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Long-term phenotypic evolution of bacteria
Germán Plata1,2, Christopher S. Henry3 & Dennis Vitkup1,4

For many decades comparative analyses of protein sequences and
structures have been used to investigate fundamental principles of
molecular evolution1,2. In contrast, relatively little is known about
the long-term evolution of species’ phenotypic and genetic properties.
This represents an important gap in our understanding of evolu-
tion, as exactly these proprieties play key roles in natural selection
and adaptation to diverse environments. Here we perform a com-
parative analysis of bacterial growth and gene deletion phenotypes
using hundreds of genome-scale metabolic models. Overall, bacte-
rial phenotypic evolution can be described by a two-stage process
with a rapid initial phenotypic diversification followed by a slow
long-term exponential divergence. The observed average divergence
trend, with approximately similar fractions of phenotypic properties
changing per unit time, continues for billions of years. We experimen-
tally confirm the predicted divergence trend using the phenotypic
profiles of 40 diverse bacterial species across more than 60 growth
conditions. Our analysis suggests that, at long evolutionary distances,
gene essentiality is significantly more conserved than the ability to
utilize different nutrients, while synthetic lethality is significantly less
conserved. We also find that although a rapid phenotypic evolution

is sometimes observed within the same species, a transition from high
to low phenotypic similarity occurs primarily at the genus level.

Analyses of phenotypic evolution, such as the morphological varia-
tion of beaks in Darwin’s finches3, provided the original impetus and
context for understanding natural selection. Because the evolutionary
importance and physiological role of specific phenotypic traits change
over time, it is often difficult to connect genotype to phenotype to fit-
ness across long evolutionary distances, especially for metazoan organ-
isms. For microbial species, on the other hand, the ability to metabolize
different nutrient sources, although clearly not the only important phe-
notype, always remains an essential determinant of their fitness and
lifestyle. Even though a large-scale comparative analysis of microbial
phenotypes—such as growth on different nutrients or the impact of
genetic perturbations—is currently challenging owing to a relative pau-
city of experimental data, we rationalized that thoroughly validated com-
putational methods can be used to investigate the phenotypic evolution
of diverse bacterial species. Flux balance analysis (FBA)4, in particular,
has been previously used to accurately predict gene and nutrient essen-
tiality, growth yields, and evolutionary adaptations to environmental
and genetic perturbations5. Notably, the accuracy of FBA methods has
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Figure 1 | Diversity of considered bacterial families. The cladogram shows
the evolutionary relationship between the 100 bacterial families that include the
322 species considered in our study. The tree is based on the average 16S
ribosomal RNA (rRNA) genetic distances between species in each family

(see Methods). The numbers of considered species in each family are shown in
parentheses. Different colours represent different bacterial classes. The tree
was rooted using the Methanosarcina barkeri rRNA sequence.
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been independently demonstrated for many dozens of species encom-
passing diverse phylogenetic distributions and growth environments6.
We selected for our analysis more than 300 phylogenetically diverse
bacteria (Fig. 1) for which genome-scale metabolic models were recon-
structed using a recently developed protocol7 (see Methods).

To investigate the long-term evolution of growth phenotypes, we con-
sidered 62 carbon sources that are commonly used by microbial species
for growth and energy production8. For each considered species we used
FBA to determine a subset of the compounds that could be used for
biomass synthesis or ATP generation—two key metabolic objectives of
bacterial growth9. This analysis resulted in binary phenotypic profiles
that describe the ability of each microbial species to use each of the con-
sidered compounds (see Methods). The evolution of these phenotypic
profiles—that is, the change in phenotypic similarity as a function of spe-
cies divergence (genetic distance)—is shown in Fig. 2a, (see also Extended
Data Fig. 1). Notably, this analysis demonstrated that the average long-
term evolution of growth phenotypes can be approximated well by an
exponential decay (see Methods and Extended Data Table 1). A three-
parameter exponential model fits the data in Fig. 2a significantly better
than simpler alternative models (Extended Data Table 2). Similar diver-
gence trends were observed for larger sets of carbon source compounds
(Extended Data Fig. 2), and for compounds that could be used as a
source of nitrogen (Fig. 2b). The observed trend was also robust towards
subsampling or removal of specific species and families used in the anal-
ysis (Extended Data Fig. 3).

