune phenotypes. It should be noted that

the 297 SNPs we report (Table S5) are those that attained

genome-wide significance (with a conservative correction for

multiple comparisons) in both the discovery and replication co-

horts. Many more associations are evident in the data set (e.g.,

Tables S2 andS3), which can serve to formulate new testable hy-

potheses and genetic studies.

An example of the power of the resource was in distinguishing

two important mechanisms that lead to differential representa-

tion of immune cell phenotypes (e.g., CD39+ CD4 T cells). The

first is homeostatic—i.e., mechanisms that control the recircula-

tion, proliferation, and elimination of a certain cell type in the

blood—a cellular mechanism expressed at thewhole-body level.

Such mechanisms, although unidentified, are known to exist for

regulating major subset numbers (such as CD4 T cell numbers).

A second, completely independent mechanism is the molecular

regulation of the protein expression at the cell level itself (e.g.,

promoter/enhancer variants). Thus, even in the presence of

intact homeostatic mechanisms regulating that cell type, a

reduction in the number of cells expressing a protein (perhaps

part of the defining phenotype) may be due to a specific pro-

moter variant that simply abrogates the expression of the

gene. Here, we show examples of both mechanisms.

An example of a major immune trait under genetic control is

the phenotype, but not frequency, of regulatory T (TREG) cells.

TREG cells are essential for maintenance of immune homeosta-

sis, and their dysregulation might lead to autoimmunity (Sakagu-

chi et al., 2010). A pleiotropic locus containing the ectonucleo-

side triphosphate diphosphohydrolase 1 (ENTPD1 and CD39)
D95+CD27+CD28+CD127+CD57–) is shown for DZ and MZ twins.

ion of CD4 and CD8 T cells that are TSCM, as well as the proportion of all T cells
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Figure 4. Genetic Associations of the FcR Locus with Myeloid Immunophenotypes

(A) The correlation of the fraction of imDCs that are CD32+ for dizygotic twins (top) and monozygotic twins (bottom). The linear correlation, r, is shown for each

comparison.

(legend continued on next page)
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gene controls several phenotypic features of CD39+ TREG.

Although we confirm an apparent association of this gene locus

with the frequency of circulating CD39+ TREG (Orrù et al., 2013),

we show here that this is a consequence solely of altered pheno-

type. Quantitative analysis of CD39 protein expression on the

cell surface demonstrates that the genetics of control of CD39+

TREG is exerted at the level of surface protein expression, rather

than cell frequency (homeostasis). This establishes a paradigm

for future studies of immune traits and points to the necessity

of including both cell frequency and cell protein expression ana-

lyses in immunogenetic studies of the human immune system.

We also describe the association of a genetic locus containing

the ecto-50-nucleotidase (NT5E and CD73) gene with a popula-

tion of CD73+ TREG. From a functional perspective, it is of interest

that both CD73 and CD39 are ectonucleotidases involved in the

generation of immunosuppressive adenosine that alters T cell

and NK cell activities (Deaglio et al., 2007). Thus, it appears

that the CD39 and CD73 adenosine immunosuppressive

pathway has been under evolutionary selection and might there-

fore be a critical determinant of functional TREG activity (Bastid

et al., 2013) and establishment of tissue homeostasis. Impor-

tantly, we conclude that there is no genetic control of the fre-

quency of TREG (i.e., CD127–CD25+ memory CD4 cells), but

rather, control is evinced at the level of their specific phenotype

and presumably function. Furthermore, the lack of a known dis-

ease association with this locus calls into question the impor-

tance of CD39 expression for TREG function.

We discovered several genetic associations with immune

traits relevant to lymphocyte lineage and differentiation. A ge-

netic locus containing the cell-surface death receptor FAS

(CD95) was associated with the frequency of circulating T stem

cell memory cells (TSCM). TSCM are a recently described infre-

quent and functionally important lymphocyte subset (Gattinoni

et al., 2011); these cells have a largely naive T cell phenotype

but are able to self-renew while displaying functional attributes

of memory cells. Genetic control at the level of CD95 suggests

a potential role of CD95 in the control of T stem cell homeostasis

for not only differentiation stages such as TSCM but total CD8 as

well (Figure 3). It further provides a possible link between human

autoimmune syndromes based on genetic CD95 deficiency

(Strasser et al., 2009) and TSCM.

A genetic locus within a cluster of genes referred to as the

‘‘NK complex’’ containing NKG2D (CD314 and KLRK1) was

associated with the frequency of a distinct population of

CD314–CD335+ ‘‘early’’ (CD56+CD16–) NK cells. The NKG2D

gene encodes for a C-type lectin protein preferentially expressed

in NK cells. It binds to a diverse family of stress-induced ligands
(B) Organization of the FcR locus of chromosome 1 showing the position of immu

rs1801274 and rs10800309 are the two that are most closely associated to susce

within the samples analyzed in our cohort.

