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SUMMARY

Biological diversity among mammals is remarkable.
Mammalian body weights range seven orders of
magnitude and lifespans differ more than 100-fold
among species. While genetic, dietary, and pharma-
cological interventions can be used to modulate
these traits in model organisms, it is unknown how
they are determined by natural selection. By profiling
metabolites in brain, heart, kidney, and liver tissues
of 26 mammalian species representing ten taxonom-
ical orders, we report metabolite patterns character-
istic of organs, lineages, and species longevity. Our
data suggest different rates of metabolite divergence
across organs and reveal patterns representing
organ-specific functions and lineage-specific physi-
ologies. We identified metabolites that correlated
with species lifespan, some of which were previously
implicated in longevity control. We also compared
the results with metabolite changes in five long-lived
mouse models and observed some similar patterns.
Overall, this study describes adjustments of the
mammalian metabolome according to lifespan, phy-
logeny, and organ and lineage specialization.

INTRODUCTION

All modern mammals descend from a common ancestor that

lived �210 million years ago and have since undergone remark-

able diversification in morphology, life history, and other charac-

teristics. Their body parts, such as tongues, ears, fingers, and

feet, have been modified for numerous functions including
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nectar-feeding, echolocating, swimming, flying, and digging;

their body weights range from under 2 g (Etruscan shrew, Sun-

cus etruscus) to over 150 tons (blue whale, Balaenoptera muscu-

lus); and their maximum lifespans differ by more than 100-fold

(Tacutu et al., 2013). Many of the traits affecting development,

body weight, and lifespan (i.e., the life history traits) are often

correlated. Longer-lived species tend to be bigger, produce

fewer offspring, growmore slowly, and have lowermass-specific

metabolic rates (Peters, 1986; Sacher, 1959; Western, 1979),

indicative of modulation by the same underlying evolutionary

forces. Certain lineages, such as bats (Seim et al., 2013) and pri-

mates, have evolved to live longer as a whole, whereas other in-

stances of exceptional longevity have emerged sporadically

among short-lived taxonomic relatives such as the naked mole

rat, Heterocephalus glaber, which lives ten times longer than

other rodents of comparable size (Buffenstein, 2008; Fang

et al., 2014; Kim et al., 2011).

Longevity is elastic and can vary along a continuum, but

the underlying factors are only starting to be characterized.

Research in model organisms revealed several important molec-

ular players, such as insulin-like growth factor 1 (IGF-1) (Fried-

man and Johnson, 1988; Holzenberger et al., 2003; Tatar et al.,

2001), mechanistic target of rapamycin (mTOR) (Kenyon, 2010;

Vellai et al., 2003), and sirtuins (Lin et al., 2000; Tissenbaum

and Guarente, 2001). Dietary and pharmacological interventions

can also extend lifespan in diverse organisms (Harrison et al.,

2009; McCay et al., 1935; Weindruch et al., 1986). In particular,

the lifespan of laboratory mice can be increased by restriction

of food or methionine (Flurkey et al., 2010; Sun et al., 2009),

administration of rapamycin (Harrison et al., 2009; Miller et al.,

2014) or acarbose (Harrison et al., 2014), or certain genetic

mutations (Ladiges et al., 2009). Rapamycin, an inhibitor of

mTORC1, leads to a 23%–26% increase in the median lifespan

of mice (Miller et al., 2014). Acarbose inhibits glycoside hydro-

lases (the enzymes that digest complex carbohydrates to
.
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Figure 1. Diversification of Mammals

(A) Maximum lifespan correlates positively with body mass. Maximum lifespan (years) was plotted against adult weight (g) on log10 scale for 995 mammalian

species from AnAge database (Tacutu et al., 2013), color-coded by taxonomical orders. Human, the naked mole rat, and the Brandt’s bat are highlighted. To

simplify the color scheme, Artiodactyla and Perissodactyla were grouped together, and Ericomorpha and Soriceomorpha were grouped together.

(B) Phylogeny of the mammals examined in the current study. Branches and tips are colored according to taxonomical orders (same color scheme as in A).

Divergence times were based on previous estimates (Fushan et al., 2015; Meredith et al., 2011). Animal silhouettes are for illustration only.
absorbable sugars in the gastrointestinal tract) and is used

clinically to blunt post-prandial glucose surges in diabetic pa-

tients. It seems plausible that limiting peak glucose concentra-

tions may explain its longevity benefits. Mutant strains such as

Snell dwarf (defective in anterior pituitary development) (Flurkey

et al., 2001) and growth hormone receptor knockout (GHRKO)

(Coschigano et al., 2003) are also long-lived, due to altered

signaling in growth hormone (GH) itself or throughGH-stimulated

production of IGF-1.

How longevity is modulated during evolution to produce both

long-lived and fit animals, however, is still unclear. Lifespan is an

inherent characteristic of a species and remains relatively stable

through generations, but it can also change in either direction

over time. In order to vary lifespan on an evolutionary timescale,

a number of biological pathways may need to be altered, re-

wired, or reprogrammed. Omics-scale comparative studies

across multiple species are instrumental in understanding the

evolution of mammalian genomes and gene expression (Bra-

wand et al., 2011; Lindblad-Toh et al., 2011). To gain insights

into the metabolic basis of mammalian diversity and longevity,

we quantified metabolite levels in brain, heart, kidney, and liver

tissues of 26 species of mammals and identified metabolites

with organ-, lineage-, and trait-specific patterns. We described

the metabolite divergence and distribution in different organs,

linked the lineage-specificmetabolic patterns to lineage-specific

physiologies, and identifiedmetabolites with positive or negative

correlation to longevity traits. In addition, we profiled the metab-
Cel
olites in brain and liver of five long-lived mouse models (caloric

restriction, rapamycin treatment, acarbose treatment, GHRKO,

and Snell dwarf) and compared the observed changes with the

mammalian longevity signatures. Our study provides the first

glimpse into how metabolism may have been altered to modu-

late mammalian lifespan.

RESULTS

Metabolite Conservation and Divergence amongOrgans
We applied targeted metabolite profiling to quantify the metabo-

lite levels in brain, heart, kidney, and liver tissues of 26 species of

mammals, representing ten taxonomical orders and covering a

wide range of longevity-associated traits (Figure 1; Table S1A).

The species were matched by biological age (all young adults)

and sex (all were males, except for horse and vervet). Biological

replicates (i.e., samples from multiple individuals of a species)

were collected for most of the species (Table S1A). In total,

162 water-soluble metabolites and 100 lipids were reliably de-

tected across 235 samples. Data quality was assessed graphi-

cally (Figure S1).

Principal-component analysis revealed the samples segre-

gated predominantly by organ origin, with most of the replicates

clustering together and the first three principal components ac-

counting for �50% of the total variance (Figure 2A). ANOVA

confirmed that organ and species accounted for over 80%

of the variation in individual metabolite levels, whereas the
l Metabolism 22, 332–343, August 4, 2015 ª2015 Elsevier Inc. 333



Figure 2. Metabolite Divergence in Mam-

malian Organs

(A) Samples segregate predominantly according

to organ origin. Values in parenthesis indicate the

percentage of variance explained by each of the

first three principal components (PCs). Biological

replicates were treated as individual points.

(B) Brain samples show highest Spearman corre-

lation coefficients. The box plot shows the pair-

wise correlation among the samples in each

organ. Wilcoxon rank sum test p value < 23 10�16

for brain against each of the other organs.

(C and D) Brain has the largest percentage of

metabolites with high phylogenetic signals. In (C),

only Pagel’s lambda > 0.6 are shown. In (D), the

dotted line indicates Blomberg’s K = 1.0.
differences between replicates were much smaller than the dif-

ferences between species (Figure S1). The clustering pattern

agreed with those based on mammalian gene expression pro-

files (Brawand et al., 2011; Fushan et al., 2015), suggesting

that metabolite levels and organ-specific metabolism were

generally well conserved across the mammals.

The phylogenetic relationship of many mammals has been es-

tablished based on fossil and molecular evidence (Figure 1B)

(Fushan et al., 2015; Meredith et al., 2011). To determine if their

metabolite levels recapitulate this relationship, we constructed

phylograms using the metabolite levels in each organ and found

them largely consistent with the reference phylogeny (Fig-

ure S2A). The brain phylogram had the shortest tip-to-root

branch lengths (Figures S2B and S2C), indicative of small degree

of metabolite divergence (Brawand et al., 2011). The brain sam-

ples also showed highest Spearman correlation coefficients (Fig-

ure 2B) and had the largest proportion of metabolites with high

phylogenetic signals (i.e., Pagel’s lambda > 0.9; Pagel, 1999;

and Blomberg’s K > 1; Blomberg et al., 2003; Figures 2C and

2D), suggesting that brain metabolites are most conserved

among the four organs and have evolved largely according to

the phylogeny. In contrast, themetabolites in the other examined

organs diverge to a much greater extent, possibly due to stron-

ger environmental influence or other selection pressures.

Metabolite Profiles Reflect Organ Functions
The metabolite profile of an organ is expected to reflect its bio-

logical functions. We visualized the distribution of metabolites

on a heatmap (Figure 3A) and used the Wilcoxon rank sum test

to identify metabolites selectively enriched or depleted in a

particular organ (in comparison with at least two other organs;

Table S2A).