The observed exponential trends suggest that as microbial species
diverge over planetary timescales and adapt to different environmental
niches, approximately similar fractions of phenotypic properties change
per unit time. For species separated by more than 1 billion years of

evolution (,0.2 genetic distance in Fig. 2), the divergence of growth
phenotypes approaches saturation around a similarity of 21% (Fig. 2a),
which is higher than the value expected by chance (,12%) given the
average number of carbon compounds used by the models. This dif-
ference is likely due to a widespread utilization of common nutrient
sources across bacterial species (see Extended Data Table 3)10.

Notably, before the evolution of growth phenotypes settles into the
aforementioned average trend, a much higher rate of phenotypic evo-
lution is observed for pairs of bacteria at very close genetic distances
(,0.01, or ,50 million years11). Our computational analysis predicts
,71% phenotypic similarity for closely related bacteria (Fig. 2, Extended
Data Table 1), which agrees well with available experimental data on intra-
species phenotypic similarity: for example, 75% for the utilization of
carbon sources in Escherichia coli12 and 69% for Campylobacter jejuni13.
The diversity of bacteria observed at close distances reflects a well-
documented genetic and phenotypic variability within bacterial pan-
genomes14. The observed patterns also suggest that phenotypic evolution
proceeds in two different stages, namely through fast phenotypic diversifi-
cation of closely related strains followed by a slower exponential divergence
lasting billions of years. Notably, patterns of multi-stage and hierarchical
evolution have been observed in other systems, for example in bacterial
and eukaryotic developmental networks15,16.

To validate experimentally the predicted patterns of long-term phe-
notypic evolution of bacteria, we obtained GENIII Biolog Phenotype
Microarrays8 data for 40 diverse microbial species (Extended Data Fig. 4
and Supplementary Data 1). Phenotype Microarrays data were used to
determine the ability of each considered bacteria to utilize the 62 different
carbon sources used in the simulations (Fig. 2c; see Methods). In agree-
ment with previous results7, FBA predicted microbial growth phenotypes
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Figure 2 | Evolution of bacterial metabolic growth phenotypes. Genetic
distances in the figure are based on bacterial 16S rRNA sequences. a, The
evolution of phenotypic similarity in the usage of carbon sources for biomass
synthesis. The colours represent the point density at a given genetic distance for
all pairwise comparisons between metabolic models (n 5 26,106). The black
line shows a three-parameter exponential fit to the computational predictions;
the red line shows a moving average of the predictions. b, Like a, but phenotypic
similarity in the usage of nitrogen sources for biomass production across
metabolic models (n 5 36,856). c, Experimental analysis of the long-term
phenotypic divergence trend. Grey points represent pairwise comparisons of

carbon usage phenotypes (Biolog data) between 40 bacterial species (n 5 780).
The black squares represent the average values of experimental phenotypic
similarity at different divergence distances. The black line represents an
exponential fit to the experimental phenotypic similarity data; the red line
represents an exponential fit to the computationally predicted phenotypic
similarity data for biomass synthesis. d, The variability of experimental and
computationally predicted phenotypic similarity at different divergence distances.
The variability was quantified by the coefficient of variation, defined as the ratio
of the standard deviation to the mean. Error bars in c and d represent s.e.m.
obtained on the basis of 10,000 bootstrap re-samplings of the considered species.
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with an average accuracy of ,70%. Importantly, the experimental results
agree well with the computationally predicted average trend describing
phenotypic bacterial divergence (Fig. 2c). Also, for the experimental
data, as well as for the computational predictions, the three-parameter
exponential model fitted the data significantly better than simpler alter-
native models (Extended Data Table 2). The comparison of computational
and experimental values for the coefficient of variation of phenotypic
similarity shows that computational predictions capture well not only
the average trend but also the variability of phenotypic similarity for
bacteria at different genetic distances (Fig. 2d). Overall, the analyses of
experimental data suggest that although individual models need to be
further validated and improved, high-throughput metabolic reconstruc-
tions can be used for comparative functional studies across a large number
of diverged species.