(C) Sample expression profiles of CD32 on imDCs (top) and B cells (bottom). Show

SPEL (in orange). Two pairs of dizygotic twins discordant for the genotype at rs1

(D) The distribution of expression of CD32+ imDCs is shown by genotype at rs18

(E) The expression of CD32 on the imDCs is not significantly associated with the g

are clearly different by genotype. The combination of the genotype at rs10800309

imDC.

(F) The expression profile of CD32 on seven different myeloid populations is sho

interquartile range.
that include MHC class I chain-related A and B proteins (MICA

and MICB), essential for the activation of T cells and NK cells

(Raulet et al., 2013). These data establish an unexpected link be-

tween the genetic control of the frequency of a specific subset of

NK cells and a gene locus containingmajor genes with functional

relevance to NK cell activity and their activation by stressed

normal tissue cells or tumor cells.

One locus in chromosome1q23containingFCGR2A,FCGR2B,

and FCRLA was associated with multiple immune traits. FcGR

genes encode immunoglobulin Fc surface receptors found on

macrophages, dendritic cells, and neutrophils, as well as B and

NK cells, and are involved in the regulation of B cell antibody pro-

duction and phagocytosis of immune complexes. Themain asso-

ciated immune traitswere the frequencies of CD32+ inflammatory

dendritic cells and monocytes, as well as several T cell pheno-

types. Genetic variation in the FcGR gene locus is associated

withan increase in susceptibility to several autoimmuneand infec-

tious disease, including SLE, ankylosing spondylitis, HIV progres-

sion, and several other syndromes. Given the profound impact of

thisgene locusonparticular immunecell subsets, altered function

ofCD32+dendritic cells couldbekey to increasedsusceptibility to

these autoimmune and infectious diseases.

Indeed, our demonstration of an association between the

FCGR2A SNP and T cell phenotypes and/or inflammatory

myeloid cells (e.g., imDCs) provides a potential link between

this locus and autoimmune diseases with T cell etiology. This

coding SNP results in variants of the Fc receptor that have

different avidities for immunoglobulin and C-reactive protein;

consequently, much current research is aimed at understanding

the possible functional role of these alleles in autoimmunity.

However, our data suggest a different possibility with a more

proximal mechanistic link: that association is with a promoter/

enhancer SNP (in strong linkage disequilibrium with the coding

FCGR2A SNP) that modulates expression of the negative regu-

latory CD32b molecule on imDC, monocytes, and/or T cells.

In addition to the wide range of diseases associated with the

FcRG locus, further examples include a SNP within a genetic

locus associated with Behçet’s disease (Kirino et al., 2013) that

is in tight linkage disequilibrium with a SNP controlling the fre-

quency of CD314–CD335+ early NK cells. We also report that a

genetic locus containing FAS and associated with Juvenile idio-

pathic arthritis (Hinks et al., 2013) is also associated with func-

tionally important CD8+ T stem memory cells.

These findings illustrate a key value of our database and

approach: the identification of candidate immune traits associ-

atedwith genetic loci of relevance to autoimmunity and infection.

In summary, using one of the most comprehensive immune
nologically relevant genes. The positions of three SNPs are highlighted in color;

ptibility to SLE. SNPs shown in green were in complete linkage disequilibrium

n are the fraction of cells that are CD32+ (in pink) and, for the B cells, the CD32

801274 are shown.

01274.

enotype at rs10800309 by standard ANOVA (p = ns); however, the distributions

and rs1801274 provides a dramatic distinction for the expression of CD32 on

wn, broken down by the combined genotype of the two SNPs. Bars indicate
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phenotyping efforts to date, we identified numerous genetic loci

controlling key parameters of a normal human immune system.

This comprehensive human immune phenotyping bioresource

will allow the identification of critical immune phenotypes

associated with common autoimmune and infectious diseases,

ultimately leading to accelerated discovery of mechanisms of

disease and response to therapy.

EXPERIMENTAL PROCEDURES

Samples

This studywas approved by theNIAID (NIH) IRB and London-Westminster NHS

Research Ethics Committee; all participants provided informed consent. The

discovery stage comprised 497 female participants from the UK Adult Twin

Register, TwinsUK, with full genotyping data on 460 subjects. The TwinsUK

cohort is described in detail in (Moayyeri et al., 2012). Briefly, TwinsUK is a large

cohort of twins historically developed to study the heritability and genetics of

diseases with a higher prevalence among women. The study population is

not enriched for any particular disease or trait and is representative of theBritish

general population of Caucasian ethnicity. Selected twins were all female with

an age range of 41–77 (mean 61.4), and by self-report, 100% Caucasian with

most being UK ancestry. From the subsequent genotype data, we excluded

a few individuals showing evidence of non-European ancestry as assessed

by principal component analysis comparison with HapMap3.

The replication stage included a further unrelated 172 TwinsUK participants

with whole-genome genotyping data on 169. The samples for the discovery

samples were selected to match the characteristics (age and gender) of the

discovery data set. For this reason, the replication cohort included only Cauca-

sian women with an age range of 32–83 (mean 58.2). All subjects were nomi-

nally healthy at the time of sample collection.

