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LncRNAs represent a vast and relatively unexplored component of the 
mammalian genome. The assignment of lncRNA functions depends 
on the availability of high-quality transcriptome annotations. At 
present such annotations are still rudimentary: we have little idea of 
the total number of lncRNAs, and for those that have been identified, 
transcript structures remain largely incomplete.

Projects using diverse approaches have helped to increase both the 
number and size of available lncRNA annotations. Early gene sets, 
derived from a mixture of FANTOM cDNA sequencing efforts and pub-
lic databases1,2, were joined by long intergenic noncoding RNA (linc 
RNA) sets discovered through chromatin signatures3. More recently, 
researchers have applied transcript-reconstruction software such as 
Cufflinks4 to identify novel genes in short-read RNA-sequencing  
(RNA-seq) data sets5–9. However, the standard references for lncRNAs 
are currently the regularly updated manual annotations from 
GENCODE, which are based on the curation of cDNAs and expressed 
sequence tags by human annotators10,11 and have been adopted by 
international genomics consortia12–15.

At present, annotation efforts face a necessary compromise 
between throughput and quality. Short-read-based transcriptome-
reconstruction methods deliver large annotations with low financial 
and time investment, whereas manual annotation is slow and requires 
long-term funding. However, the quality of software-reconstructed 
annotations is often doubtful because of the inherent difficulty of 
reconstructing transcript structures from shorter sequence reads. 

Such structures tend to be incomplete and often lack terminal exons 
or splice junctions between adjacent exons16. This particularly affects 
lncRNAs, whose low expression results in low read coverage11. The 
outcome is a growing divergence between large automated annota-
tions of uncertain quality (e.g., 101,700 genes for NONCODE8) and 
the highly curated, ‘conservative’ GENCODE collection11 (15,767 
genes for version 25).

Annotation incompleteness takes two forms. First, genes may 
be entirely missing from an annotation; many genomic regions are 
suspected to transcribe RNA but contain no annotation, including 
‘orphan’ small RNAs with presumed long precursors17, enhancers18 
and ultraconserved elements19,20. Second, annotated lncRNAs may 
represent partial gene structures. Start and end sites frequently lack 
independent supporting evidence11, and lncRNAs are shorter and 
have fewer exons than mRNAs7,11,21. Recently, a method of rapid 
amplification of cDNA ends followed by sequencing (RACE-seq) 
was developed to complete lncRNA annotations, albeit at relatively 
low throughput21.

One of the principal impediments to the annotation of lncRNAs 
is their low steady-state levels3,11. To overcome this, RNA capture 
sequencing (CaptureSeq)22 is used to boost the concentration of low-
abundance transcripts in cDNA libraries. Such studies depend on 
short-read sequencing and in silico transcript reconstruction22–24. 
Thus, although CaptureSeq achieves high throughput, its transcript 
structures lack the confidence required for inclusion in GENCODE.
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In this paper, we describe a new method, CLS, which couples tar-
geted RNA capture with third-generation long-read cDNA sequenc-
ing. We used CLS to interrogate the GENCODE catalog of intergenic 
lncRNAs, together with thousands of suspected novel loci, in six 
human tissues and six mouse tissues. We demonstrate that CLS com-
bines the throughput of CaptureSeq with high-confidence, complete 
transcript models from long-read sequencing, resulting in an advance 
in transcriptome annotation.

RESULTS
Application of CLS to complete lncRNA annotations
Our aim was to develop an experimental approach that could improve 
and extend reference transcript annotations while minimizing human 
intervention and avoiding in silico transcript assembly. We designed 
CLS, which couples targeted RNA capture to Pacific Biosciences 
(PacBio) third-generation long-read sequencing (Fig. 1a).

CLS can be used for two distinct objectives: to improve existing 
gene models, and to identify novel loci (Fig. 1a). Although in the 
present study we focused mainly on the former aim, we demonstrate 
that novel loci can be captured and sequenced. We created a com-
prehensive capture library targeting the set of intergenic GENCODE 
lncRNAs in human and mouse tissues. Annotations for humans are 
currently more complete than those for mice, and thus the annotations 
are different sizes (14,470 and 5,385 lncRNA genes in GENCODE 
releases 20 and M3, respectively). The GENCODE annotations probed 
in this study were principally multi-exonic transcripts based on polya-
denylated (polyA+) cDNA/expressed sequence tag libraries, and thus 
were not likely to include ‘enhancer RNAs’10,25. To these we added 
tiled probes targeting loci that may produce lncRNAs: small RNA 
genes26, enhancers27 and ultraconserved elements28. For mouse tis-
sues we also added orthologous lncRNA predictions from PipeR29. We 
added numerous control probes, including a series that targeted half 
of the External RNA Controls Consortium (ERCC) synthetic spike-
ins30. These sequences were targeted by capture libraries of tempera-
ture-matched and nonrepetitive oligonucleotide probes (Fig. 1b).