We next investigated the diversity of metabolic growth phenotypes at
different levels of conventional taxonomic classification (Fig. 3). Although
bacteria from the same species show mostly similar phenotypic prop-
erties, the long left tail of the top distribution in Fig. 3 suggests that some
organisms have substantial phenotypic differences even at this basic
taxonomic level. At the genus level the distribution is very broad, with
an average similarity of ,60%; this suggests that transitions from high

to low phenotypic similarity usually occur at the level of genera. On the
contrary, much lower conservation levels are observed for taxonomic
ranks beyond the level of families, where the differences between the
ranks are relatively small. This analysis suggests that computational
approaches similar to the one presented here could be useful in refin-
ing bacterial taxonomy.

To complement the analysis of metabolic growth phenotypes, we
used FBA to investigate the long-term evolution of gene deletion pheno-
types (Fig. 4). Specifically, we considered the evolution of metabolic
gene essentiality and synthetic lethality (see Methods). First, we con-
firmed a high (,76%) accuracy of FBA gene essentiality predictions for
considered species with available experimental data7 (Extended Data
Table 4). Second, our analysis demonstrated that the average long-term
evolution of gene essentiality can also be approximated by an exponen-
tial divergence (Fig. 4a). Notably, the average rate of evolution of meta-
bolic gene essentiality is substantially faster and saturates at closer genetic
distances than the evolution of growth phenotypes (Fig. 2, see Extended
Data Table 1). Even at long evolutionary distances, for an average pair
of microbial species more than half of the conserved essential genes
in one species usually remain essential in the other. Reassuringly, the
predicted average trend (Fig. 4a, red line) is consistent with available
experimental data (Extended Data Table 4) for microbial species with
genome-wide gene deletion screens (Fig. 4a, black dots/black line).

In contrast to gene essentiality, our analysis revealed a very low con-
servation of synthetic lethality between metabolic genes (Fig. 4b). Fol-
lowing a common definition, we considered a pair of non-essential genes
to be synthetic lethal if simultaneous in silico deletion of the correspond-
ing reactions from FBA models made biomass synthesis infeasible. Even
at close genetic distances (,0.01 in Fig. 4b) synthetic lethality is con-
served, on average, for only ,30% of orthologous metabolic gene pairs.
At close distances there is also a substantial variability in the conserva-
tion of synthetic lethality across species. As bacterial species diverge fur-
ther, the average conservation of synthetic lethality drops to ,5%. This
suggests that synthetic lethality is much more sensitive to changes in
microbial genotypes than gene essentiality and metabolic growth phe-
notypes. Only several comprehensive studies, none of them in bacteria,
have been performed to assess experimentally the conservation of genetic
interactions and synthetic lethality17,18. Comparison of fitness data from
budding and fission yeast revealed a conservation of epistatic gene pairs
of ,29% (ref. 17) (corresponding to ,17% similarity). On the other
hand, ,5% of the orthologues of synthetic lethal gene pairs in yeast were
also found to be synthetic lethal in Caenorhabditis elegans18 (,2.5%
similarity). Although these data were obtained in eukaryotic species

0 0.2 0.4 0.6 0.8 1.0

0

0.1

0.2

0.3

0.4

Species

Genus

Family

Order

Class

Phylum

Phenotypic similarity (carbon sources)

Probability 

density

Average similarity 

(experimental data)

Average similarity

(computational prediction)

*
*

*

*
*

*

Figure 3 | Distribution of phenotypic similarity at different levels of
bacterial taxonomic classification. The distributions of phenotypic similarity
in the usage of carbon sources for biomass synthesis were obtained based on
computational simulations of metabolic models (n 5 26,106). The dashed line
connects the average values (black dots) of computational predictions at each
taxonomic level. The red asterisks in the figure indicate the average values of
experimental data obtained using Biolog arrays (see Methods).

0

a

Point density

Exponential fit (computational prediction)

Experimental similarity between pairs of species

Exponential fit (experimental data)  

b
Exponential fit (computational prediction)

Experimental similarity between pairs of species

0

0.2

0.4

0.6

0.8

1.0

S
im

ila
ri
ty

 o
f 

g
e
n
e
 e

s
s
e
n
ti
a
lit

y

S
im

ila
ri
ty

 o
f 

g
e
n
e
 s

y
n
th

e
ti
c
 l
e
th

a
lit

y

0 0.1 0.2 0.3 0.4 0.5

Genetic distance

0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

Genetic distance

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

Point density

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Figure 4 | Evolution of bacterial genetic phenotypes. Genetic distances are
based on bacterial 16S rRNA sequences. a, The evolution of similarity in gene
essentiality across the considered bacterial species. The colours represent the
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and the FBA accuracy for predictions of genetic interactions is lower
than for essentiality or growth phenotypes19, the available experimental
results (Fig. 4b, black dots) are generally consistent with the average
divergence trend predicted in our bacterial simulations.