18 out of the 19 proteinogenic amino acidsmeasured (cysteine

was not quantified) were found at moderate to high levels in kid-
334 Cell Metabolism 22, 332–343, August 4, 2015 ª2015 Elsevier Inc.
ney relative to the other organs (Table

S2B), likely due to reabsorption at the

renal proximal tubule. One exception

was glutamine (Figure 3B), which is

routinelymetabolized by the kidney for ni-

trogen disposal and acid-base balance.

Glutamine is broken down to ammonia

and glutamate, helping to remove exces-
sive protons and generate bicarbonate ions (van de Poll et al.,

2004).

The metabolite profile of the heart largely reflected its energy

demand. Heart tissue was depleted of amino acids and many

other metabolites but enriched with acylcarnitines (especially

short-chain acylcarnitines; Figure 3C) and triacylglycerols

(TAGs). Acylcarnitines help transport fatty acids across mito-

chondrial inner membranes (Vaz and Wanders, 2002), whereas

carnitine acts as an acetyl group acceptor, buffering the cellular

pool of coenzyme A (CoA) and preventing inhibition of pyruvate

dehydrogenase, especially in tissues dependent on beta-oxida-

tion (Hoppel, 2003).

In contrast, the brain normally relies on glucose for fuel and

contains relatively few TAGs. However, it had high concentra-

tions of glycerophospholipids and a number of sphinogmyelins

(Figure 3D), which are both key constituents of animal cell mem-

branes. In particular, sphingomyelins are mainly found in the

myelin sheaths surrounding nerve cell axons. The neurotransmit-

ters gamma-aminobutyric acid (GABA) and glutamate were also

present at high levels.

Liver was enriched with a wide range of metabolites, including

amino acids, glycerophospholipids, carbohydrates, and steroids

(Table S2B). Some of them were significantly higher than in the

other organs, likely indicative of liver-specific pathways. For

example, sucrose and lactose were found at very high concen-

trations in liver (Figure 3E), as these sugars are not routinely

utilized by the other organs. Bile acid components such as gly-

cocholate, taurocholate, taurodeoxycholate, and taurocheno-

deoxycholate were restricted mostly to liver (Figure 3E), since

primary bile acids are synthesized by liver cells from cholesterol.

We grouped lipids according to LIPID MAPS Classification

System (Experimental Procedures) (Fahy et al., 2007). Within

each category, we compared the relative percentage abundance

of individual lipids in our study with those previously reported in



Figure 3. Distribution of Metabolites across the Organs

(A) The overall pattern visualized on a heat map. Hierarchical clustering was performed on standardized concentrations using average linkage. Each row rep-

resents one metabolite, and each column represents one biological sample. Selected classes of metabolites are highlighted.

(B) Kidney is depleted of glutamine. Each box represents the range of standardized concentrations for a particular amino acid in kidney across the mammals.

(C) Heart is enriched with carnitine and short-chain acylcarnitines. The alternative names are acetylcarnitine (C2 carnitine), propionylcarnitine (C3 carnitine), and

malonylcarnitine (C3-DC carnitine).

(D) Brain is enriched with sphingomyelins (SM) and the neurotransmitter gamma-aminobutyric acid (GABA).

(E) Liver has high levels of sucrose, lactose, and bile acid components.
human plasma (Quehenberger et al., 2010). Significant correla-

tions were observed for TAG, lysophosphatidylcholine (LPC),

phosphatidylcholine (PC), and cholesteryl ester (CE) (see

Experimental Procedures for lipid classification and abbrevia-

tions; Table S2D), suggesting that the overall lipid composition

was conserved across mammals.

Metabolites with Lineage-Specific Changes
Since a particular lineage of mammals often exhibits biological

and physiological features distinctive from the others, we group-

ed the species by taxonomic orders or families and applied

phylogenetic ANOVA (Garland et al., 1993) to determine if the

concentration of a metabolite in one group was significantly

different from the other groups (Table S3).

Bats (order Chiroptera) showed significantly reduced levels

of methionine sulfoxide in both kidney and liver (phylogenetic

ANOVA p value = 0.003 in kidney and 0.002 in liver; Table
Cel
S3A), while their methionine levels were typical of other

mammals (Figure 4A). Methionine sulfoxide is produced by

oxidation of methionine by reactive oxygen species (ROS),

and in most species, its level increases during aging or oxida-

tive stress (Berlett and Stadtman, 1997). Bats are the longest-

lived mammalian order after controlling for the effect of

body size, and there is evidence that they produce less

ROS and are more resistant to oxidative stress. For example,

cave Myotis bats and Mexican free-tailed bats (both with

maximum lifespan potential of 12 years) show lower protein

carbonylation and ubiquitination in liver than mice, and their

cells are more resistant to protein oxidation (Salmon et al.,

2009; Shi et al., 2010). Mitochondria from bat heart also pro-

duce less hydrogen peroxide than those from shrew and

white-footed mouse (Brunet-Rossinni, 2004), although the

differences are less than the divergence in their maximum

lifespans (Buffenstein et al., 2008). Hence, low methionine
l Metabolism 22, 332–343, August 4, 2015 ª2015 Elsevier Inc. 335



Figure 4. Metabolite Patterns Reflect Species Physiology

(A) Bats have low levels of methionine sulfoxide in liver. The error bars indicate SEs (only for those with biological replicates). The species are colored according to

taxonomical orders (same color scheme as in Figure 1A). The bars representing the bats are shaded.

(B) African mole rats have low levels of allantoin in kidney and liver. The bars representing the naked mole rat and Damaraland mole rat are shaded.

(C) Liver allantoin levels correlate positively with uricase expression. The error bars indicate SEs in gene expression measurements (horizontal direction) or in

metabolite measurements (vertical direction). The correlation relationship is robust (correlation coefficients using all points: Pearson = 0.86, Spearman = 0.78;

excluding naked mole rat: Pearson = 0.76, Spearman = 0.74). Gene expression data were not available for Damaraland mole rat.

(D) Use of taurine and glycine for bile acid conjugation among the mammals. The species with known conjugated strategy are highlighted. Square (-), taurine-

conjugation only; triangle (:), glycine-conjugation only; circle (C); both taurine- and glycine-conjugation; cross (3), conjugation strategy unknown.
sulfoxide levels are consistent with reduced oxidative stress

generally observed in bats.

Several genetic and physiological features of African mole rats

(family Bathyergidae) are distinct from those of other rodents

(Fang et al., 2014; Kim et al., 2011), so we compared Bathyergi-

dae against the other examined species (Table S3B), as well as

against the other rodents in this study (Table S3C). Several

metabolites were detected in both comparisons across multiple

organs, including enrichment of acetylglycine (in heart and liver),

enrichment of trimethylamine N-oxide (in brain and heart), and

depletion of allantoin (in brain, heart, kidney, and liver) (Fig-
336 Cell Metabolism 22, 332–343, August 4, 2015 ª2015 Elsevier Inc
ure 4B). This depletion of allantoin in the Bathyergidae is partic-

ularly striking, since other African rodents (in particular the

Cricetidae) excrete high levels of allantoin (Buffenstein et al.,

1985). Using the gene expression data for some of these

species (Fushan et al., 2015), we confirmed the positive correla-

tion between uricase expression and allantoin level in liver

(Pearson correlation coefficient = 0.86, Spearman correlation

coefficient = 0.78; Figure 4C), with particularly low expression

in the naked mole rat. In mammals, degradation of purine pro-

duces urate, which is then converted to allantoin by the enzyme

uricase and excreted in urine (Buffenstein et al., 1985; Ngo and
.



Assimos, 2007). In humans and other higher primates, the gene

coding for uricase is a pseudogene and urate is excreted

instead. However, these genetic changes were not found in the

Africanmole rat enzymes, so the low uricase expression appears

to be achieved by a different mechanism.

Since the mammalian species used in this study include carni-

vores, insectivores, omnivores, and herbivores, we wondered if

the dietary preferences would also be reflected in the metabolic

profiles, especially in terms of different bile acid conjugates. Bile

acids can be conjugated with either taurine or glycine, depend-

ing on their concentrations in liver and affinities for the enzyme

bile acid CoA:amino acid N-acyltransferase. Most animals con-

jugate exclusively with taurine, whereas glycine conjugation is

limited to certain placental mammals and herbivores (Huxtable,

2002; Vessey, 1978). Indeed, in liver, the taurocholate:glycocho-

late ratio correlated positively with the taurine:glycine ratio (Pear-

son correlation coefficient = 0.74; Figure 4D). Rabbit and guinea

pig are known to employ glycine-conjugation only and had low

values for both ratios, while cat, being an obligate carnivore,

was high in both (Figure 4D). Based on the clustering pattern,

hedgehog and shrew (predominantly insectivores), as well as

animals belonging to order Carnivora, probably use taurine

conjugation only, whereas most rodents of the family Muridae

and animals of orders Artiodactyla and Perissodactyla use

both taurine and glycine conjugation (Figure 4D).