To access the maximal lncRNA diversity, we chose transcriptionally 
complex and biomedically relevant organs from mice and humans: 
whole brain, heart, liver and testis (Fig. 1c). We added two heavily 
studied human cell lines, HeLa and K562 (ref. 31), and two mouse 
embryonic time points (embryonic day 7 (E7) and E15).

We designed a protocol to capture full-length, oligo-dT-primed 
cDNAs (Online Methods). Barcoded, unfragmented cDNAs were 
pooled and captured. Preliminary qPCR analysis indicated enrich-
ment for targeted regions (Supplementary Fig. 1a). PacBio sequenc-
ing tends to favor shorter templates in a mixture32. Therefore, we 
grouped pooled, captured cDNA into three size ranges (1–1.5 kb, 
1.5–2.5 kb and >2.5 kb) (Supplementary Fig. 1b,c) and used it to 
construct sequencing libraries for PacBio single-molecule real-time 
(SMRT) sequencing technology33.

CLS yields an enriched long-read transcriptome
We sequenced samples on 130 SMRT cells and obtained ~2 million 
reads in total for each species (Fig. 2a). We demultiplexed PacBio 
reads, or ‘reads of insert’ (ROIs), to retrieve their tissue of origin and 
mapped them to the genome. We observed high mapping rates (>99% 
in both cases), of which 86% and 88% were unique in human and 
mouse samples, respectively (Supplementary Fig. 2a). (Throughout 
the rest of the paper, all data are presented in the format “human/
mouse.”) The use of short barcodes meant that for ~30% of reads, 
the tissue of origin could not be retrieved (Supplementary Fig. 2b). 
This could be remedied by the use of longer barcodes. Representation 

was even across tissues, with the exception of testis (Supplementary  
Fig. 2d). ROIs had a median length of 1–1.5 kb (Fig. 2b), in agreement 
with previous reports32 and exceeding the average lncRNA annotation 
of ~0.5 kb (ref. 11).

Capture performance is assessed on the basis of two factors: the 
‘on-target’ rate—that is, the proportion of reads originating from 
probed regions—and enrichment, or the increase in the on-tar-
get rate after capture34. To estimate these, we sequenced pre- and 
post-capture libraries with MiSeq. CLS achieved on-target rates of 
29.7%/16.5%, representing 19-fold/11-fold enrichment (Fig. 2c,d 
and Supplementary Fig. 2e). These rates are competitive with val-
ues for intergenic lncRNA capture from previous, short-read studies 
(Supplementary Fig. 2f,g). The majority of off-target signal arose 
from nontargeted, annotated protein-coding genes (Fig. 2c).

CLS on-target rates were similar to those from previous studies 
of fragmented cDNA35 (Supplementary Fig. 2f,g), but lower than 
those observed with genomic DNA capture. Side-by-side comparisons 
showed that the capture of long cDNA fragments implies some loss in 
capture efficiency (Supplementary Fig. 2h,i), as has been observed 
by others24.

We used synthetic spike-in sequences at known concentrations to 
assess the sensitivity and quantitativeness of our method. We compared  
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Figure 1  Using the CLS approach to extend GENCODE lncRNA 
annotation. (a) The strategy for automated, high-quality transcriptome 
annotation. CLS can be used to complete existing annotations (blue) 
or to map novel transcript structures in suspected loci (gold). Capture 
oligonucleotides (black bars) are designed to tile across targeted 
regions. PacBio libraries are prepared for from the captured molecules. 
Illumina HiSeq short-read sequencing can be carried out for independent 
validation of predicted splice junctions (SJ). Predicted transcription 
start sites can be confirmed by CAGE clusters (green), and transcription 
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PacBio reads (red). Rectangles with lighter shading and dashed outlines 
denote novel exons. (b) A summary of the human and mouse capture 
library designs. The numbers of individual gene loci probed are shown. 
PipeR pred., ortholog predictions in mouse genome of human lncRNAs 
made by PipeR29; snRNA, small nuclear RNA; snoRNA, small nucleolar 
RNA; UCE, ultraconserved elements; Prot. coding, expression-matched, 
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the relationship between sequence reads and starting concentration 
for the 42 probed and 50 nonprobed synthetic ERCC sequences in 
pre- and post-capture samples (Fig. 2e). We found that CLS was 
notably sensitive, extending detection sensitivity by two orders of 
magnitude, and was capable of detecting molecules at approximately 
5 × 10−3 copies per cell (Online Methods). It was less quantitative 
than CaptureSeq24, particularly at higher concentrations where the 
slope fell below unity. This suggests saturation of probes by cDNA 
molecules during hybridization. A degree of noise, as inferred by the 
coefficient of determination (R2) between read counts and template 
concentration, was introduced by the capture process.