We note that the observed behaviour of long-term phenotypic diver-
gence is somewhat reminiscent of the molecular clock in protein evolution1.
Similar to protein evolution, it is likely that the phenotypic divergence
trends are due to both bacterial adaptation to diverse environmental
niches and neutral changes20. The relative contribution of adaptive and
neutral changes is likely to be different in each particular linage and evo-
lutionary context. Our analysis shows that growth phenotypes, gene
essentiality, and synthetic lethality diverge with different rates and have
different sensitivities to bacterial genotypes. It is likely that many other
phenotypic properties, such as the ability to synthesize different com-
pounds, interact with other species, or withstand specific environmental
perturbations, will also show distinct evolutionary patterns. We believe
that the accelerating pace of genomic and metagenomic sequencing,
and continuous improvement in computational annotation methods21,
will soon allow mapping of the evolution of various phenotypic prop-
erties across the entire bacterial tree of life.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Metabolic models. We obtained 322 genome-scale metabolic models using a recently
published protocol for automatic network reconstruction7. To minimize possible
biases due to computational gap-filling and network auto-completion, we only
considered models in which more than 80% of the reactions were directly based on
available gene annotations. To prevent biases related to uneven sampling of bac-
terial phylogenic space, we did not use models from the order Enterobacteriales,
which contains a significantly higher number of sequenced genomes compared with
other bacterial linages. The exact identity of the considered species did not have a
significant impact on the predicted average trends (Extended Data Fig. 3).
Computation of genetic distances. For the considered bacteria, 16S rRNA gene
sequences were obtained from GenBank22. Sequences were aligned using Clustal
Omega23 to a reference alignment of small subunit rRNA sequences from the SILVA
database24. Genetic distances were then calculated on the basis of the multiple
sequence alignment using the Dnadist program in the Phylip software package25;
the F84 model of nucleotide substitution, with default parameter values, was used.
The cladograms in Fig. 1 and Extended Data Fig. 4 were computed from the distance
matrix using the Fitch program in Phylip with default parameters; the M. barkeri
rRNA was used as the outgroup sequence. The taxonomic classification used in
Fig. 3 was obtained from the National Center for Biotechnology Information tax-
onomy database26.
Prediction of growth phenotypes. FBA allows one to determine feasible values
of metabolic reaction fluxes subject to reaction stoichiometry constraints and the
assumption of metabolic steady state4. Additional constraints, such as upper and
lower bounds for metabolic fluxes or flux combinations, can be applied to the models.
All FBA calculations in our manuscript used the COBRA toolbox27. We used the
following procedure to determine the ability of each species to utilize the considered
nutrient sources. First, we identified a set of compounds required by the models to
simulate growth on different carbon or nitrogen sources (Supplementary Data 2);
these compounds include various vitamins, nucleotides and amino acids8 as well as
several model-specific requirements (see below). To test the ability of each model
to use different carbon sources, an in silico growth medium was defined where the
aforementioned substances were constrained to a maximum combined uptake of
10 mmol of carbon per gram dry weight, and all other carbon compounds were
removed. All carbon-free compounds were made available in the simulated med-
ium (with the maximum uptake rate of 1 mol g21 dry weight). An analogous pro-
cedure was used to define a growth medium for testing nitrogen sources. Second,
for each considered carbon or nitrogen source (compound), we used FBA to cal-
culate the maximum biomass or ATP synthesis rate when the compound was made
available in the corresponding in silico medium (maximum uptake rate of 1 mol g21