Metabolome Remodeling and Longevity Variation
Next, we examined the general trend in longevity and bodymass

across these species. We obtained the traits data from public

databases (Carey and Judge, 2000; Tacutu et al., 2013) and

focused primarily on adult weight (AW) and the longevity metrics

average lifespan (AL), maximum lifespan (ML), female time to

maturity (FTM), as well as their body-mass-adjusted residuals

(i.e., ALres, MLres, and FTMres, respectively) (Table S1A). While

AL and ML are most closely related to the concept of longevity,

FTM can be measured more easily and may be less prone to re-

porting bias. They also correlated strongly with one another

(Pearson correlation coefficient = 0.91 between AL and ML;

0.87 between AL and FTM; 0.84 between ML and FTM). Since

AW correlates positively with lifespan (Figure 1A), the longevity

residuals were computed to remove the body mass influence.

To account for the evolutionary relationship of the species, we

performed regression by phylogenetic generalized least squares

(Felsenstein, 1985; Grafen, 1989) (Table S4). Different models of

trait evolution were tested and within-species variations were

incorporated in the calculation (Supplemental Experimental Pro-

cedures). To assess the result robustness, we applied a two-step

verification procedure (Experimental Procedures). The results

were also adjusted for false discovery rate (‘‘q value’’) and tabu-

lated across the organs and traits (Table S4).

When the results were visualized on a heatmap (Figure 5A), a

few observations became apparent. Within each organ, the cor-

relations with the longevity metrics were largely consistent.

Although the reported lifespan data were obtained from different

databases andmight not be entirely accurate, they did not signif-

icantly affect the calculated correlation, suggesting the results

were robust to sample variation or slight measurement inaccu-

racy. On the other hand, the patterns were rather distinct across

the four organs, suggesting the metabolites in different organs
Cel
may follow different trajectories during evolution. By pooling

the top hits (p value.robust < 0.01) of the two sets of longevity

metrics (i.e., combining AL, ML, and FTM as one set; ALres,

MLres, and FTMres as the other set), a number of positively

and negatively correlating pathways were found to be enriched

in each organ (Figure 5B).

Body Mass and Longevity Signatures
With respect to AW, creatinine (Crn) showed significant positive

correlation in all four organs (p value.robust <10�8; Figure 5C). A

related metabolite, creatine (Cr), also emerged as a top hit in

heart and liver (Table S4). It is well known that urinary and serum

Crn levels increase with body mass (especially lean body mass)

(Forbes and Bruining, 1976), as most Crn is derived from Cr in

skeletal muscles and larger animals tend to have greater muscle

mass. On the other hand, several glycerophospholipids (e.g.,

C16:0 LPE, C22:6 LPE, C18:0 LPC, and C22:6 LPC) negatively

correlated with body mass, especially in brain and heart (Fig-

ure 5B; Table S4). A number of TAGs showed significant but

opposite trends in heart (positive correlation) and kidney (nega-

tive correlation) (Figure 5B).

In terms of the longevity traits, a negative correlation was

observed for amino acids, LPC, lysophosphatidylethanolamine

(LPE), and metabolites involved in thiamine metabolism,

whereas a positive correlation was observed mainly for sphingo-

myelin (SM) (Figure 5B). LPC and LPE are generated by

phospholipase-dependent hydrolysis of PC and phosphatidyl-

ethanolamine (PE), respectively. Phospholipase A2 (PLA2) activ-

ity releases fatty acids such as arachidonic acid from the sn-2

position of the glycerol backbone of phospholipids and is

commonly associated with inflammatory signaling inmammalian

tissues. For example, elevated circulating lipoprotein-associ-

ated PLA2 activity is linked to coronary artery disease in humans

(Rosenson and Stafforini, 2012), supporting a potential inverse

relationship between phospholipase activities (and hence LPC

and LPE levels) and longevity.

Similar to the situation with body mass, TAG as a whole

showed opposing trends to longevity in heart (positive) and kid-

ney (negative). Closer examination revealed that the negative

correlations in kidney were largely attributed to TAGwith polyun-

saturated fatty acid (PUFA) side chains (i.e., multiple double

bonds; Figure 5D), whereas the positive correlations in heart

were due to TAG with saturated or monounsaturated fatty acid

(MUFA) side chains. A recent study on human plasma lipidomes

of middle-aged offspring of nonagenarians revealed a signature

of 19 lipid species associating with female familial longevity,

including high levels of SM and low levels of PUFA TAG (Gonza-

lez-Covarrubias et al., 2013). Analysis of phospholipids in heart

of a number of mammals also revealed a negative correlation be-

tween double-bond content and ML (Pamplona et al., 2000).

Naked mole rat tissues contain much lower levels of docosahex-

aenoic-acid-containing (with six double bonds) phospholipids

compared to mouse (Mitchell et al., 2007). Since PUFAs are

particularly sensitive to peroxidation damage, the reduced level

of polyunsaturated TAG in long-lived species may reflect their

enhanced resistance to oxidative stress.

Allantoin correlated negatively with longevity in brain, kidney,

and liver, whereas urate showed some moderate positive corre-

lation (Table S4H). Furthermore, the urate:allantoin ratio showed
l Metabolism 22, 332–343, August 4, 2015 ª2015 Elsevier Inc. 337



Figure 5. Metabolites Correlating with Body

Mass and Longevity

(A) Overview of correlation with body mass and

longevity. The grids represent the robust regres-

sion p value (‘‘p value.robust’’) betweenmetabolite

levels in each organ and the indicated traits (AW,

adult weight; AL, average lifespan; ML, maximum

lifespan; FTM, female time to maturity; ALres,

average lifespan residual; MLres, maximum life-

span residual; FTMres, female time to maturity

residual). Only p value.robust < 0.01 are shown in

color, with positive correlation in red and negative

correlation in blue. Selected classes of metabo-

lites are highlighted by rows (same color scheme

as in Figure 3A). See Table S4H for more details.

(B) Top pathways correlating with body mass

and longevity. The grids represent the pathway

enrichment analysis p values (only p values < 0.01

are shown in color), with positive correlation in red

and negative correlation in blue. For the purpose of

enrichment analysis, the top hits (p value.robust <

0.01) in AL, ML, and FTM were pooled together,

and the top hits in ALres, MLres, and FTMres were

also pooled together. ‘‘Monounsaturated TAG’’

refers to TAG with at most two double bonds in

total. ‘‘Polyunsaturated TAG’’ refers to TAG with

three or more double bonds. See Table S4J for

more details.

(C) Liver creatinine level correlates positively

with AW. The vertical error bars indicate SE. The

points are colored according to taxonomical

orders (same color scheme as in Figure 1A).

Regression p value.robust = 1.01 3 10�10;

p value.max = 4.20 3 10�10.

(D) Kidney C56:4 TAG level correlates negatively

with average lifespan. Regression p value.robust =

9.75 3 10�3; p value.max = 3.70 3 10�2.

(E) Kidney urate:allantoin ratio correlates positively

with maximum lifespan residual. The points

representing the naked mole rat and the Dam-

araland mole rat are indicated. Regression

p value.robust = 8.41 3 10�6; p value.max =

1.60 3 10�4.

(F) Liver kynurenine:tryptophan ratio correlates

negatively with maximum lifespan. Regression

p value.robust = 7.23 3 10�3; p value.max =

1.89 3 10�2.
significant positive correlation with ML, ALres, and MLres in kid-

ney (p value.robust < 10�3; Figure 5E), indicating that long-lived

mammals had higher urate and lower allantoin levels. The ranges

of p values in kidney remain significant even when each species

was left out one at a time (p value.max = 1.21 3 10�2 for ML,

1.89 3 10�3 for ALres, and 1.60 3 10�4 for MLres; Table S4H),

so the observation is generally applicable across the examined

mammals and does not depend on any particular species. A pre-

vious study in primate and non-primate mammals also found a

significant positive correlation between ML potential and urate

concentration in serum and brain per specific metabolic rate

(Cutler, 1984). Interestingly, humans have the highest serum

urate level and are the longest-lived primates (Cutler, 1984).

The naked mole rat, the longest-lived rodent, also had very low

levels of uricase expression in liver (Figure 4C). Allantoin can
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also be produced from urate by free radical oxidation (Kaur

and Halliwell, 1990), and studies on human samples suggest

high allantoin level may be a marker of oxidative stress (Kand’ár

and Záková, 2008; Yardim-Akaydin et al., 2006).

Liver concentrations of two tryptophan degradation products,

anthranilic acid and kynurenine, showed a robust negative corre-

lation with longevity (Table S4H). Over 95% of free tryptophan is

degraded via the kynurenine pathway, with the first rate-limiting

step catalyzed by indoleamine 2,3-dioxygenase (IDO) or trypto-

phan 2,3-dioxygenase (TDO). Anthranilic acid is produced from

enzymatic hydrolysis of kynurenine. Several studies have linked

tryptophan metabolism to aging and longevity. Knockdown of

tdo-2 gene in C. elegans can suppress the toxicity of aggrega-

tion-prone proteins and extend lifespan (van der Goot et al.,

2012). Fruit flies with TDO deficiency live significantly longer
.



than wild-type controls (Oxenkrug, 2010). In mammals, reducing

dietary tryptophan can extend lifespan and delay age-related

changes in rats and mice (De Marte and Enesco, 1986; Segall

and Timiras, 1976), and the kynurenine:tryptophan ratio in hu-

mans increases with aging (Capuron et al., 2011; Frick et al.,

2004). In agreement, we also observed significant negative

correlation with longevity for the kynurenine:tryptophan ratio

and the anthranilic acid:tryptophan ratio in liver (Figure 5F;

Table S4H).