A total of 746 PBMC vials were analyzed: PBMC from the 669 twin speci-

mens (plus 4 replicates) and 30 healthy controls from the US (two vials of

PBMC from blood drawn six months apart were analyzed for 29 subjects, a

replicate vial of PBMC from one of the two blood draws for 14 (of the 29),

and one vial only for 1 subject). The samples in each stage were ordered

such that twin or longitudinal control samples were analyzed in the same

experimental run (each comprising 15–30 vials), whereas replicate control

samples were analyzed in different experimental runs. Staining and data ana-

lyses were otherwise performed blinded to identity.

Immunophenotyping

See Extended Experimental Procedures for cell processing details.

Flow Cytometry and Data Analysis

Cells were analyzed in 96-well plate format on an 18-color LSR (BD Biosci-

ences) using an HTS unit. Each run on the flow cytometer was accompanied

by a set of compensation controls of antibody-stained IgG kappa beads (BD

Biosciences). Data were evaluated on FlowJo software v9.7 (FlowJo, LLC).

Post-processing of data and visualizations were done with JMP v10 (SAS)

and SPICE v5.3 (NIAID; Roederer et al., 2011).

Gating

A graphic depicting the fluorescence distribution of all samples in the discov-

ery cohort is shown in Figure S1. Figures S2 and S3 illustrate the gating hier-

archy for a single sample. The Extended Experimental Procedures describe

the generation of the �80,000 gates analyzed.
Figure 5. Genetic Associations of the FcR Locus with Lymphoid Immu

(A) The genotype of rs365264 (close to CD16a on chromosome 1) is strongly ass

(B) The genotype of rs1801274 is associated with the frequency of memory IgG+

that, for this case, a lower frequency of the subset (left) is associated with highe

(C) Similarly, the genotype of rs1801274 is strongly associated with the cell-surfa

(D) The genotype of rs1801274 is strongly associated with the cell-surface

CD161+PD1+CCR4+.

(E) CD8 T cells express low levels of CD32 depending on genotype as shown by

(F) The fraction of CD8 T cells that express CD32 is strongly associated with the

Bars indicate interquartile ranges.
For the discovery cohort, there were 20 experimental runs for 543 samples

(501 twin specimens from 497 subjects and 42 US control specimens from 14

subjects). Within each run, uniform scatter gating was used. Each sample was

gated on time (to eliminate spurious events from beginning or end of sample

run); this gate could vary by sample. With two major exceptions, all samples

received the same fluorescence gating, After the third run, we chose to replace

the CD4 reagent in panels 1, 2, and 5 due to poor performance; this necessi-

tated a different CD4 gating for those samples. Similarly, the reagents in the

‘‘dump’’ channel of panel 7 were modified after 6 runs.

For the replication cohort, there were 8 experimental runs for 203 samples

(172 twin specimens from 172 subjects and 31 US control specimens from

16 subjects). All analysis procedures were identical to the discovery cohort.

Minor modifications to the panels were necessitated by unavailability of the

same lots of reagents, but these did not impact enumeration of subsets. Spec-

imen processing for the replication cohort was initiated after final analysis of

the discovery cohort.

Genotyping

Genotyping was conducted with a combination of Illumina arrays

(HumanHap300 and HumanHap610Q) (Richards et al., 2008; Soranzo

et al., 2009). The Illuminus calling algorithm (Teo et al., 2007) was used to

assign genotypes. No calls were assigned if an individual’s most likely geno-

type was called with less than a posterior probability threshold of 0.95. Vali-

dation of pooling was achieved via a visual inspection of 100 random, shared

SNPs for overt batch effects. Finally, intensity cluster plots of significant

SNPs were visually inspected for over-dispersion, biased no calling, and/or

erroneous genotype assignment. SNPs exhibiting any of these characteris-

tics were discarded. Stringent QC measures were performed on the geno-

types prior to data analysis. The sample exclusion criteria were: (1) sample

call rate < 98%, (2) heterozygosity across all SNPs R 2 SD from the sample

mean; (3) evidence of non-European ancestry as assessed by principle

component analysis comparison with HapMap3 populations; (4) observed

pairwise identity by descent (IBD) probabilities suggestive of sample identity

errors; (5) misclassified monozygotic and dizygotic twins were corrected

based on IBD probabilities. The exclusion criteria for SNPs were: (1)

Hardy-Weinberg equilibrium (HWE) p value < 10�6, assessed in a set of un-

related samples; (2) minor allele frequency (MAF) < 1%, assessed in a set of

unrelated samples; (3) SNP call rate < 97% (SNPs with MAF R 5%) or < 99%

(for 1% % MAF < 5%). Alleles of both data sets from the genotyping

arrays were aligned to HapMap2 or HapMap3 forward strand alleles.

Imputation was performed using the IMPUTE v2 software package (Howie

et al., 2009). After imputation of the 2,986,407 SNPs available for analysis,

1,419,558 SNPs passed further QC (call rate R 95%, MAF R 0.05,

HWE R 10�4) and were used for analysis.

Statistical Analyses

Selection of Subsets for Heritability and GWAS Analysis

Full details are in the Extended Experimental Procedures. In brief, we elimi-

nated CSFs with frequencies below 0.1% or above 99% (Figure S4A). From

these, we selected�200 for in-depth analysis based on heritability or descrip-

tion in the literature (‘‘canonical’’).