dry weight). Similar to the treatment of experimental data (see experimental pro-
cedures below), biomass or ATP flux values were normalized on a scale of 0–100
corresponding to the minimum (no carbon or nitrogen source tested) and maxi-
mum flux values across considered compounds, respectively. Similar to experimental
measurements, carbon and nitrogen sources scoring 10 or above were considered
as being positive for growth. The metabolic compounds tested in our analysis cor-
respond to carbon and nitrogen sources that are commonly used by multiple bac-
teria (Extended Data Table 3) and are assayed in Biolog MicroPlates8. To prevent
low phenotypic similarities arising because of models with a very low overall number
of positive growth phenotypes, we only considered models that could synthesize
biomass on more than five of the tested compounds; the exact value of this cutoff
had little effect on the observed average trends (Extended Data Fig. 5a). In total,
229 and 272 models were used for the analysis of carbon and nitrogen sources for
biomass synthesis, respectively.
Definition of an in silico growth medium. Similar to bacterial growth in vivo,
many of the metabolic models used in our analysis are auxotrophic for specific com-
pounds, beyond the main carbon and nitrogen sources tested for their ability to
support microbial growth (62 carbon and 68 nitrogen compounds); that is, the
models can simulate biomass or ATP synthesis only if small amounts of additional
nutrients are available in the simulated growth media. To define a single minimal
medium, used across all models to test growth on the main carbon sources, we
used the following procedure. First, in addition to the main carbon sources (avail-
able with a maximum uptake of 1 mol g21 dry weight), all metabolic compounds
that could be imported by the models were made available in the simulated media
with a maximum combined carbon uptake of 10 mmol g21 dry weight; we note
that this maximum uptake rate is only 1% of the maximum uptake of the main
carbon sources. Second, we determined which of the main carbon sources could
support growth under these conditions. Third, for each model the additional carbon
compounds were sequentially removed (in a random order) from the simulated
media until no compound could be further removed while allowing growth on the
main carbon sources determined in the second step. Fourth, the additional carbon
sources required for growth in more than 75% of the tests with a positive growth
phenotype were combined across all models; this resulted in the carbon-containing