Reducing dietary amino acids levels has proved effective in

lifespan extension (Grandison et al., 2009; Lee et al., 2014; Min

and Tatar, 2006). Here, the amino acids in brain showed negative

correlation predominantly with FTM and FTMres (Table S4H),

implying that mammals that mature more slowly (and which

are usually also longer-lived) tend to have lower levels of brain

amino acids. The levels of branched chain amino acids such

as leucine and isoleucine are also low in long-lived Ames dwarf

mice (Wijeyesekera et al., 2012), which are defective in adenohy-

pophyseal development and have stunted growth. 4-pyridoxate

(catabolite of vitamin B6) in brain and thiamine (vitamin B1) in kid-

ney and liver also negatively correlated with lifespan (Table S4H).

They are required, respectively, for the synthesis of pyridoxal

phosphate (PLP) and thiamine pyrophosphate (TPP), which are

the essential cofactors for many enzymes involved in amino

acid metabolism (Eliot and Kirsch, 2004; Lonsdale, 2006). Over-

all, the result is consistent with reduced rate of mass-specific

metabolism in longer-lived mammals.

Insights from the Analysis of Long-Lived Mouse Models
To compare our results with established long-lived animal

models, we performed metabolite profiling on brain and liver tis-

sues of mice under caloric restriction (CR), rapamycin treatment

(RAP), and acarbose treatment (ACA), as well as GHRKO and

Snell dwarf mice (Snell), against their respective wild-type

controls under control diets (Table S1B). Five age-matched

(�1 year old when sacrificed) biological replicates were collected

for each condition, with both males and females for CR, RAP,

and ACA and males only for GHRKO and Snell (Table S1B). In

total, 358 metabolites were reliably quantified across the 120

samples, and 241 of these metabolites overlapped with the

mammalian dataset (Figure S3).

We identified the metabolites differentially distributed be-

tween the long-lived mouse models and the corresponding con-

trols and performed pathway enrichment analysis (Figures 6A

and 6B; Table S5). The long-lived mouse model dataset clus-

tered with the mouse data in the mammalian dataset (Figure 6C),

indicating the overall metabolic signatures inherent in the spe-

cies were well preserved. Interestingly, while a significant num-

ber of top hits were found in liver, the brain metabolite levels

did not change much between the treatment and control (Fig-

ure 6A), and they were more conserved than those in liver

(Figure S3B). The blood-brain barrier may help keep the brain

metabolism in tight homeostasis and refractory to external mod-

ulations. The only exceptionwas the Snell mice, which are defec-

tive in anterior pituitary development. Compared to control, the

brain of Snell mice exhibits a shift from oxidative phosphorylation

toward glycolysis (Figure 6B).

In liver, CR, ACA, and Snell mice produced very similar meta-

bolic shifts, and these patterns were observed in both males and
Cel
females (Figures 6A and 6B). Remarkably, there was extensive

reduction in PUFA TAG levels across all these three models (Fig-

ures 6B and 6D; Table S5C), which was consistent with the

longevity signature we identified across the mammalian species

and may indicate reduced susceptibility to peroxidation damage

and oxidative stress in the long-lived mice. While the low PUFA

TAG levels might be partly explained by the lower body weights

of these long-lived mice, this signature was not observed in

GHRKOdwarf mice or in RAPmice. Therewere no significant dif-

ferences in body weight among CR, RAP, and ACA in either

gender (Figure S3C). In addition, the long-lived mouse models

exhibited elevated levels of SM (in particular C14:0 SM, C16:0

SM, C18:0 SM and C18:1 SM), which also showed positive cor-

relation in longevity in the mammalian species dataset. Previ-

ously, SM levels were reported to be low in old mice but at

normal levels in those under chronic CR (De Guzman et al.,

2013) and were found to be high in the serum of centenarians

(Montoliu et al., 2014). High SM levels are also associated with

human female familial longevity (Gonzalez-Covarrubias et al.,

2013). Sphingosine-linked fatty acids like ceramides are often re-

garded as ‘‘damage-associated molecular patterns’’ and may

cause inflammatory damage by activating Nlrp3 inflammasome

(De Guzman et al., 2013; Vandanmagsar et al., 2011). Elevated

SM levels may also reflect reduced turnover to ceramides.

Other similarities as well as differences exist between our two

datasets and those in the literature. For example, methionine is

found at high levels in long-lived Ames dwarf mice, which may

represent an increased methionine flux to transsulfuration and

improved oxidative stress resistance (Wijeyesekera et al.,

2012). Methionine level is also high in brain of male CR mice

and liver of female ACA mice (Table S5). LPC levels were previ-

ously found to decrease with age but maintained in CR mice (De

Guzman et al., 2013); in both our datasets they were low in long-

lived animals. Furthermore, the mammalian dataset signatures

of high urate:allantoin ratio and low kynurenine:tryptophan ratio

were either insignificant or showed the opposite trends in the

mouse models (Table S5).

To quantify the similarity between the longevity signatures

from our two datasets, we counted the number of top hits in

both datasets that had the same direction of correlation to

longevity and compared that with the probability of getting

similar results by chance (Tables S5G–S5I). The liver signatures

of Snell, CR, and ACAmice matched very well to those based on

AL, ML, and FTM in kidney of the mammalian dataset (Figure 6E;

Tables S5H and S5I). In addition, these liver signatures also clus-

tered together (Figure 6F), suggesting lifespan extension by CR,

acarbose treatment, and in Snell mutants may affect certain

common pathways, where rapamycin treatment and growth hor-

mone receptor knockout may achieve lifespan extension via

different mechanisms.

DISCUSSION

Mammals have diversified dramatically over the tens of millions

of years of evolution with remarkably different longevity profiles.

How are their lifespans modulated by evolution while preserving

competitiveness within their ecological niches? Which metabo-

lites are involved and, more generally, how is metabolism

adjusted in order to increase lifespan? While most of the
l Metabolism 22, 332–343, August 4, 2015 ª2015 Elsevier Inc. 339



Figure 6. Metabolites Differentially Distrib-

uted in Long-Lived Mouse Models

(A) Overview of metabolite differential distribution.

The grids represent the linear model p values for

differential distribution in the indicated long-lived

mousemodels with respect to their corresponding

controls in brain and liver (CR, caloric restric-

tion; RAP, rapamycin treatment; ACA, acarbose

treatment; GHRKO, growth hormone receptor

knockout; Snell, Snell dwarf mouse; F, female;

M, male). Only p values < 0.01 are shown in color,

with positive correlation in red and negative cor-

relation in blue. Selected classes of metabolites

are highlighted by rows (same color scheme as in

Figure 3A). See Table S5C for more details.

(B) Top enriched pathways. The grids represent

the pathway enrichment analysis p values (only

p values < 0.01 are shown in color), with positive

correlation in red and negative correlation in blue.

For brain, only Snell is shown. See Table S5F for

more details.

(C) Long-lived mouse model data cluster well with

mammalian species data. Values in parenthesis

indicate the percentage of variance explained by

each principal component (PC). Biological repli-

cates were treated as individual points.

(D) Liver C56:4 TAG level across the long-lived

mouse models. C56:4 TAG levels were significant

lower in CR(F) (p value = 2.21 3 10�5), CR(M)

(p value = 8.17 3 10�3), ACA(F) (p value = 7.22 3

10�3), and Snell (p value = 9.073 10�5), compared

to their respective controls.

(E) Overlap among longevity signatures. Between

each pair of comparison, the numbers of metab-

olites with matching and opposite direction of

correlation to longevity were calculated. p value

was based on binomial statistics, assuming equal

probability of getting a match or a mismatch by

chance. Only p values < 0.01 are shown in color.

See Table S5H for more details.

(F) Hierarchical clustering of the long-lived mouse

models. The distance matrix is based on the

similarity among the longevity signatures (i.e.,

pairwise binomial p values; Table S5H). Only the

liver data are shown. The mouse models are as

shown above.
research on the control of lifespan was performed on single-

model organisms, our study addressed these questions by

analyzing metabolite levels in several organs across the class

of Mammalia. We found that metabolites in brain diverged less

than in the other examined organs and the organ-differential dis-

tribution of metabolites represented their respective biological

functions. The lineage-specific metabolite features we identified

reflect known physiology of animals (e.g., low oxidative stress in

bats) and also offer some new insights (e.g., bile acid conjugation

strategies among mammals and diminished conversion of urate

to allantoin in African mole rats). With regard to the longevity

traits, we identified metabolites previously implicated in lifespan

control as well as several new candidates. In particular, long-

lived mammals were associated with low polyunsaturated

TAGs, low tryptophan degradation products, and low brain

amino acids, as well as high sphingomyelin levels and a high

urate:allantoin ratio. Comparison of our signatures with the

metabolite changes in long-lived mouse models indicated
340 Cell Metabolism 22, 332–343, August 4, 2015 ª2015 Elsevier Inc
some overlap with mice under CR, mice treated with acarbose,

and Snell dwarf mice, especially for decrease in polyunsaturated

TAGs and increase in sphingomyelin. Similar changes were also

previously reported in studies on human centenarians and other

long-lived animal models. Furthermore, these three mouse

models produced metabolite signatures distinct from those

observed in rapamycin treatment and GHRKO mice, so the life-

span extension effects may have been achieved via different

mechanisms.