CLS expands the complexity of known and novel lncRNAs
CLS uncovered a wealth of novel transcript structures in annotated 
lncRNA loci. In the SAMMSON oncogene36 (LINC01212), we dis-
covered previously unannotated exons, splice sites and transcription 
termination sites (Fig. 3a, Supplementary Figs. 3–5; examples vali-
dated by RT-PCR).

We quantified the amount of newly discovered complexity in targeted 
lncRNA loci. CLS detected 58%/45% of targeted lncRNA nucleotides 
and extended these annotations by 6.3/1.6 Mb (86%/64% increase 
compared with existing annotations) (Supplementary Fig. 6a).  
CLS discovered 45,673/11,038 distinct splice junctions, of which 
36,839/8,847 were previously unidentified (Fig. 3b, Supplementary 
Fig. 6b). We noted 20,327 novel, high-confidence splice junctions in 
comparison with a deeper human splice junction reference catalog 

composed of both GENCODE v20 and miTranscriptome7 annotations 
(Supplementary Fig. 6c). For independent validation, and given the 
relatively high sequence insertion-deletion rate detected in PacBio 
reads (Supplementary Fig. 2m) (an analysis of sequencing error rates 
is presented in the Online Methods), we deep-sequenced captured 
cDNA with Illumina HiSeq at an average depth of 35 million/26 mil-
lion paired-end reads per sample. Split reads from these data exactly 
matched 78%/75% of splice junctions from CLS. These ‘high-confi-
dence’ splice junctions alone represent a 160%/111% increase over 
the existing, probed annotations (Fig. 3b, Supplementary Fig. 6b). 
The novel high-confidence lncRNA splice junctions were rather tissue 
specific, with the greatest numbers observed in testis (Supplementary 
Fig. 6d), and were also discovered across other classes of targeted and 
nontargeted loci (Supplementary Fig. 6e). We observed a greater 
frequency of intron-retention events in lncRNAs compared with that 
in protein-coding transcripts (Supplementary Fig. 6f).

To evaluate the biological significance of the novel lncRNA splice 
junctions, we computed their strength with standard position weight 
matrix models37 (Fig. 3c, Supplementary Fig. 7a). High-confidence 
novel splice junctions from lncRNAs far exceeded the predicted 
strength of background splice-junction-like dinucleotides and were 
essentially indistinguishable from annotated splice junctions (Fig. 3c). 
Even unsupported novel splice junctions (Fig. 3c) tended to have high 
scores, although with low-scoring tails. Although they showed little evi-
dence of sequence conservation according to standard measures (sim-
ilar to lncRNA splice junctions in general; Supplementary Fig. 7b),  
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novel splice junctions showed weak but nonrandom evidence of 
selected function (Supplementary Fig. 7c).

We estimated how close these sequencing data were to satura-
tion (i.e., to reaching a definitive annotation). We tested the rate of 
novel splice junction and transcript model discovery as a function of 
increasing depth of randomly sampled ROIs (Fig. 3d, Supplementary 
Fig. 8a,b). We observed a consistent increase in novelty with increas-
ing depth for both low- and high-confidence splice junctions, up to 
that presented here. Similarly, no splice-junction-discovery satura-
tion plateau was reached at increasing simulated HiSeq read depths 
(Supplementary Fig. 8c). Thus, considerable additional sequencing 
is required to complete existing lncRNA gene structures.

Beyond lncRNAs, CLS can be used to characterize other types of 
transcriptional units. As an illustration, we searched for precursors 
of small RNAs, whose annotation remains poor17. We probed 1-kb 
windows around all ‘orphan’ small RNAs (i.e., those with no annotated 
overlapping transcript). Note that although mature small nucleolar 
RNAs are nonpolyadenylated, they are processed from polyA+ pre-
cursors38. We identified more than 100 likely primary transcripts, 
and hundreds more potential precursors that harbored small RNAs 

within their introns (Fig. 3e). One interesting example was the car-
diac-enriched hsa-miR-143, for which CLS identified a new RT-PCR-
supported primary transcript belonging to the CARMEN1 lncRNA 
gene (CARMN)39 (Supplementary Fig. 9).