component of the minimal media. Fifth, the same procedure was used to determine
the nitrogen-containing component of the minimal media. Sixth, the carbon- and
nitrogen-containing components were combined to produce the minimal media
used in the study (Supplementary Data 2). Notably, very similar results were observed
using different minimal media obtained from independent runs of the aforemen-
tioned procedure. Very similar results (Extended Data Fig. 6) were also obtained
when the in silico growth medium, used for all tests, contained all possible nutrients
(without any removals) with maximum uptakes rates of 1 mol g21 dry weight for
the main carbon or nitrogen sources, and with combined maximum uptake rates of
10 mmol g21 dry weight (1% of the uptake for the main nutrients) for additional
carbon or nitrogen compounds, respectively.
Prediction of essentiality and synthetic lethality. To determine essential genes,
we first established the association between every gene and corresponding meta-
bolic reactions. We then simulated gene deletions by setting the maximal fluxes
through corresponding reactions that cannot be catalysed by the products of other
genes to zero. If such an in silico deletion of a gene made it impossible, on the basis
of FBA calculations, to produce a non-zero biomass, the gene was considered to
be essential. A pair of non-essential genes was considered to be synthetic lethal if
simultaneous deletion of the two genes made it impossible to produce a non-zero
biomass. All FBA simulations for testing gene essentiality and synthetic lethality
were performed, similar to common experimental procedures, using an in silico
rich medium: that is, non-zero fluxes were allowed through every transport reaction
in the models. Genes associated with lumped reactions, such as ‘protein synthesis’,
were not considered in the calculations. To prevent low phenotypic similarities
arising because of models with a very small number of essential genes, only models
with more than ten predicted essential genes or synthetic lethal gene pairs with
mapped orthologues were considered in the analysis; 314 and 290 models were used
for the analysis of essentiality and synthetic lethality, respectively.
Quantifying phenotypic similarity. For a given set of features, namely carbon
sources, essential genes, or synthetic lethal gene pairs, similarities between species
were quantified by Jaccard’s similarity index. Jaccard’s index is defined as the size
of the intersection between two given sets divided by the size of the union of the
two sets; for example, if A is the set of all carbon sources that can be used by species
a, and B the set that can be used by species b, then Jaccard’s carbon source simi-
larity between a and b is defined as J(A,B) 5 jA > Bj/jA < Bj. Importantly, to cal-
culate the similarity of gene essentiality and synthetic lethality between species, we
only considered orthologous genes and gene pairs that are shared between corre-
sponding metabolic networks. Orthologous genes were identified using bi-directional
BLASTP28 hits (with expect (E) values ,0.05) between the species’ genomes.
Analysis of experimental Biolog data. A collection of 40 microbial species span-
ning a wide range of phylogenetic distances (Extended Data Fig. 4) was used to con-
firm the computationally predicted trends. The ability of these species to metabolize
the 62 carbon sources used in the computational analysis was determined using
Biolog GENIII Phenotype Microarrays8; all data were obtained directly from the
Biolog GEN III database (Biolog). The Phenotype Microarrays technology is based
on the reduction of a tetrazolium dye, which allows determination of the usage of
different nutrient sources across multiple growth conditions8. Biolog assays were
performed essentially as described in the GEN III MicroPlate instruction manual.
Colorimetric measurements after a 24 h incubation period for each species and each
carbon source were expressed on a scale of 0–100, representing the average colour
density (across at least five biological replicates) in each well of the Biolog plate
relative to the negative and positive controls; only scores of 10 or above were con-
sidered as evidence that a tested compound was used by a species. This cutoff value
was obtained on the basis of the bimodal-like distribution of the data12 (Extended
Data Fig. 5b); similar results were obtained using other cutoff values (Extended
Data Fig. 5c). The accuracy of FBA in predicting microbial growth phenotypes was
evaluated using the nine species that were present both in the computational and
experimental analyses. The experimental values in Fig. 3 (red stars) were based on
data from the aforementioned 40 species, and the intra-species similarity studies in
refs 12 and 13.
Experimental gene essentiality data. Gene essentiality data were compiled for 19
species with genome-wide gene deletion screens (Extended Data Table 4). Species
from the genus Mycoplasma were excluded from this analysis because of their very
small genomes and a very high (,80% (ref. 29)) fraction of essential genes. For every
pair of species, orthologous genes were identified using bi-directional BLASTP hits
(with E values ,0.05). The similarity of gene essentiality was determined for genes
with identified orthologues annotated as enzymes in the KEGG database30. To
estimate the similarity of gene essentiality at close genetic distances, we also con-
sidered partial essentiality data for Streptococcus pneumoniae R6 and Staphylococcus
aureus N315, which were compared with essential genes in Streptococcus sanguinis
SK36 and S. aureus NCTC 8325, respectively. To use these incomplete data, and
given the similarity of the species’ genome sizes, we assumed symmetry of essential
gene conservation: that is, that the number of essential genes in one species that are

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2015



not essential in the other is the same for both bacteria. A similar approach was used
to estimate Jaccard’s similarity of genetic interactions between eukaryotic species
on the basis of published data17,18 (Fig. 4b).
Exponential model fits. Pairwise divergence of bacterial phenotypic similarity (y)
as a function of genetic distance (t) was fitted using the following equation: y 5

a 1 be2ct, where the parameter a represents the saturation level for phenotypic
divergence at long genetic distances, (a 1 b) represents the level phenotypic sim-
ilarity at close genetic distances, and the parameter c quantifies the divergence rate,
namely the phenotypic similarity decrease per unit of genetic distance (time). Larger
values of c correspond to faster divergence of the phenotypic similarity. The para-
meter a was not considered in the nested two-parameter exponential model used for
model comparison. To quantify the genetic distance between bacterial species, we
used the divergence between their 16S rRNA sequences; 1% 16S rRNA distance
approximately corresponds to 50 million years since divergence from a common
ancestor11.
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Extended Data Figure 1 | The evolution of phenotypic similarity in the
usage of carbon sources for ATP production. Genetic distances are based on
16S bacterial rRNA sequences. The colours represent the point density at a
given genetic distance for all pairwise comparisons between metabolic models
(n 5 20,910). The black line shows a three-parameter exponential fit to the
computational predictions; the red line shows a moving average of the
predictions.
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0.05 genetic distance window) of computational predictions; dashed lines
represent exponential fits to the data.
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Extended Data Figure 3 | The effect of species selection on observed
patterns of phenotypic divergence. The black lines in all panels (marked
‘Original fit’) represent the exponential fit of the phenotypic similarity (carbon
source utilization) as a function of genetic distance for all pairs of considered
models, that is, models with fewer than 20% auto-completion reactions and
more than five predicted carbon sources for growth. The observed trends of
phenotypic evolution remain similar when (a) only models with a smaller