Our study also reveals some unexpected complexities in

analyzing metabolites and longevity. While some metabolites

show consistent correlation with longevity traits across multiple

organs, many patterns seem to be organ specific. In the long-

lived mouse models, many liver metabolites change significantly

compared to the controls, but the brain exhibits very little pertur-

bation. Furthermore, the longevity signatures in liver of the long-

lived mouse models matched with the kidney (but not liver)

signature across the mammalian species, suggesting certain
.



aspects of the mammalian longevity signatures may be distinct

from the long-lived mouse models. In addition, the molecular

mechanisms underlying the lifespan extension in these mouse

models are not yet well delineated, and differences among

various long-livedmousemodels have been previously reported.

For example, in heart, kidney, and liver tissues, Snell and

GHRKO mice showed different levels of chaperone mRNAs

(Swindell et al., 2009). A low-calorie diet is beneficial to Ames

dwarf mice (Bartke et al., 2001), but not to GHRKO mice (Bon-

kowski et al., 2009). Expression of genes related to xenobiotic

detoxification in liver are distinctly different among rapamycin-

treated mice, CR mice (Miller et al., 2014), and GHR-deletion

mice (Li et al., 2013). CRmice also differ from rapamycin-treated

mice in terms of leptin, FGF-21, and glucose tolerance (Lamming

et al., 2013; Miller et al., 2014).

Compared with research that focuses on a single species, the

current study benefited from the large effects of trait differences.

While various factors such as feeding status, circadian cycle,

gender, and body weight differences can introduce additional

noise, ANOVA suggests that the variation between different spe-

cies is generally much greater than the variation among repli-

cates of the same species. Even with the ablation of GHR or

anterior pituitary, the brain and liver profiles of the long-lived

mice still clustered well with the mouse data in the mammalian

dataset, and very similar longevity signatures were also obtained

from both males and females of the same long-lived model.

However, our study also suffers from a number of limitations.

The current study does not prove causality between the metab-

olites and longevity traits, as the metabolite levels may influence

and also be influenced by longevity. The number of metabolites

quantified here only represents a fraction of the entire metabo-

lome space and potentially important candidates may have

beenmissed by our targeted approach. Manymetabolites corre-

lated strongly among one another and can inflate the signals

observed. Themetabolic fluxes through pathways and themeta-

bolic changes during aging would not be reflected in our data

either. While the biological implications of many metabolites

identified here are far from fully understood, our study provides

the first report of metabolite signatures of longevity across the

mammalian spectrum, from which future studies should benefit.
EXPERIMENTAL PROCEDURES

Targeted metabolite profiling using three liquid chromatography-mass spec-

trometry (LC-MS)methods (Townsend et al., 2013) was applied to characterize

metabolites and lipids in brain, heart, kidney, and liver of 26 mammalian spe-

cies, as well as brain and liver tissues of five long-lived mouse models (Table

S1). For the mammalian species, guinea pig, rabbit, hamster, gerbil, and rat

were purchased from Charles River; naked mole rat, Damaraland mole rat,

mouse, white-footed mouse, shrew, primates, and bats were from our labora-

tories; and other species were as described previously (Fushan et al., 2015).

The samples were homogenates of freshly frozen tissues of sacrificed animals,

matched by age and sex; biological replicates (i.e., samples from multiple in-

dividuals of a species) were obtained for most species. All long-lived mouse

models as well as genotype and diet matched controls were from the colonies

at University of Michigan Medical School. Liver and brain cortex samples were

taken at 12months of age frommale and female mice treated from 4months of

agewith rapamycin (14.7 ppm, as inMiller et al., 2014) or acarbose (1,000 ppm,

as in Harrison et al., 2014), from mice subjected to 40% dietary restriction, or

from untreated littermate control mice of the genetically heterogeneous stock

UM-HET3. Liver and brain cortex samples from Snell dwarf (Flurkey et al.,
Cel
2001) and GHRKO (Coschigano et al., 2003) males, and their corresponding

littermate controls, were taken from young adults aged 4–6 months. Stringent

filtering, processing, and normalization procedures were applied to generate

the metabolome datasets (Data S1 and S2). Data quality was assessed graph-

ically (Figures S1 and S3).

Most of the phylogenetic and statistical analysis was performed using R

packages ‘‘phytools’’ (Revell, 2012) and ‘‘phylolm’’ (Ho and Ané, 2014). Based

on LIPIDMAPS Classification System (Fahy et al., 2007), we grouped the lipids

as acylglycerols (diacylglycerol [DAG] and TAG), glycerophospholipids (PC,

PE, LPC, and LPE), sphingolipids (SM), and sterols (CE). Pathway enrichment

statistics were based on hypergeometric distribution and a 5,000-time boot-

strap procedure. For organ-differential distribution, we required a metabolite

to reach statistical significance in at least 2 organ pairs to qualify as a hit. To

identify lineage-specific distribution, a chosen group (based on taxonomical

order or family) was compared against all other species (unless otherwise

stated) by phylogenetic ANOVA.

Regression by generalized least-squares method was used to identify cor-

relation between longevity traits and metabolite levels and test four models

of trait evolution (Supplemental Experimental Procedures). We evaluated

the robustness of our results using a two-step verification procedure. First,

regression was repeated by excluding the point with largest residue error

(‘‘p value.robust’’), so that the overall relationship was not skewed by a poten-

tial outlier. Next, each species was left out, one at a time, and regression was

performed on the remaining species to calculate the maximal (i.e., least signif-

icant) p value (‘‘p value.max’’), ensuring that the correlation was generalizable

and did not depend on a single species. For the long-lived mouse models,

differentially distributed metabolites between treatment and the correspond-

ing control samples were identified. Overlap among the longevity signatures

was assessed by binomial statistics and a 5,000-times bootstrap. Detailed

experimental procedures can be found in Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, five tables, and two datasets and can be found with this article

online at http://dx.doi.org/10.1016/j.cmet.2015.07.005.
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Barberger-Gateau, P., Layé, S., and Fuchs, D. (2011). Chronic low-grade

inflammation in elderly persons is associated with altered tryptophan and tyro-

sine metabolism: role in neuropsychiatric symptoms. Biol. Psychiatry 70,

175–182.

Carey, J.R., and Judge, D.S. (2000). Longevity Records: Life Spans of

Mammals, Birds, Amphibians, Reptiles, and Fish (Odense: Odense

University Press).

Coschigano, K.T., Holland, A.N., Riders, M.E., List, E.O., Flyvbjerg, A., and

Kopchick, J.J. (2003). Deletion, but not antagonism, of the mouse growth

hormone receptor results in severely decreased body weights, insulin, and in-

sulin-like growth factor I levels and increased life span. Endocrinology 144,

3799–3810.

Cutler, R.G. (1984). Urate and ascorbate: their possible roles as antioxidants

in determining longevity of mammalian species. Arch. Gerontol. Geriatr. 3,

321–348.

De Guzman, J.M., Ku, G., Fahey, R., Youm, Y.H., Kass, I., Ingram, D.K., Dixit,

V.D., and Kheterpal, I. (2013). Chronic caloric restriction partially protects

against age-related alteration in serum metabolome. Age (Dordr.) 35, 1091–

1104.

De Marte, M.L., and Enesco, H.E. (1986). Influence of low tryptophan diet on

survival and organ growth in mice. Mech. Ageing Dev. 36, 161–171.

Eliot, A.C., and Kirsch, J.F. (2004). Pyridoxal phosphate enzymes: mecha-

nistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73,

383–415.

Fahy, E., Sud, M., Cotter, D., and Subramaniam, S. (2007). LIPID MAPS online

tools for lipid research. Nucleic Acids Res. 35, W606–W612.

Fang, X., Seim, I., Huang, Z., Gerashchenko, M.V., Xiong, Z., Turanov, A.A.,

Zhu, Y., Lobanov, A.V., Fan, D., Yim, S.H., et al. (2014). Adaptations to a sub-

terranean environment and longevity revealed by the analysis of mole rat ge-

nomes. Cell Rep. 8, 1354–1364.

Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat.

125, 1–15.

Flurkey, K., Papaconstantinou, J., Miller, R.A., and Harrison, D.E. (2001).

Lifespan extension and delayed immune and collagen aging in mutant mice

with defects in growth hormone production. Proc. Natl. Acad. Sci. USA 98,

6736–6741.

Flurkey, K., Astle, C.M., and Harrison, D.E. (2010). Life extension by

diet restriction and N-acetyl-L-cysteine in genetically heterogeneous mice.

J. Gerontol. A Biol. Sci. Med. Sci. 65, 1275–1284.

Forbes, G.B., and Bruining, G.J. (1976). Urinary creatinine excretion and lean

body mass. Am. J. Clin. Nutr. 29, 1359–1366.

Frick, B., Schroecksnadel, K., Neurauter, G., Leblhuber, F., and Fuchs, D.

(2004). Increasing production of homocysteine and neopterin and degradation

of tryptophan with older age. Clin. Biochem. 37, 684–687.
342 Cell Metabolism 22, 332–343, August 4, 2015 ª2015 Elsevier Inc
Friedman, D.B., and Johnson, T.E. (1988). A mutation in the age-1 gene in

Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility.

Genetics 118, 75–86.