Assembling a full-length lncRNA annotation
A unique benefit of the CLS approach is the ability to identify full-
length transcript models with confident 5′ and 3′ termini. ROIs of 
oligo-dT-primed cDNAs carry a fragment of the poly(A) tail, which 
can identify the polyadenylation site with base-pair precision32. 
Using conservative filters, we found that 73%/64% of ROIs had 
identifiable polyadenylation sites (Supplementary Table 1) repre-
senting 16,961/12,894 novel sites compared with end positions of 
GENCODE annotations. Known and novel polyadenylation sites 
were preceded by canonical polyadenylation motifs (Supplementary 
Fig. 10a–d). Similarly, the 5′ completeness of ROIs was confirmed 
by proximity to methyl-guanosine caps identified by cap analysis 
of gene expression (CAGE)15 (Supplementary Fig. 10e). We used 
CAGE and polyadenylation sites to define the 5′ and 3′ completeness 
of all ROIs (Fig. 4a).
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from targeted lncRNAs (top), protein-coding genes (middle), and randomly selected splice-site-like dinucleotides (bottom). (d) Splice junction 
discovery/saturation analysis in human samples. The plots show novel splice junctions discovered in simulations with increasing numbers of randomly 
sampled CLS ROIs. Splice junctions retrieved in each sample were stratified according to the level of support. Each individual box symbol in the box 
plots summarizes 50 samples. Equivalent mouse data are presented in Supplementary Figure 8a, and data for novel transcript model discovery are 
in Supplementary Figure 8b. (e) The identification of putative precursor transcripts of small RNA genes. Shown is the count of unique genes for each 
gene biotype. “Orphans” indicates genes with no annotated overlapping transcript in GENCODE that were targeted in the capture library. “Potential 
precursors” are orphan RNAs residing in the intron of a novel CLS transcript model. “Precursors” reside in the exon of a novel transcript. snoRNA, small 
nucleolar RNA; snRNA, small nuclear RNA; miRNA, microRNA.
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We developed a pipeline to merge ROIs into a nonredundant col-
lection of transcript models. In contrast to previous approaches4, our 
‘anchored merging’ method preserved confirmed internal transcrip-
tion start sites (TSSs) and polyadenylation sites (Fig. 4b). Application 
of this method to captured ROIs resulted in a greater number of 
unique transcript models than would have been identified otherwise 
(Fig. 4c, Supplementary Fig. 11a). We identified 179,993/129,556 
transcript models across all biotypes (Supplementary Table 2), 
86%/87% of which displayed support of their entire intron chain by 
captured HiSeq split reads (Supplementary Table 3). In the well-stud-
ied CCAT1 locus40, we identified novel full-length transcripts with 
5′ and 3′ support (Fig. 4d). CLS here suggested that adjacent CCAT1 
and CASC19 annotations are fragments of a single gene, a conclusion 
supported by RT-PCR (Fig. 4d).

Merged transcript models can be defined by their end support: full 
length (5′ and 3′ supported), 5′ only, 3′ only, or unsupported (Fig. 4b,e).  
We identified a total of 65,736/44,673 full-length transcript mod-
els (Fig. 4e, Supplementary Fig. 11b): 47,672 (73%)/37,244 (83%) 
arose from protein-coding genes, and 13,071 (20%)/5,329 (12%) from 
lncRNAs (Supplementary Table 2). An additional 3,742 (6%)/1,258 
(3%) represented full-length models that spanned loci of different 
biotypes (Fig. 1b), usually including one protein-coding gene (‘multi-
biotype’). Of the remaining noncoding full-length transcript mod-
els, 295/434 were novel, arising from unannotated gene loci. In total, 
11,429/4,350 full-length structures arose from probed lncRNA loci, of 
which 8,494/3,168 (74%/73%) were novel (Supplementary Table 2). 
We identified at least one full-length transcript model for 19%/12% of 
the originally probed lncRNA annotations (Fig. 4f, Supplementary 
Fig. 11c). Independent evidence for gene promoters from DNase 
I hypersensitivity sites supported our 5′ identification strategy  
(Fig. 4g). Human lncRNAs with mouse orthologs had considerably 
more full-length transcript models, although the reverse was not 
observed (Supplementary Fig. 11d–g). This imbalance might be due 
to evolutionary factors (for example, the appearance of novel lncRNA 
isoform complexity during primate evolution) or technical biases; it 
is noteworthy that we had access to deeper CAGE data for humans 
than for mice (217,516 versus 129,465 TSSs), and that human lncRNA 
annotations were more complete than those for mice.