fraction of auto-completion reactions are considered, (b) models from
individual families that include more than ten modelled species are excluded
from the analysis, (c) only a maximum number of species per family is
considered, and (d) a subset of species is chosen at random from the pool of all
considered models. In d, the average values at different genetic distance bins are
shown for 1,000 random samples of a given number of species; error bars
represent the s.e.m. obtained on the basis of the 1,000 replicates.
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Extended Data Figure 5 | The effect of cutoff selection on the computational
and experimental phenotypic similarity trends. a, The exponential fits of
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the main analysis. c, The effect of different cutoffs used to define positive growth
in the Biolog data. Different lines represent exponential fits to the experimental
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Extended Data Table 1 | Parameters of the exponential divergence models, describing the evolution of growth and genetic phenotypes

Phenotype a b  c 
Carbon source (biomass) 0.21 0.50 8.16 
Carbon source (ATP) 0.21 0.50 7.86 
Nitrogen source (biomass) 0.25 0.48 9.75 
Essentiality  0.46 0.24 13.6 
Synthetic lethality  0.037 0.27 9.98 

Values in the table show the parameters (a, b, c) of the divergence model y 5 a 1 be2ct, where y represents the phenotypic similarity and t represents the genetic distance between species. Parameter a represents
the saturation level of phenotypic divergence at long genetic distances, (a 1 b) represents the level phenotypic similarity at close genetic distances, and the parameter c quantifies the divergence rate.
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Extended Data Table 2 | Model comparisons for predicted and experimentally determined phenotypic similarity as a function of genetic
distance

Phenotype 3-parameter exponential vs. linear model 
(relative likelihood based on Akaike weights) 

3-parameter exponential vs. 2-parameter 
exponential model (F-test P-value) 

FBA carbon source similarity (biomass) >1020 < 10-20 

Experimental carbon source similarity (Biolog) 9*109 4.6 *10-8 

FBA essentiality similarity >1020 < 10-20 

Experimental essentiality similarity 27.2 8.5*10-3 

FBA Synthetic lethality similarity >1020 < 10-20 

Comparisons between the three parameter exponential model and the linear model were performed on the basis of Akaike’s Information Criterion (AIC). Values in the table represent the Akaike-based relative
likelihoods of the three-parameter exponential model compared with the linear model. Comparisons between the three-parameter exponential model and the nested two-parameter exponential model were
performed using the F-test; the corresponding P values reflect the probability that the nested two-parameter model fits the data as well as the more complex three-parameter model.
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Extended Data Table 3 | The predicted frequency of carbon and nitrogen source usage across metabolic models