Fushan, A.A., Turanov, A.A., Lee, S.G., Kim, E.B., Lobanov, A.V., Yim, S.H.,

Buffenstein, R., Lee, S.R., Chang, K.T., Rhee, H., et al. (2015). Gene expression

defines natural changes in mammalian lifespan. Aging Cell 14, 352–365.

Garland, T., Dickerman, A.W., Janis, C.M., and Jones, J.A. (1993).

Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42,

265–292.

Gonzalez-Covarrubias, V., Beekman, M., Uh, H.W., Dane, A., Troost, J.,

Paliukhovich, I., van der Kloet, F.M., Houwing-Duistermaat, J., Vreeken,

R.J., Hankemeier, T., and Slagboom, E.P. (2013). Lipidomics of familial

longevity. Aging Cell 12, 426–434.

Grafen, A. (1989). The phylogenetic regression. Philos. Trans. R. Soc. Lond. B

Biol. Sci. 326, 119–157.

Grandison, R.C., Piper, M.D., and Partridge, L. (2009). Amino-acid imbalance

explains extension of lifespan by dietary restriction in Drosophila. Nature 462,

1061–1064.

Harrison, D.E., Strong, R., Sharp, Z.D., Nelson, J.F., Astle, C.M., Flurkey, K.,

Nadon, N.L., Wilkinson, J.E., Frenkel, K., Carter, C.S., et al. (2009).

Rapamycin fed late in life extends lifespan in genetically heterogeneous

mice. Nature 460, 392–395.

Harrison, D.E., Strong, R., Allison, D.B., Ames, B.N., Astle, C.M., Atamna, H.,

Fernandez, E., Flurkey, K., Javors, M.A., Nadon, N.L., et al. (2014). Acarbose,

17-a-estradiol, and nordihydroguaiaretic acid extend mouse lifespan prefer-

entially in males. Aging Cell 13, 273–282.
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SUPPLEMENTAL INFORMATION 

 

 
 

 
 

Figure S1, related to Figure 2. Mammalian species dataset quality assessment.  

(A) Number of metabolites with missing values in each organ. Those metabolites with 

more than 20% missing values were excluded from analysis.  

(B) Coefficient of variation among biological replicates. Coefficient of variation was 

computed as standard deviation divided by mean, using only those samples with biological 

replicates. The 90
th

 percentile was 0.06 and 95
th

 percentile was 0.08.  

(C) Percentage of total variation in metabolite levels attributed to organ, species, and 

biological replicates. The plot indicates the percentage of total sum of squares in analysis of 

variance (ANOVA) attributed to the respective factors. The model “Metabolite Level ~ 

Organ + Species + Organ:Species” was fitted to each metabolite across the four organs 

(“Organ:Species” denotes the interaction term).  

(D) Percentage of total variation in metabolite levels in each organ attributed to species 

and biological replicates. The model “Metabolite Level ~ Species” was fitted to each 

metabolite within the indicated organ. 

 





Figure S2, related to Figure 2. Metabolite divergence in mammalian organs. 

 (A) Phylograms based on metabolite levels in each organ. The trees were constructed by 

neighbor joining method using a distance matrix of 1 minus Spearman correlation 

coefficients. Biological replicates were treated as individual tips and the branches were 

colored according to taxonomical orders. Colors of nodes indicate 1000-time bootstrap values.  

(B) and (C) Metabolites diverge least in brain. The average tip-to-root branch lengths 

excluded the branch leading to sugar glider (the out-group). The box plot represents the 

results of 1000 trees generated by bootstrap in each organ, using (B) all the species available 

or (C) only those species common to all the four organs. The central bands indicate median 

values and the whiskers indicate 5th and 95th percentiles. Wilcoxon rank sum test p values < 

2×10
-16

 (Bonferroni-adjusted) for brain versus each of the other organs.  

(D) Simulation of tip-to-root branch lengths. The box plot represents the results of 1000 

phylograms based on simulated data. For “Brownian motion”, the reference phylogenetic tree 

was used directly (i.e. trait evolution follows phylogeny). For “OU model”, the tree was 

transformed with a restraining force (α=1) to mimic the Ornstein-Uhlenbeck (OU) process. 

For “Pagel model”, the tree was transformed by Pagel’s lambda (λ=0.5). For “Random 

noise”, random normal variables with mean 0 and standard deviation 1 were added to the 

simulated data from “Brownian motion” to mimic the effect of non-phylogenetic variation. 

  

  



 

Figure S3, related to Figure 6. Long-lived mouse model dataset quality assessment.  

(A) Coefficient of variation among biological replicates. The 90
th

 percentile was 0.05 and 

95
th

 percentile was 0.07.  

(B) Spearman correlation coefficients among brain samples and among liver samples.  

(C) Weights of the animals of the long-lived models. In both male and female, there is no 

significant difference in weights among mice under caloric restriction (CR), rapamycin 

treatment (RAP) and acarbose treatment (ACA) (pairwise t-test p value > 0.05).  

Clustering of the samples in (D) brain and (E) liver. The samples are colored by treatment 

types. The hierarchical clustering was based on 1 minus Spearman correlation coefficient and 

used complete linkage. 

  



Data S1, related to Figure 2. 26 mammalian species metabolite data.  

(A) Raw values.  

(B) Metabolite annotation.  

(C) Normalized data. 

 

 

Data S2, related to Figure 6. 5 long-lived mouse models metabolite data.  

(A) Raw values.  

(B) Metabolite annotation.  

(C) Normalized data. 

 

 

Table S1, related to Figures 1 and 6. 26 mammalian species and 5 long-lived mouse 

models examined in this study. 
(A) 26 mammalian species samples and life history traits. Adult Weight (AW), Maximum 

Lifespan (ML) and Female Time to Maturity (FTM) were obtained from AnAge database 

(Tacutu et al., 2013). Average Lifespan (AL) were obtained from Longevity Records of Max 

Planck Institute for Demographic Research (Carey and Judge, 2000). Maximum Lifespan 

Residuals (MLres), Female Time to Maturity Residuals (FTMres), and Average Lifespan 

Residual (ALres) were computed using the following allometric equations: ALres = 

AL/(2.16×AW
0.205

); MLres = ML/(4.88×AW
0.153

); FTMres = FTM/(78.1×AW
0.217

).  

(B) Five long-lived mouse models. Sex, age of sacrifice and weight are indicated. 

 

 

Table S2, related to Figure 3. Metabolites and pathways enriched or depleted in 

individual organs.  

(A) P values of all pairwise comparisons. Wilcoxon rank sum test was applied to compare 

metabolite levels across brain (br), heart (ht), kidney (kd), and liver (lv), using only those 

metabolites quantified in all four organs. Data from the same animal were considered as 

paired. The test was performed on all possible combinations of organ pairs. For example, “br-

ht” refers to the one-way test for the enrichment in brain relative to heart (i.e. null hypothesis: 

concentration of the element in brain is not greater than that in heart; alternative: 

concentration of the element in brain is greater than that in heart). Similarly, “ht-br” refers to 

the one-way test for enrichment in heart relative to brain. 

(B) Result summary in each organ. Metabolites are shown as “Enriched” or “Depleted” in 

an organ if the levels were statistically significant (Bonferroni adjusted p value < 0.05) 

compared to at least 2 other organs. “Number” indicates the number of organs relative to 

which the metabolite is significantly enriched or depleted. 

(C) Pathway enrichment in each organ. Pathway enrichment p values (“P Value”) were 

based on hypergeometric distribution and adjusted for false discovery rate (“Adj P Value”). A 

5000-time bootstrap procedure was also performed to compute the bootstrap p values 

(“Bootstrap P Value”). 

(D) Correlation between the abundance of lipids measured in our study and previously 

reported lipids in human plasma. Human plasma data are based on Quehenberger et al., 

2010. For each class of lipid molecules, the relative percentage abundance of individual lipid 

molecules in a mammalian species in brain, heart, kidney, or liver was computed and 

compared with that reported in human plasma. Pearson and Spearman correlation coefficients 

between the observed and the reported abundance were calculated. The 25
th

, 50
th

 and 75
th

 

percentiles of the correlation coefficients (across all the mammalian species) are shown 

below. Coefficients > 0.60 are highlighted in bold. 



 

 

Table S3, related to Figure 4. Lineage-differential distribution of metabolites by 

phylogenetic ANOVA. Only those with phylogenetic p value < 0.05 are shown. 

(A) Comparing Chiroptera against all other species. 

(B) Comparing Bathyergidae against all other species. 

(C) Comparing Bathyergidae against all other Rodentia. 

(D) Comparing Rodentia against all other species. 

 

 

Table S4, related to Figure 5. Metabolites with significant correlation to body mass and 

longevity traits. 

Phylogenetic regression was performed on each metabolite in each organ against (A) 

Adult Weight (AW); (B) Average Lifespan (AL); (C) Maximum Lifespan (ML); (D) 

Female Time to Maturity (FTM); (E) Average Lifespan Residual (ALres); (F) 

Maximum Lifespan Residual (MLres); and (G) Female Time to Maturity Residual 

(FTMres). Four trait evolution models were tested (“Null”, “BM”, “lambda”, “OU”) and the 

best-fit model was selected by maximum likelihood. “coef.all”, “p value.all”, “q value.all”: 

the regression slope, p value, and false discovery rate (FDR) adjustment q value when all the 

data points were used in regression. “coef.robust”, “p value.robust”, “q value.robust”: the 

regression slope, p value and q value after the point with the largest residual error was 

removed. “p value.max” and “q value.max”: the maximal (least significant) regression p 

value and q value when each one of the species was left out, one at a time. Only those 

metabolites with p value.robust < 0.01 are shown. 