In addition to probed lncRNA loci, CLS also discovered several 
thousand novel transcript models that originated from unanno-
tated regions and mapped to probed (Fig. 1b) or unprobed regions 
(Supplementary Fig. 11h,i). These transcript models tended to have 
lower detection rates (Supplementary Fig. 11j) consistent with low 
overall expression (Supplementary Fig. 11k) and lower rates of 5′ 
and 3′ support than probed lncRNAs, although a small number were 
full length (Fig. 4e, Supplementary Fig. 11b).

We next compared the performance of CLS to that of conventional, 
short-read CaptureSeq. We took advantage of our HiSeq analysis (212 
million/156 million reads) of the same captured cDNAs to make a 
fair comparison between methods. Short-read methods depend on 
in silico transcriptome assembly; using PacBio reads as a reference, 
we found that the StringTie tool outperformed Cufflinks, which 
was used in previous CaptureSeq projects24,41 (Supplementary  
Fig. 12a). Using intron chains to compare annotations, we found 
that CLS identified 69%/114% more novel transcript models than 
StringTie assembly (Fig. 4h, Supplementary Fig. 12b). CLS tran-
script models were more complete at 5′ and 3′ ends than StringTie 
assemblies were, and they were also more complete at the 3′ end com-
pared with probed GENCODE annotations (Fig. 4i, Supplementary  
Fig. 12d–h). Thus, although StringTie transcript models are slightly 
longer (Fig. 4j, Supplementary Fig. 12c), they are far less likely to be 

full length than CLS models are. This greater length might be attrib-
utable to the production of overly long 5′ extensions by StringTie, as 
suggested by the relatively high CAGE signal density downstream of 
StringTie TSSs (Supplementary Fig. 12g–h). CLS was more sensitive 
in the detection of repetitive regions and identified ~20% more repeti-
tive nucleotides in human tissues (Supplementary Fig. 12i).

Redefining lncRNA promoter and gene characteristics
With a full-length lncRNA catalog, we revisited the basic charac-
teristics of lncRNA and protein-coding genes. LncRNA transcripts, 
as annotated, are substantially shorter and have fewer exons than 
mRNAs5,11. However, it has remained unresolved whether this is a 
genuine biological trend or simply the result of annotation incomplete-
ness21. When we considered full-length transcript models from CLS, 
we found that the median lncRNA transcript length was 1,108/1,067 
nucleotides, similar to that of mRNAs mapped according to the same 
criteria (1,240/1,320 nucleotides) (Fig. 5a, Supplementary Fig. 13a). 
This length difference of 11%/19% was statistically significant (P < 
2 × 10−16 for both human and mouse samples; two-sided Wilcoxon 
test). These measured lengths are still shorter than those of most 
annotated protein-coding transcripts (median of 1,543 nucleotides 
in GENCODE v20), but they are much longer than those of anno-
tated lncRNAs (median of 668 nucleotides). There are two factors 
that preclude our making firm statements regarding the relative 
lengths of lncRNAs and mRNAs: the upper length limitation of PacBio 
reads (Fig. 2b), and the fact that our size-selection protocol selected 
against shorter transcripts. Nevertheless, we did not find evidence that 
lncRNAs are substantially shorter11. We expect that this issue will be 
definitively answered with future nanopore sequencing approaches.

In a previous study, we observed enrichment for two-exon genes 
in lncRNAs11. However, the results of the current study show that 
this was clearly an artifact arising from annotation incompleteness: 
the mean number of exons for lncRNAs in the full-length models 
was 4.27, compared with 6.69 for mRNAs (Fig. 5b, Supplementary  
Fig. 13b). This difference can be explained by lncRNAs’ longer exons, 
although they peak at approximately 150 bp, or one nucleosomal turn 
(Supplementary Fig. 13c).

Improvements in TSS annotation are further demonstrated by the fact 
that full-length transcripts’ TSSs are, on average, closer to expected pro-
moter features, including promoters and enhancers predicted by genome 
segmentations42 and CpG islands, although not evolutionarily conserved 
elements or phenotypic genome-wide association study variants43  
(Fig. 5c). Accurate mapping of lncRNA promoters may provide new 
hypotheses for the mechanism by which such variants result in observed 
phenotypes. For example, improved 5′ annotation brings genome-
wide association study SNP rs246185 closer to the TSS of RP11-65J2 
(ENSG00000262454). Evidence for a functional link between the two 
is supported by the fact that rs246185 is an expression quantitative 
trait locus for RP11-65J2, which is expressed in heart and muscle44 
(Supplementary Fig. 13d,e).