Genome-wide Association Analysis

Because of relatedness in the TwinsUK cohort, we utilized the GenABEL soft-

ware package (Aulchenko et al., 2007), which is designed for GWAS analysis of

family-based data by incorporating pairwise kinship matrix calculated using
nophenotypes

ociated CD56+CD16– (‘‘early’’) NK cells that are CD2+CD158a+CD158b+.

B cells that are CD27+CD38–CD20– as well as the fraction of CD27+ cells. Note

r protein expression (right).

ce expression of CD27 on CD8 T cells.

expression of CD161 on CD4 T cells, as well as CD4 T cells that are

flow cytometry.

rs10800309:rs1801274 diplotype (see Figure 4).
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Table 2. Overlapping Associations with Complex Diseases

Immune Trait Association Disease Association

Gene (Chr) Marker Trait ID Trait Phenotype Beta p Value Reported SNP Disease Best P Reference

FCGR2A (1) rs1801274 P7:110 iMDC: %CD32+ 0.2 1.6E�23 rs1801274 (A) IBD 2.1E�38 (Jostins et al., 2012)

MFI:189 CD27 on IgA+ B 0.13 6.5E�11 Kawasaki disease 7.4E�11 (Khor et al., 2011)

MFI:212 CD27 on IgG+ B 0.14 5.4E�12 ulcerative colitis 2.2E�20 (Anderson et al., 2011)

MFI:231 CD161 on CD4 T 0.13 2.6E�11 ankylosing-spondylitis 1.4E�09 (Cortes et al., 2013)

MFI:504 CD27 on CD4 T 0.15 5.4E�14 SLE 6.8E�07 (Harley et al., 2008)

MFI:552 CD27 on CD8 T 0.19 1.3E�21 HIV progression 1.0E�04* (Forthal et al., 2007)

P7:224 CD1c+ mDC: %CD32 0.12 4.4E�09 lymphoma 0.006* (Wang et al., 2006)

malaria 0.013* (Sinha et al., 2008)

FCGR2A (1) rs10494359 P7:110 iMDC: %CD32+ 0.34 2.5E�29 rs10494360 (r2 = 0. 94) rheumatoid arthritis 9.3E�05* (Eyre et al., 2012)

ZNF804A (2) rs6755404 P2:3367 Effector CD4: CD127�PD1� 0.09 3.8E�04 rs6755404 (A) malaria 1.2E�06 (Band et al., 2013)

MIR216B (2) rs6751715 P3:5372 CD8 T: %CXCR3�R4+R6+R10� �0.09 1.5E�05 rs6751715 HIV 1.1E�06 (Fellay et al., 2009)

P3:5661 CD8 T: %CD161+ �0.07 5.1E�04

P6:197 IgA+ B: %CD27�CD38� 0.07 7.0E�04

P3:5658 CD8 T: %CD161+PD1� �0.07 7.8E�04

LOC100505836 (3) rs2593321 Lin:19 %NKT 0.08 5.5E�04 rs2593321 HIV-1 control 7.7E�06 (Pelak et al., 2010)

MICA (6) rs4418214 P6:112 IgE+B: %CD20�CD27�CD38+ 0.12 7.6E�04 rs4418214 (C) HIV-1 control 1.4E�34 (Pereyra et al., 2010)

BTNL2 (6) rs3817963 P2:12609 CD8 T: %CD25+CD38+45RO+ �0.08 3.5E�04 rs3817963 (A) hepatitis C liver cirrhosis 1.3E�08 (Urabe et al., 2013)

P2:10486 CD8 T: %CD25+CD38+ �0.08 4.1E�04 (Urabe et al., 2013)

HLA-DQB1 (6) rs2856718 P2:12609 CD8 T: %CD25+CD38+45RO+ �0.08 5.3E�04 rs2856718 (A) hepatitis B 4.0E�37 (Mbarek et al., 2011)

P2:10486 CD8 T: %CD25+CD38+ �0.07 7.8E�04

EHMT2 (6) rs652888 MFI:578 CD3 on CD8 T �0.08 5.7E�04 rs652888 chronic hepatitis B 7.1E�13 (Kim et al., 2013)

MTCO3P1 - HLA-

DQA2 (62)

rs4273729 P2:10486 CD8 T: %CD25+CD38+ 0.08 1.4E�04 rs4273729 chronic hepatitis C 1.7E�16 (Duggal et al., 2013)

P2:12609 CD8 T: %CD25+CD38+45RO+ 0.08 2.3E�04

ADGB (6) rs2275606 P1:12906 CD8 T: %TSCM 0.13 6.3E�04 rs2275606 (A) leprosy 3.9E�14 (Zhang et al., 2011)

ABO (9) rs8176722 MFI:1 CD123 on mDC �0.14 1.4E�04 rs8176722 (A) malaria 8.9E�10 (Band et al., 2013)