(H) Summary of regression p value.robust. The p value.robust in (A) to (G) are tabulated 

for comparison. For those with positive correlation, the values are rendered positive. For 

those with negative correlation, the values are rendered negative.  

(I) Pathway enrichment on the top hits in each organ. In each organ, the top hits in AL, 

ML and FTM were pooled together, and the top hits in ALres, MLres, and FTMres were 

pooled together. Enrichment analysis was performed separately for those with positive 

correlation and those with negative correlation. 

(J) Summary of pathway enrichment p value. The p value in (I) are tabulated for 

comparison. For those with positive correlation, the values are rendered positive. For those 

with negative correlation, the values are rendered negative.  

 

 
Table S5, related to Figure 6. Metabolites differentially distributed in long-lived mouse 

models. 

Metabolites differentially distributed in (A) brain samples and (B) liver samples. 

Differential distribution was calculated with respect to the matching controls. Only those 

metabolites with p value < 0.01 are shown. CR: caloric restriction; RAP: rapamycin treatment; 

ACA: acarbose treatment; GHRKO: growth hormone receptor knockout; Snell: Snell dwarf 

mouse; F: female; M: male. 

(C) Summary of differential distribution p values. The p values in (A) and (B) are 

tabulated for comparison. For those with positive correlation, the values are rendered positive. 

For those with negative correlation, the values are rendered negative. 

Pathway enrichment on the top hits in (D) brain samples and (E) liver samples. For 

brain, enrichment was performed only on “Brain.Snell”, as the other samples in brain did not 

give sufficient numbers of enriched metabolites. Similarly, for liver “Liver.RAP.M” was also 

omitted. 



(F) Summary of pathway enrichment p value. The p value in (D) and (E) are tabulated for 

comparison. For those with positive correlation, the values are rendered positive. For those 

with negative correlation, the values are rendered negative.  

 (G) Overlap of longevity signatures based on mammalian species dataset and long-lived 

mouse models dataset. The p values in Table S4H and S5C are tabulated for comparison. 

For those with positive correlation, the values are rendered positive. For those with negative 

correlation, the values are rendered negative.  

Assessing signature similarity by (H) binomial statistics or (I) bootstrap. Longevity 

signatures in (G) were compared by counting the number of metabolites with matching 

directions of correlation and the number of metabolites with opposite directions of correlation. 

P values are computed by either binomial statistics (assuming equal probability of getting a 

match and a mismatch by chance) or 5000-time random sampling. Only p value < 0.01 are 

shown. 

 

  



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

Animal samples 

Descriptions of the 26 mammalian species are provided in Table S1A. The 

mammalian organ samples were obtained from various sources. Guinea pig, rabbit, hamster, 

gerbil, and rat were purchased from Charles River. Naked mole rat, Damaraland mole rat, 

mouse, white-footed mouse, shrew, primates and bats were from our laboratories. Other 

species were as described previously (Fushan et al., 2015). The animals were young adults 

and all were males, except for horse and vervet. Immediately after sacrificing, whole liver, 

kidney, heart, or frontal parts of brain were frozen in liquid nitrogen and stored at -80ºC until 

further use. To ensure comparability of data derived from homologous organs between 

species, each organ was ground in liquid nitrogen-cooled mortar and used for metabolite 

extraction. Most tissue samples were prepared in biological duplicates or triplicates (i.e. 

samples from different animals). Tissue samples were homogenized in water and normalized 

to protein concentration prior to metabolite analyses.  

Descriptions of the five long-lived mouse models are provided in Table S1B. All 

these models as well as genotype and diet matched controls were from the colonies at 

University of Michigan Medical School. Liver and brain cortex samples were taken at 12 

months of age from male and female mice treated from 4 months of age with rapamycin (14.7 

ppm, as in (Miller et al., 2014)), or acarbose (1000 ppm, as in (Harrison et al., 2014)), or from 

mice subjected to 40% dietary restriction, or from untreated littermate control mice of the 

genetically heterogeneous stock UM-HET3, in which each mouse was genetically unique but 

shared the same set of inbred grandparents (C57BL/6J, BALB/cByJ , C3H/HeJ, and DBA/2J).  

Liver and brain cortex samples from Snell dwarf (Flurkey et al., 2001) and GHRKO 

(Coschigano et al., 2003) males, and their corresponding littermate controls, were taken from 



young adults aged 4 to 6 months.  The colony was documented to be specific-pathogen free 

by quarterly serology tests, and the experiments were approved by the University Committee 

for the Use and Care of Animals. 

 

Mass spectrometry quantification and normalization 

To measure polar metabolites and lipids in tissue homogenates, we used three LC-MS 

methods as previously described (Townsend et al., 2013). Briefly, two targeted polar 

metabolite profiling methods were developed using reference standards of each metabolite to 

determine chromatographic retention times and mass-spec multiple reaction monitoring 

transitions, declustering potentials and collision energies. Negative ionization mode data were 

acquired using an ACQUITY UPLC (Waters) coupled to a 5500 QTRAP triple quadrupole 

mass spectrometer (AB SCIEX). Tissue homogenates (30 µL) were extracted using 120 µL 

of 80% methanol (VWR) containing 0.05 ng/µL inosine-
15

N4, 0.05 ng/µL thymine-d4, and 

0.1 ng/µL glycocholate-d4 as internal standards (Cambridge Isotope Laboratories). The 

samples were centrifuged (10 min, 9,000 x g, 4ºC) and the supernatants (10 µL) were injected 

directly onto a 150 x 2.0 mm Luna NH2 column (Phenomenex) that was eluted at a flow rate 

of 400 µL/min with initial conditions of 10% mobile phase A (20 mM ammonium acetate and 

20 mM ammonium hydroxide (Sigma-Aldrich) in water (VWR)) and 90% mobile phase B 

(10 mM ammonium hydroxide in 75:25 v/v acetonitrile/methanol (VWR)) followed by a 10 

min linear gradient to 100% mobile phase A. The ion spray voltage was -4.5 kV and the 

source temperature was 500°C. Positive ionization mode data were acquired using a 4000 

QTRAP triple quadrupole mass spectrometer (AB SCIEX) coupled to an 1100 Series pump 

(Agilent) and an HTS PAL autosampler (Leap Technologies). Tissue homogenates (10 µL) 

were extracted using nine volumes of 74.9:24.9:0.2 (v/v/v) acetonitrile/methanol/formic acid 

containing stable isotope-labeled internal standards (0.2 ng/µL valine-d8, Isotec; and 0.2 



ng/µL phenylalanine-d8 (Cambridge Isotope Laboratories)). The samples were centrifuged 

(10 min, 9,000 x g, 4ºC) and the supernatants (10 µL) were injected onto a 150 x 2.1 mm 

Atlantis HILIC column (Waters). The column was eluted isocratically at a flow rate of 250 

µL/min with 5% mobile phase A (10 mM ammonium formate and 0.1% formic acid in water) 

for 1 min followed by a linear gradient to 40% mobile phase B (acetonitrile with 0.1% formic 

acid) over 10 min. The ion spray voltage was 4.5 kV and the source temperature was 450°C. 

Tissue homogenates (10 µL) were extracted for lipid analyses with 190 µL of 

isopropanol containing 1-dodecanoyl-2-tridecanoyl-sn-glycero-3-phosphocholine (Avanti 

Polar Lipids). After centrifugation, supernatants (10 µL) were injected directly onto a 150 x 

3.0 mm Prosphere HP C4 column (Grace). The column was eluted isocratically with 80% 

mobile phase A (95:5:0.1 vol/vol/vol 10mM ammonium acetate/methanol/acetic acid) for 2 

min followed by a linear gradient to 80% mobile-phase B (99.9:0.1 vol/vol methanol/acetic 

acid) over 1 min, a linear gradient to 100% mobile phase B over 12 min, then 10 min at 100% 

mobile-phase B. MS analyses were carried out using electrospray ionization and Q1 scans in 

the positive ion mode. Ion spray voltage was 5.0 kV and source temperature was 400°C. For 

each lipid analyte, the first number denotes the total number of carbons in the lipid acyl 

chain(s) and the second number (after the colon) denotes the total number of double bonds in 

the lipid acyl chain(s). For each method, internal standard peak areas were monitored for 

quality control and MultiQuant 1.2 software (AB SCIEX) was used for automated peak 

integration. Metabolite peaks were manually reviewed for quality of integration and 

compared against a known standard to confirm identity. 

 

Data processing and quality assessment 

For the 26 mammalian species dataset, raw data were log10-transformed to conform 

to normal distribution; Shapiro–Wilk test confirmed assumption of normalcy was valid for 



over 75% of the measurements. Mean and standard error were computed across the biological 

replicates. Standardized concentrations (i.e. scaled to mean = 0 and standard deviation = 1) 

were used in cross-metabolite analysis. Those metabolites with more than 20% missing 

values in a particular organ were excluded from analysis in that organ (Figures S1A). In total, 

262 metabolites were reliably detected in 235 biological samples. Across the biological 

replicates, over 90% of the measurements had coefficient of variation (i.e. standard deviation 

divided by mean) < 0.06 (Figure S1B). Variations due to organ, species, and biological 

replicates were assessed by analysis of variance (ANOVA). In terms of the overall data, 

organ and species origins accounted for over 80% of total variation (Figure S1C). In terms of 

the data within each organ, species origins accounted for over 80% of variation (Figure S1D). 