The improved 5′ definition provided by CLS transcript models also 
allowed us to compare lncRNA and mRNA promoters. Recent studies 
based on the start positions of gene annotations have claimed that 
strong differences exist between lncRNA and mRNA promoters45,46. 
To make fair comparisons, we created an expression-matched set of 
mRNAs in HeLa and K562 cells, and removed bidirectional promot-
ers. We compared these across a variety of data sets from ENCODE12 
(Supplementary Figs. 14 and 15).

We observed a series of similar and divergent features of lncRNA 
and mRNA promoters. For example, activating promoter histone 
modifications such as H3K4me3 (Fig. 5d) and H3K9ac (Fig. 5e) 
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were essentially indistinguishable between full-length lncRNAs and  
protein-coding genes, which suggests that, when expression differ-
ences are accounted for, the active promoter architecture of lncRNAs 

is not unique. The contrast between these findings and previous 
reports suggests that reliance on annotations alone in prior studies 
led to inaccurate promoter identification45,46.
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However, as observed previously, lncRNA promoters were dis-
tinguished by elevated levels of repressive chromatin marks such 
as H3K9me3 (Fig. 5f) and H3K27me3 (ref. 45) (Supplementary  
Figs. 14 and 15). This may have been a consequence of elevated recruit-
ment to lncRNAs of the Polycomb repressive complex, as evidenced 
by its subunit Ezh2 (Fig. 5g). Promoters of lncRNAs were also distin-
guished by a localized peak of the insulator protein CTCF (Fig. 5h).  
Finally, there was a clear signal of evolutionary conservation at 
lncRNA promoters, although it was lower than that for protein- 
coding genes (Fig. 5i).

Two conclusions can be drawn. First, CLS-inferred TSSs have a 
greater density of expected promoter features compared with probed 

annotations, thus demonstrating that CLS improves TSS annotation. 
Second, after adjustment for expression, lncRNAs have similar acti-
vating histone modifications, but distinct repressive modifications, 
compared with protein-coding genes.

Discovery of new potential open reading frames
A number of studies have suggested that lncRNA loci encode peptide 
sequences through unannotated open reading frames (ORFs)47,48. We 
searched for signals of protein-coding potential in full-length models 
by using two complementary methods based on evolutionary conser-
vation and intrinsic sequence features49,50 (Fig. 6a, Online Methods, 
Supplementary Data Set 1). This analysis revealed evidence for  
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protein-coding potential in a small fraction of lncRNA full-length 
transcript models (109 of 1,271, or 8.6%), although a similar number 
of protein-coding full-length transcripts showed no evidence of pro-
tein coding (2,900 of 42,758, or 6.8%) (Fig. 6b).

CLS full-length models supported reclassification of protein-cod-
ing potential for five distinct gene loci (Fig. 6c, Supplementary Fig. 
16a, Supplementary Data Set 2). A good example is the KANTR 
locus, where extension by CLS (supported by independent RT-
PCR) identified a placental-mammal-conserved 76-amino-acid 
ORF with no detectable protein ortholog51. It is composed of two 
sequential transmembrane domains (Fig. 6d, Supplementary Fig. 
16e) and derives from a LINE1 transposable element. Another case is 
LINC01138, linked to prostate cancer, for which a potential 42-amino-
acid ORF was found in the extended transcript52. We could not find 
peptide evidence for translation of either ORF (Online Methods).  
Whole-cell expression, as well as cytoplasmic-to-nuclear distribu-
tions, also showed that the behavior of potentially protein-coding 

lncRNAs was consistently more similar to that of annotated lncRNAs 
than to that of mRNAs (Supplementary Fig. 16b–d). Hence, CLS will 
be useful in improving biotype annotation of the small minority of 
lncRNAs that may encode proteins.

DISCUSSION
We have introduced an annotation methodology that addresses 
the competing needs of quality and throughput. Capture long-read 
sequencing produces transcript models with quality approaching that 
of human annotators, yet with throughput similar to that of in silico 
transcriptome reconstruction. CLS improves upon existing assembly-
based methods through not only confident exon connectivity but also 
(1) far higher rates of 5′ and 3′ completeness and (2) the carrying of 
encoded poly(A) tails.