ACTA2, FAS (10) rs7069750 P1:6601 CD8 T: %TSCM �0.14 4.1E�12 rs7069750 (C) juvenile idiopathic arthritis 2.9E�08 (Hinks et al., 2013)

rs2147420 (r2 = 1) CLL 3.1E�13 (Berndt et al., 2013)

KLRC4-KLRK1 (12) rs1049172 P4:3551 NK: %CD314�CD158a+ �0.13 8.8E�09 rs2617170 (r2 = 0.922) Behçet’s disease 1.3E�09 (Kirino et al., 2013)

P4:4832 NK: %CD314�CCR7� �0.23 7.6E�22

P4:5538 NK: %CD314�CD335+ �0.27 1.4E�30

MMP16 (8) rs160441 P4:3551 NK: %CD314�CD158a+ �0.08 2.3E�05 rs160441 tuberculosis 8.4E�06 (Thye et al., 2010)

ARHGAP20 (11) rs1469170 P4:3551 NK: %CD314�CD158a+ �0.08 5.6E�04 rs1469170 (A) malaria 8.0E�08 (Band et al., 2013)

Association results from the discovery cohort immune trait analyses are reported in the first six columns. The trait ID is fully described in Table S2. The disease-associated variant, pathology, the

disease-associated SNP’s best-reported p value are indicated in the 7th–9th columns, respectively. The risk alleles presented correlate with increased disease susceptibility and the r2 between

disease SNP and immune trait, if different, are reported in parentheses after the reported SNP. *Disease association is significant with candidate SNP method/gene approach.
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genotyping data in the polygenic model to correct relatedness and hidden

population stratification. The score test implemented in the software was

used to test the association between a given SNP and the trait. Additional qual-

ity control was conducted on the association results: minor allele frequency

(MAF) > 0.1, Hardy-Weinberg equilibrium < 10�8, SNP call rate > 90%. For

our results, we used a genome-wide significance threshold of p < 3.3 3

10�10. This threshold represents a standard genome-wide significance

threshold (p < 53 10�8) further adjusted for 151 independent tests (the number

of traits analyzed for GWAS in the discovery cohort). Because there is a high

intercorrelation among some of the 151 analyzed traits, this is a very conser-

vative approach and ensures the robustness of our findings. Genome-wide

validations were also performed on normalized residuals (after corrections

for age), with GenABEL taking into account family structure in the model.

The validation p value threshold was set to p < 0.05.

Results from the genome-wide analyses of all the analyzed traits for both

the discovery and the replication cohorts were meta-analyzed. Fixed effects

inverse-variance weighted meta-analyses were conducted using METAL

(Willer et al., 2010), with significance evaluated at p < 5 3 10�8.

Finally, correlation against the FCRG ‘‘diplotype’’ shown in Figures 4 and S8

was done using JMP; ANOVA p values without correction for family structure

are reported.

Identifying Traits Correlated with SNPs

Once we had identified significant associations between the selected 151

traits and all SNPs based on standard analyses, we looked for pleiotropic

effects of those SNPs. Approximately 1,200 SNPs from about 18 unlinked

loci were correlated against all traits.

To correct for multiple comparisons, we evaluated the covariance among all

traits. As shown in Figure S4B, there are less than 1,800 traits that show a

covariance less than 0.7. Thus, Bonferroni correction sets a significance

threshold of p < 2.83 10�5. In our analyses, which covered about 20 unlinked

loci, we used a more conservative threshold, requiring a Wilcoxon rank asso-

ciation of trait values with SNP genotype to be significant if p < 10�7.

GWAS Catalog Look-Ups

In order to ascertain whether the variants from the associations of the immune

cell subsets analyses overlapped with significant disease associations,

the GWAS catalog (http://www.genome.gov/gwastudies/), Immunobase

(http://immunobase.org/page/Welcome/display), and SNPedia (http://www.

snpedia.com) repositories were used. Gene regions and variants reaching

genome-wide significance were searched on these repositories and overlap-

ping associations or correlations with proxy SNPs or those in strong LD are

reported in Table 2.

BioData Repository

Raw and summary data are available for downloading and analysis. Genotype

data are available upon request to the authors. See Extended Experimental

Procedures for detailed downloading instructions.
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Immunophenotyping
PBMC Isolation, Cryopreservation, and Staining

PBMCs from the twin cohort were purified by blood centrifugation on a density gradient (Lymphoprep, PAA, Pasching, Austria). Cells

were viably frozen in RPMI 1640 (Life Technologies, Carlsbad, CA) supplementedwith 11.25%HSA (Gemini Bio-Products, West Sac-

ramento, CA)/10%DMSO (Sigma St. Louis, MO) and stored in liquid nitrogen until further use. Healthy control samples were drawn at

the NIH and also viably frozen using a similar protocol. Twin cohort samples were shipped in liquid nitrogen to the NIH laboratories

and processed in bulk.