Carbon sources for biomass production Nitrogen sources for biomass production 
Metabolite name Number of models Metabolite name Number of models 
L-Glutamic Acid 208 Ammonia 241 
a-D-Glucose 199 Urea 241 
D-Fructose 185 L-Proline 226 
L-Malic Acid 165 L-Glutamic Acid 203 
L-Lactic Acid 164 L-Valine 203 
Maltose 149 L-Isoleucine 183 
Glycerol 134 L-Leucine 178 
L-Serine 128 Nitrate 155 
L-Aspartic Acid 126 Nitrite 145 
D-Mannose 115 L-Glutamine 136 
L-Arginine 112 L-Serine 127 
N-Acetyl-DGlucosamine 104 L-Aspartic Acid 124 
D-Trehalose 97 Cytosine 123 
Sucrose 89 L-Arginine 119 
Inosine 87 L-Ornithine 115 
a-Keto-GlutaricAcid 84 Uracil 111 
L-Histidine 82 N-Acetyl-D-Glucosamine 103 
L-Alanine 77 Cytidine 101 
D-GlucuronicAcid 74 Adenosine 94 
D-Serine 72 Glycine 93 
a-D-Lactose 71 L-Methionine 92 
Formic Acid 69 Xanthine 87 
Acetoacetic Acid 68 Histamine 86 
D-Cellobiose 67 L-Histidine 83 
D-Mannitol 64 L-Tryptophan 80 
D-Malic Acid 64 L-Alanine 79 
D-Sorbitol 61 Ethanolamine 74 
D-GalacturonicAcid 56 D-Alanine 73 
Mucic Acid 55 D-Serine 72 
D-Saccharic Acid 55 L-Lysine 61 
D-Gluconic Acid 53 D-Glucosamine 61 
D-Galactose 47 Putrescine 54 
Citric Acid 33 Acetamide 54 
D-Raffinose 29 L-Phenylalanine 49 
Dextrin 27 Allantoin 47 
g-Amino-ButyricAcid 27 L-Tyrosine 45 
L-Rhamnose 26 Formamide 44 
Salicin 23 Inosine 41 
N-Acetyl-b-D-Mannosamine 20 L-Cysteine 25 
Glucose-6-Phosphate 20 L-Asparagine 25 
D-Melibiose 15 Thymidine 23 
D-Aspartic Acid 15 Uridine 23 
L-Fucose 13 Guanine 19 
M-Inositol 11 Guanosine 18 
Quinic Acid 11 N-Acetyl-D-Mannosamine 18 
Propionic Acid 11 Xanthosine 16 
Stachyose 9 D-Aspartic Acid 15 
N-Acetyl-Neuraminic Acid 7 Methylamine 10 
D-Arabitol 7 Thymine 9 
Acetic Acid 7 L-Threonine 6 
Fructose-6-Phosphate 5 D-Lysine 5 
N-Acetyl-DGalactosamine 4 Adenine 4 
a-Keto-ButyricAcid 4 N-Acetyl-D-Galactosamine 4 
Gentiobiose 0 L-Citrulline 3 
b-Methyl-D-Glucoside 0 D-Galactosamine 3 
D-Fucose 0 D-Glutamic Acid 2 
Gelatin 0 Tyramine 2 
L-PyroglutamicAcid 0 b-Phenylethylamine 2 
Pectin 0 L-Homoserine 1 
L-GalactonicAcid-g-Lactone 0 Uric Acid 1 
P-HydroxyPhenyl AceticAcid 0 Agmatine 0 
a-HydroxyButyric Acid 0 Hydroxylamine 0 
  Ethylamine 0 
  L-Pyroglutamic Acid 0 
  D-Asparagine 0 
  D-Mannosamine 0 
  D-Valine 0 
  Biuret 0 

Numbers in the table represent the total number of models, out of 322, predicted to use the corresponding carbon or nitrogen source. Metabolites are ranked from most to least frequent across models.
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Extended Data Table 4 | Bacteria with experimental genome-wide data used to analyse the conservation of gene essentiality

Species name Number of essential genes Reference PubMed ID 
Acinetobacter baylyi ADP1 499 18319726 
Bacillus subtilis subsp. subtilis str. 168 276 14602916, 12682299 
Bacteroidetes thetaiotaomicron VPI-5482 325 19748469 
Burkholderia thailandensis E264 406 23382856 
Caulobacter crescentus NA1000 480 21878915 
Escherichia coli K-12 302 16738554 
Francisella novicida U112 396 17215359 
Haemophilus influenzae Rd KW20 667 11805338 
Helicobacter pylori 26695 336 15547264 
Mycobacterium tuberculosis H37Rv 689 23028335 
Porphyromonas gingivalis ATCC 33277 463 23114059 
Pseudomonas aeruginosa PAO1 774 14617778 
Salmonella enterica subsp. enterica serovar Typhi str. Ty2 331 23470992 
Salmonella enterica serovar Typhimurium str. SL1344 355 23470992 
Shewanella oneidensis MR-1 403 22125499 
Sphingomonas wittichii RW1 572 23601288 
Staphylococcus aureus subsp. aureus N315 168* 11952893 
Staphylococcus aureus subsp. aureus NCTC 8325 351 19570206 
Streptococcus pneumoniae 134† 15995353 
Streptococcus sanguinis 218 22355642 
Vibrio cholerae O1 biovar El Tor str. N16961 344 23901011 

*Only incomplete data available, used to estimate conservation relative to S. aureus NCTC 8325.
{Only incomplete data available, used to estimate conservation relative to S. sanguinis.
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