CLS is also competitive in economic terms. Using conservative 
estimates with 2016 prices ($2,460 for one lane of PE125bp HiSeq, 
and $500 for one SMRT), and including the cost of sequencing alone, 
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the score of the best ORF in the corresponding full-length CLS transcript models (y-axis). Yellow, loci from the GENCODE v20 annotation predicted 
to encode proteins; red, lncRNA loci where new ORFs were discovered as a result of CLS transcript models. (d) KANTR, an example of an annotated 
lncRNA locus where a novel protein-coding sequence was discovered. Top, the structure of the lncRNA and the associated ORF (highlighted region) 
falling within the range of novel full-length CLS transcripts (red). Note how this ORF lies outside the existing annotation (green) and overlaps a 
highly conserved region (see the PhastCons conservation track below). A sequence obtained by RT-PCR (black) is also shown. Bottom, conservative 
substitutions in the predicted 76-amino-acid ORF consistent with a functional peptide, generated by CodAlignView (“URLs”). High-confidence 
predicted SMART53 domains are indicated by colored bars. This ORF lies within and antisense to an L1 transposable element (gray bar).
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we estimate that CLS yielded one novel, full-length lncRNA structure 
for every $8 spent, compared with $27 with conventional CaptureSeq. 
This difference is due to the greater rate of full-length transcript dis-
covery by CLS.

Despite its advantages, CLS could still be optimized in sev-
eral respects. First, the capture efficiency for long cDNAs can be 
improved by several-fold. Second, various technical factors limit 
the completeness of CLS transcript models, including sequencing 
reads that remain shorter than many transcripts, incomplete reverse 
transcription of the RNA template, and degradation of RNA mol-
ecules before reverse transcription. Resolution of these issues will 
be an important objective of future protocol improvements, and 
only after it has been achieved can we make definitive judgments 
about lncRNA transcript properties. In recent work separate from 
the current study, we further optimized the capture protocol, push-
ing on-target rates to around 35% (Online Methods and data not 
shown). However, the most dramatic gains in the cost-effectiveness 
and completeness of CLS will come from advances in sequencing 
technology. The latest nanopore cDNA sequencing promises to be 
~150-fold less expensive per read than PacBio technology (0.01 
versus 15 cents per read, respectively).

Full-length annotations have provided the most confident view so 
far of lncRNA gene properties. LncRNAs are more similar to mRNAs 
than previously thought in terms of splice length and exon count11. 
We noted a similar trend for promoters: when lncRNA promoters 
were accurately mapped by CLS and compared with expression-
matched protein-coding genes, we found them to be surprisingly 
similar in terms of activating modifications. This suggests that pre-
vious studies that placed confidence in annotations of TSSs should 
be reassessed45,46. On the other hand, lncRNA promoters do have 
unique properties, including elevated levels of repressive histone 
modification, recruitment of Polycomb group proteins, and interac-
tion with the insulator protein CTCF. To our knowledge, this is the 
first report to suggest a relationship between lncRNAs and insulator 
elements. Overall, these results suggest that lncRNA gene features 
per se are generally similar to those of mRNAs, after normalization 
for differences in expression. Finally, extended transcript models did 
not yield evidence for widespread protein-coding capacity encoded 
in lncRNAs.

Despite our success in mapping novel structures in annotated 
lncRNAs, we observed surprisingly low numbers of transcript mod-
els originating in the relatively fewer numbers of unannotated loci 
that we probed, including ultraconserved elements and develop-
mental enhancers. This suggests that, at least in the tissue samples 
probed here, such elements do not give rise to substantial numbers 
of lncRNA-like, polyA+ transcripts.

In summary, by resolving a longstanding roadblock in lncRNA 
transcript annotation, the CLS approach promises to accelerate 
progress toward an eventual ‘complete’ mammalian transcriptome 
annotation. These updated lncRNA catalogs represent a valuable 
resource for the genomic and biomedical communities, and address 
fundamental issues of lncRNA biology.

URLs. CLS data portal, https://public_docs.crg.es/rguigo/CLS/; pre-
loaded CLS UCSC Genome Browser track hub, http://genome-euro.ucsc.
edu/cgi-bin/hgTracks?hubUrl=http://public_docs.crg.es/rguigo/CLS/
data/trackHub//hub.txt; CodAlignView, https://data.broadinstitute. 
org/compbio1/cav.php; ENCODE mycoplasma contamination 
guidelines, https://www.encodeproject.org/documents/60b6b535-
870f-436b-8943-a7e5787358eb/@@download/attachment/Cell_
Culture_Guidelines.pdf.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Library design. Design of human capture probes. All designs were based on the 
GENCODE10 version 20 annotation in human genome build hg38. For probe 
design, a target annotation was prepared in FASTA format and composed of 
sets of features. In each case, the entire set of features of each class was taken 
as a starting point, unless otherwise stated, and where necessary was lifted 
over to the hg38 assembly. Features that overlapped protein-coding gene loci 
were removed. Intergenic lncRNAs were extracted from the GENCODE v20 
annotation and were taken as all those genes with no single transcript that 
overlapped or lay within 5 kb of any protein-coding gene. For small RNA loci, 
a 1-kb window centered on the small RNA was targeted.