Cell Processing

Cryopreserved vials of PBMCs were thawed in a 37C water bath for 1 min and resuspended in 10 mls of RPMI supplemented with

10% heat-inactivated newborn calf serum (Life Technologies), and 0.5 U/ml Benzonase (EMD Biosciences), pre-warmed to room

temperature. Tubes were centrifuged for 10 min at 700 x g in a tabletop Sorval centrifuge. After removal of the supernatant, cells

were resuspended in 10 ml of the RPMI supplemented as above, warmed to 37C and centrifuged for 3 min at 860 x g. PBMCs

were resuspended in 1 ml PBS (Life Technologies) and 10 ml were removed to a 96 well plate (Corning) containing a 10 ml solution

of ethidium bromide/acridine orange (EB/AO) (Life Technologies) for counting on a Nexcelom Cellometer. Cells were washed at

860 x g for 3 min and resuspended in 730 ml of PBS. 100 ml was transferred to each of 5 wells of a 96 well plate for room temperature

staining and each of 2 wells of another 96 well plate for 37C staining (see Table S1 for temperatures by Panel). The plates were centri-

fuged at 860 x g for 3 min and the PBS removed by aspiration.

Reagents

See Table S1 for a list of reagents used in each of the seven panels. Immunofluorescence reagents were purchased from Becton

Dickinson, BioLegend, eBiosciences, Life Technologies, Beckman Coulter, Fisher Scientific, or Miltenyi Biotec; or conjugated in

house. All reagents were titrated at the staining temperature used for any given panel. A full description of the optimization of

some panels is published: Panel P1 (Mahnke et al., 2012), P2 (Mahnke et al., 2013a), P3 (Mahnke et al., 2013b) and P5 (Mahnke

et al., 2013c).

Staining

Eachwell was resuspended in 50 ml containing an AquaBlue (Life Technologies) solution of a 1:39 stock (in water) diluted 1: 20 in PBS.

For stainingofmonocytes anddendritic cells theAquaBluewassupplementedwithFcblocking reagent at 2.5ml (Miltenyi). Plateswere

incubated for 15 min in the dark then centrifuged at 860 x g for 3 min. Supernatant was removed by aspiration. Master mixes were

prepared for each panel in staining buffer (RPMI without phenol red (Life Technologies) supplemented with 4% heat-inactivated fetal

calf serum) and centrifuged at 12,000 x g for 10 min (Eppendorf centrifuge 5415D) in order to remove aggregates. Cell pellets were

resuspended in 50 ml of the panel antibodies and incubated for 40 min at room temperature or 37C. All wells were washed, as above,

3 timeswith staining buffer and resuspended in 250 ml of PBS containing 1%paraformaldehyde (Tousimis ResearchCorporation Inc.).

Gating

A graphic depicting the fluorescence distribution of all samples in the discovery cohort is shown in Figure S1. Figures S2 and S3 illus-

trate the gating hierarchy for a single sample. As illustrated in these graphics (and also Figure S1), we generated a large number of

subsets for analysis that encompassed all combinations of certain markers. For each panel, we first identified major ‘‘lineages’’ or

parent subsets. For example, in Panels 1 and 2, these include CD4 T cells, CD8 T cells, double negative (CD4–CD8–) T cells, and dou-

ble positive (CD4+CD8+) T cells. In Panel 3, the parent subsets included naive or memory CD4 or CD8 T cells. Within each parent

subset, we then created Boolean combination gates for the set of markers that exhibited heterogeneous expression patterns within

the parent subsets. In addition, we computed themedian fluorescence intensity (MFI) for all markers of the parent subsets.MFIs were

only computed for cells positive for a given marker, so that the frequency of the positive cells did not influence the MFI. For example,

the CD27MFI on CD4 T cells was computed as the median expression of CD27 on CD4+CD27+ T cells. In the manuscript, we refer to

the MFI calculation as estimating the relative ‘‘surface protein expression level’’ (SPEL).

FlowJo was used to export MFI values, as well as cell subset frequencies (CSF) for all Boolean combination gates. These gates

comprise non-overlapping populations. For example, a Boolean combination of three markers ‘‘A,’’ ‘‘B,’’ and ‘‘C’’ leads to 8 subsets,

including A+B+C+, A+B+C�, A+B�C+, etc. Automated scripts in JMP further processed these data to generate all possible combina-

tions that ignored one or more markers. For example, A+B+ (also denoted as A+B+C0) was computed as the sum of A+B+C+ and

A+B+C�; A+B� (also denoted as A+B�C0) as the sum of A+B�C+ and A+B�C�; A+ (also denoted as A+B0C0) was computed as the

sum all four combinations of B and C with A+. Thus, this step creates all combinations of positive, negative, or ignored (‘‘0’’) for all

markers, which we refer to as ‘‘tri-boolean’’ combination gates. Given ‘‘n’’ markers, there are 2n Boolean gates and 3n tri-boolean

gates. Every tri-boolean gate was assigned a unique identifier, given as ‘‘Panel number:Serial number.’’ Thus, P1:336 is a unique sub-

set from Panel 1. The serial numbers have no meaning other than to distinguish gating used to define the subsets.