This suggests the between-species and between-organ variations were much greater than the 

within-species variations. 

For the 5 long-lived mouse models dataset, raw data were log10-transformed and 

those metabolites missing in any one of the models in a particular organ were excluded from 

analysis in that organ. In total, 358 metabolites were reliably detected in 120 biological 

samples. 241 of the metabolites overlapped with the mammalian species dataset. To render 

the two datasets comparable, the mean metabolite values in house mouse brain and liver of 

the mammalian species dataset were used as baselines to scale the long-lived mouse model 

dataset and R package “sva” was used to removed potential batch effects (Leek et al., 2014). 

Across the biological replicates, over 90% of the measurements had coefficient of variation < 

0.06 (Figure S3A). Segregation of the samples in each organ was examined by hierarchical 

clustering (Figure S3D, E). 

 

Organ-specific phylograms 



The phylograms were constructed using the neighbor-joining (NJ) method (Saitou and 

Nei, 1987; Studier and Keppler, 1988) using sugar glider as the out-group. The distance 

matrix was based on 1 minus Spearman correlation coefficient. Reproducibility of the 

bifurcation pattern was assessed using a 1000-time bootstrap procedure, by random sampling 

of a subset of the metabolite to build phylogram and repeating the procedure 1000 times.  

The degree of metabolite divergence was estimated using the average tip-to-root 

branch length of organ-specific phylogram. For the bootstrap procedure, one replicate per 

organ per species was randomly selected to assemble a pseudo-dataset for building 

phylogram. The procedure was repeated 1000 times to calculate the average tip-to-root 

branch length (excluding the branch leading to the out-group sugar glider). Similar results 

were produced by using only those species for which data were available for all four organs.  

 

Tip-to-root branch length simulation 

To investigate how various parameters might affect the tip-to-root branch length of 

NJ-phylogram, we simulated four scenarios (“Brownian motion”, “Random noise”, “OU 

model”, and “Pagel’s model) using R packages “phytools” (Revell, 2012) and “geiger” 

(Harmon et al., 2008) (Figure S2D). In each scenario, 300 simulations were run according to 

its parameter settings to generate a (300×26) dataset, mimicking the number of metabolites 

and species in the current study. A phylogram was constructed from each dataset using NJ 

method and the average tip-to-root branch length was calculated. The procedure was repeated 

1000 times for each scenario. 

 

Phylogenetic signals 

More closely related species tend to resemble each other more than if they were 

drawn randomly from a phylogenetic tree, so their traits may be statistically non-independent. 



This phylogenetic relatedness, or “phylogenetic signal”, can be detected using a number of 

metrics (Munkemuller et al., 2012). Pagel’s lambda and Blomberg’s K were computed using 

R package “phytools” (Revell, 2012). Those metabolites with Pagel’s lambda > 0.9 and 

Blomberg’s K > 1 were considered to have high phylogenetic signal. 

 

Pathway enrichment analysis 

Pathway information was obtained from ConsensusPathDB (Kamburov et al., 2009) 

and Human Metabolome Database (HMDB) (Wishart et al., 2013). For ConsensusPathDB, 

only pathways with known KEGG IDs were incorporated. For the lipids, customised 

pathways were created for sphingomyelin (SM); cholesterol ester (CE); monoacyl 

glycerophosphocholines (i.e. lysophosphatidylcholine (LPC)); diacyl glycerophosphocholines 

(i.e. phosphatidylcholine (PC)); monoacyl glycerophosphoenthanoamines (i.e. 

lysophosphatidylethanolamine (LPE)); diacyl glycerophosphoenthanoamines (i.e. 

phosphatidylethanolamine (PE)); monoacyl glycerols (MAG); diacyl glycerol (DAG); and 

triacyl glycerol (TAG). Acylcarnitines were further grouped into “short-chain” (up to 8 

carbons), “medium-chain” (9 to 12 carbons), and “long-chain” (more than 12 carbons). 

Triacylglycerols were further grouped into monounsaturated TAG (MUFA-TAG, those with 

2 or less double bounds in total) and polyunsaturated TAG (PUFA-TAG, those with more 

than 2 double bonds in total). Analysis was performed on pathways with at least 5 but less 

than 100 metabolites. Enrichment statistics was based on a hypergeometric distribution 

(Tavazoie et al., 1999). Odd ratios and expected counts were calculated as previously 

described (Gentleman et al., 2013).  

A 5000-time bootstrap procedure was also implemented to assess the false positive 

rate. Briefly, for any given list of enriched metabolites, the same number of metabolites was 

selected randomly and pathway enrichment analysis was performed thereon to compute the p 



value. The procedure was then repeated 5000 times. The bootstrap value was defined as the 

number of times (out of 5000) that the p values of the random list were smaller than the p 

value of the given list of enrichment metabolites. 

 

Organ-differential distribution of metabolites and lipid composition 

Paired Wilcoxon rank sum test was used to identify metabolites with organ-

differential distribution for all combinations of organ pairs. To qualify as a top hit, a 

metabolite must show differential distribution (Bonferroni adjusted p value < 0.05) in at least 

2 organ pairs. For lipid composition, the relative percentage abundance of individual lipid 

molecules within their own categories (i.e. TAG, LPC, LPE, PC, SM, or CE) were computed 

and compared with those previously reported in human plasma. Those lipid molecules with 

more than 10% relative abundance were considered the major species. 

 

Phylogenetic ANOVA 

To determine lineage-specific changes in metabolite levels, the species were grouped 

by taxonomical orders or families, and phylogenetic ANOVA was applied to determine if the 

concentration of a metabolite in one group was significantly different from that in other 

groups. A standard ANOVA assumes independence of observations, but this was not true in 

the current study as the animals were related phylogenetically. In phylogenetic ANOVA, the 

F value of standard ANOVA is compared to a null distribution generated by stimulating trait 

evolution on a reference phylogeny, thus accounting for the non-independence of species. 

Phylogenetic ANOVA was performed using R package “phytools” (Revell, 2012).  

 

Regression by generalized least square 



We focused on Adult Weight as well as the following longevity traits: Average 

Lifespan (AL), Maximum Lifespan (ML), Female Time to Maturity (FTM), Average 

Lifespan Residual (ALres), Maximum Lifespan Residual (MLres), and Female Time to 

Maturity Residual (FTMres). All the values were log10-transformed. Regression was 

performed by generalized least square method on the log10 metabolite levels in individual 

organ, using R packages “nmle” (Pinheiro et al., 2013), “phylolm” (Ho and Ane, 2013), and 

“phytools” (Revell, 2012). To account for within-species variation, standard errors were 

incorporated in the variance-covariance matrix using the method previously described (Ives 

et al., 2007). For those samples with no biological replicates, the standard errors were taken 

as the average of those with replicates. Four models of trait evolution were tested: 1) 

complete absence of phylogenetic relationship (“Null”); 2) Brownian Motion model (“BM”); 

3) BM transformed by Pagel’s lambda (“Lambda”); and 4) Ornstein–Uhlenbeck model 

(“OU”) (Felsenstein, 1985; Lavin et al., 2008; Martins and Hansen, 1997; Pagel, 1999; 

Young et al., 1944). For Lambda and OU models, the parameters were estimated 

simultaneously with the coefficients. The best-fit model was selected by maximum likelihood.  

 

Top hits and test for robustness 

The strength of correlation was determined by the p value of regression slope. Besides 

reporting the p value based on all the species available (“p value.all”), we also applied a two-

step verification procedure to assess robustness of the result (Arlot and Celisse, 2010). First, 

regression was repeated by excluding the point with largest residue error (“p value.robust”), 

so that the overall relationship was not skewed by a potential outlier. Next, each species was 

left out, one at a time, and regression was performed on the remaining species to calculate the 

maximal (i.e. least significant) p value (“p value.max”), ensuring that the correlation was 

generalizable and did not depend on a single species. False Discovery Rate (FDR) q values 



were also computed to adjust for multiple testing. p value.robust < 0.01 was chosen as the 

cut-off and the top hits were tabulated across the organs and traits. 

 

Differentially distributed metabolites in long-lived mouse models 

R package “limma” (Smyth, 2005) was used to identify differentially distributed 

metabolites between treatment and control groups in the long-lived mouse models. Pathway 

enrichment analysis was performed on the top hits (p value < 0.01). 

 

Longevity signature similarities 

Binomial statistics and 5000-time bootstrap procedure were used to assess the degree 

of similarity among the longevity signatures. Given any two signatures, the number of 

metabolites with matching directions of correlation to longevity and the number of 

metabolites with opposite directions of correlation to longevity were calculated. For binomial 

statistics, p values were computed by assuming equal probability of obtaining a match or a 

mismatch by chance. For the bootstrap procedure, metabolites were assigned matching or 

opposite directions randomly. P values were computed as the percentage of trials yielding 

greater number of matches (by chance) than the observed results. 
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