Note that any given cell belongs to only one Boolean gate, but belongs tomultiple tri-boolean gates. Thus, there is considerable co-

variation of tri-boolean frequencies. For the seven immunophenotyping panels, we created over 4,000 boolean subsets, resulting in

nearly 80,000 tri-boolean subsets. The combination of tri-boolean subset frequencies and MFI values comprise the 78,683 traits we

analyzed.
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Statistical Analyses
Selection of Subsets for Heritability and GWAS Analysis

For genome-wide association analysis, we selected a subset of traits. First, we eliminated those CSFswhosemean frequency (within

their parent ‘‘lineage’’) was below 0.1% or above 99%. As shown in Figure S4A, this reduced the number of traits to below 50,000.

From these, we selected approximately 200 for in-depth analysis as follows.

First, we chose 97 functionally-distinct subsets based on our experience as well as definitions in the literature. These included dif-

ferentiation stages of T cells (naive, stem cell memory, central, transitional, effector and terminal effector memory) and B cells (imma-

ture, mature, etc.); lineages of CD4 T cells (Th1, Th2, Th17, Th22), and so forth. These are referred to as ‘‘canonical’’ subsets.

Next, we roughly estimated heritability for all traits based on Falconer’s formula based on the difference between the intra-class

correlation coefficients of the two zygosities (i.e., h2 = 2 x [rMZ – rDZ]). Of the 97 pre-defined canonical subsets, 46 showed no evidence

of heritability nor were of sufficient interest biologically and were not included in further genetic analysis. From the global trait list, we

then selected 100 highly-heritable, independent traits across all seven panels, choosing from highly related subsets the one with the

simplest definition (for example, if all of A+, A+B+, and A+B�were highly heritable, we chose only A+). These 100 traits, together with 51

canonical traits, were then submitted for GWAS analysis.

We then estimated heritability of the 151 traits using structural equation modeling (SEM) to separate the observed phenotypic vari-

ance into three latent sources of variation: additive genetic variance (A), shared/common environmental variance (C), and non-

shared/unique environmental variance (E) (Neale and Cardon, 1992). Additive genetic influences are indicated when monozygotic

(MZ) twins are more similar than dizygotic (DZ) twins. The common environmental component estimates the contribution of family

environment which is assumed to be equal in bothMZ and DZ twin pairs (Kyvic, 2000), whereas the unique environmental component

does not contribute to twin similarity, rather it estimates the effects that apply only to each individual and includesmeasurement error.

Any greater similarity between MZ twins than DZ twins is attributed to greater sharing of genetic influences. Heritability is defined as

the proportion of the phenotypic variation attributable to genetic factors, and using SEM is given by the equation, h2 = (A)/(A + C + E).

The heritability analysis was estimated on the inverse normalized trait values. Each trait was adjusted for age by linear regression

after removing the outliers (> 4 standard deviations). The residuals were then normalized using inverse normal transformation and

used for both the heritability and genome wide association analysis.

BioData Repository
Raw and summary data is available for downloading and analysis. Genotype data is available upon request to the authors.

Flow Cytometry Data

FCS data files are deposited in the International Society for the Advancement of Cytometry public data repository. This includes 130

GB of data, comprising > 5,200 individual data files. In addition, the FlowJo workspaces used to analyze these files are also available,

providing the complete gating scheme, statistical analysis, and graphical analysis for every single data file. These files are available at

http://www.tinyurl.com/twinsFACSdata.

GWAS Summary

The detailed summary of all GWAS analyses performed on the 150 selected traits is provided; each trait is a separate file. These files

can be downloaded from ftp://twinr-ftp.kcl.ac.uk/ImmuneCellScience, in folder ‘‘2-GWASResults.’’

Demographics

Anonymized demographic information (anonymized unique family ID, age, twin type) for subjects is provided in a single file, ftp://

twinr-ftp.kcl.ac.uk/ImmuneCellScience, file name ‘‘3-Demographics.zip.’’

Heritability

Estimated heritability (Falconer’s) for all 78,000 traits, including a detailed definition of each of the traits, suitable for sorting and anal-

ysis is available in a single file. This file can be downloaded from ftp://twinr-ftp.kcl.ac.uk/ImmuneCellScience, file name ‘‘4-Trait

Analysis.zip.’’

Trait Values

Every measured trait value is in a single file, containing a table of 78,000 values for each individual. This file can be downloaded from

ftp://twinr-ftp.kcl.ac.uk/ImmuneCellScience, file name ‘‘5-Trait Values.zip.’’
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Figure S1. Fluorescence Distribution of All Immunophenotyping Panels for All Subjects, Related to Experimental Procedures

For each of the seven panels, 1000 events from each data file for each of the 543 samples analyzed for the discovery cohort weremerged into a single file. Each of

the fluorescent markers used in the panel (abscissa) are shown in separate graphics, plotted against all subjects (ordinate). Clusters of rows constitute a single run

encompassing 10 to 30 separate subjects. After three runs, the panels were modified slightly to incorporate a different CD4 reagent after 3 runs, and a different

‘‘dump’’ reagents after 7 runs, but otherwise were identical across the entire cohort.
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Figure S2. Gating Hierarchy to Identify Subsets within PBMC for Immunophenotyping Panels 1 through 4, Related to Experimental

Procedures
As shown in the very top row, all data files were first preprocessed to include only singlet events as well as live cells based on aqua blue staining. The remaining

gating hierarchy for each of the panels is shown. The top line(s) of graphs show the gates used to identify ‘‘lineages’’ or ‘‘differentiation stages.’’ Within each

lineage/stage, all combinations of the gates shown on the bottom line were applied in a Boolean fashion (e.g., in panel one, there are eight separate gates to

identify the expression pattern of eight different markers; the complete combination results in 256 gates applied to each of the four ‘‘lineages’’). During post-

processing analysis, combinatorial analysis on these 256 Boolean combinations was done to create all 38 possible combinations of gates for each marker (i.e.,

positive, negative, or ignored: ‘‘tri-boolean’’ combination gates). Canonical names of ‘‘lineages’’ and ‘‘differentiation stages’’ are provided as a rough guide for the

cell populations and are not meant to be definitive.
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Figure S3. Gating Hierarchy to Identify Subsets within PBMC for Immunophenotyping Panels 5 through 7, Related to Experimental

Procedures

Similar to Figure S2, cells were divided into subsets first by ‘‘lineage’’ gating as shown by the arrows, and then, as indicated, the combinatorial boolean gating was

applied to each of these. In panel six, mature memory B cells that are negative for IgM, IgA, and IgG are likely to be reasonably pure populations of IgE expressing

cells and are denoted as ‘‘(IgE+).’’ Canonical names of ‘‘lineages’’ and ‘‘differentiation stages’’ are provided as a rough guide for the cell populations and are not

meant to be definitive.
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Figure S4. Summary of the Immunophenotyping Traits Analyzed, Related to Figure 1

(A) Of the nearly 80,000 traits (frequencies and fluorescence intensities), more than one third were eliminated from analyses as they represented subset fre-

quencies that were too low for robust analysis (less than 0.1% of the parental ‘‘lineage’’ gate). For our initial GWAS analysis reported in this manuscript, we chose

about 200 traits for analysis. 97 represent ‘‘canonical’’ populations defined in the literature (such as differentiation or activation stages); 100 were chosen from the

most heritable.

(B) Of the nearly 50,000 traits, many are highly inter-correlated because they represent strongly overlapping populations of cells. To estimate degrees of freedom

in the dataset, we computed how many traits remain after eliminating those that covary with another trait with a variance greater than a certain threshold. We

cross-correlated all traits against all traits, and progressively eliminated those with the highest covariance. For example, eliminating traits that correlate with

a variance greater than 0.9 reduces the number of independent traits from 50,000 to just over 5,000. There were nearly 1,800 traits with an intra-correlation less

than 0.7.

(C) Falconer’s formula was applied to the intraclass correlations on MZ and DZ twin pairs to estimate the covariation due to common environmental factors

(upper) as well as genetic heritability (lower) for the 1,775 traits with a variance less than 0.7. Of these, 9% showed estimated heritability of greater than 80%.
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Figure S5. Summary Heritability Plots, Related to Figure 1

(A and B) The proportions of the additive genetics, common environment and unique environment components of the ACE twin model for heritability estimation

are denoted by red, blue and green for each trait. Black trait IDs are explained in Table S2; the purple trait descriptions are approximate, broad ‘‘nicknames’’ for

the general subset related to each group of traits.

(A) Traits related to phenotype of cells (SPELs).

(B) Traits related to representation of cell subsets (CSFs).
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Figure S6. LocusZoom of Chromosome 10, Related to Figure 2

Regional plots of immune subsets with genome-wide associations with at the chromosome 10 ENTPD locus.

S8 Cell 161, 387–403, April 9, 2015 ª2015 Elsevier Inc.



Figure S7. Additional Genetic Associations with TREG Phenotype Cells, Related to Figure 2

(A and B) Similar to that shown for CD4 T cells (Figure 2), the expression of CD39 on CD8 T cells and CD4–CD8+ T cells, while very infrequent, is very strongly

associated with the genotype of SNPs in the CD39 gene locus.

(C) The proportion of CD73+ cells within CD4 T cells is significantly associated with rs9344528, located in an intron of the gene encoding CD73. Bars indicate

interquartile range; ANOVA P-values are given.
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Figure S8. Additional Genetic Associations of the FcR Locus with Immunophenotypes, Related to Figure 5

(A) Detailed bar charts showing individual data points for the summary graphs shown in Figure 4F. Bars indicate interquartile range; ANOVA P-values are given.

(B) The genotype of rs1801274 is strongly associated with the cell surface expression of CD27 on CD4 T cells, CD4–CD8– T cells, and CD4+CD8+ T cells, in a

similar pattern to that seen for CD8 T cells (Figure 5). Likewise, the genotype of rs1801274 is strongly associated with the cell surface expression of CD27 on IgA+

B cells, as for IgG+ B cells (Figure 5).

(C) Bar chart showing association between FcR diplotype and CD32+ imDC in the replication cohort (for this analysis, n = 130). Bars indicate interquartile range;

ANOVA P-values is given.
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