At this stage, we quantified the expression of candidate regions with HBM/
ENCODE RNA-seq data from appropriate human tissues and cell lines. We 
noticed that the top 20 most expressed features (mean expression across samples) 
produced approximately 71% of sequencing reads (Supplementary Fig. 17),  
and we removed these in order to favor rarer transcripts. A number of 
controls were added to the design. We included 100 protein-coding genes, 
with steady-state levels matched to the distribution of lncRNAs, and 100 
random 1-kb genomic regions from the Escherichia coli genome. As addi-
tional negative controls, we included 100 intergenic regions of 1 kb each 
with no evidence from ENCODE ChromHMM for any transcriptional or 
regulatory activity54. Finally, out of the 92 ERCC sequences, we removed 
the top 8 most concentrated, and we selected half of the remainder (n = 
42) such that they evenly covered the concentration distribution. In total 
the design targeted 14,667 regions, which corresponded to ~15.5 Mb 
of human genome (hg38) and exons of 9,560 lincRNAs from 5,953 loci.  
The summary information for selected transcript targets in human is  
provided in Supplementary Table 4. Statistics on probed gene loci are pre-
sented in Figure 1b.

All targets were combined into a single FASTA file and submitted to Roche 
NimbleGen (Madison, WI) for probe design. The oligonucleotide probes 
were designed and synthesized as a SeqCap EZ Choice XL library according 
to the manufacturer’s protocol. The oligonucleotide probes covered 86.6% 
of target regions directly, with an estimated 96.1% of target regions success-
fully targeted. Roche Nimblegen’s policy prohibits the release of SeqCap’s  
probe coordinates, but the design is available from the corresponding authors 
on request.

Design of mouse capture probes. Mouse library design was carried out 
essentially as for the human library, with some differences. All designs were 
based on the GENCODE version M3 annotation in genome build mm10. 
Candidate lncRNAs were filtered to remove those that overlapped any protein-
coding gene within 5 kb. Homology-based predictions of mouse orthologs of 
human lncRNA were obtained via the PipeR pipeline29. As before, the top 20 
most expressed lncRNAs, as estimated from ENCODE31 RNA-seq data, were 
removed. The final design covered 8,708 regions, including 2,817 GENCODE 
vM3 lincRNA transcripts from 1,920 loci. The covered regions corresponded 
to 8.3 Mb. The summary information for selected transcript targets in mouse 
is provided in Supplementary Table 5. Statistics on probed gene loci are pre-
sented in Figure 1b.

Designed oligonucleotide probes covered 76.3% of target regions directly 
and 85.0% of target regions successfully targeted. Oligonucleotide probes 
were synthesized as a Roche NimbleGen SeqCap EZ Choice XL library. Roche 
Nimblegen’s policy prohibits the release of SeqCap’s probe coordinates, but the 
design is available from the corresponding authors on request.

Sample preparation. RNA samples. Commercial total RNA samples were 
obtained for four different adult human (Ambion AM6000) and mouse 
(Clontech 636644) tissues: heart, testes, liver and brain. We also obtained 
mouse E7 and E15 samples from the same panel. Human K562 and HeLa RNA 
was obtained directly from members of the ENCODE consortium31. Neither 
cell line used in this study is listed in the database of commonly misidenti-
fied cell lines maintained by ICLAC. Cell lines were not authenticated. Cell 
lines were tested for mycoplasma contamination as per ENCODE guidelines 
(“URLs”). The integrity of samples was tested by Bioanalyzer (Agilent), and all 
samples had values of 8.5 or higher. To 4 µg of each RNA sample, we added 4 µl 
of 1:100-diluted ERCC mix (Ambion 4456740) according to the manufacturer’s 
protocol (Supplementary Table 6). Mixes 1 and 2 were assigned to samples as 

described below. The samples containing ERCC controls were ribodepleted 
with Ribo-Zero (Epicentre; MRZE724), and successful rRNA removal was 
validated by Bioanalyzer.

cDNA synthesis. Full-length cDNA was synthetized via reverse-transcription 
of ribosome-depleted RNA samples with the SMARTer PCR cDNA synthesis 
kit (Clontech; 634926) and the Advantage 2 PCR kit (Clontech; 639206). Each 
cDNA was synthetized from 3.5 µl of ribosome-depleted RNA according to the 
manufacturer’s protocol, and two independent cDNA synthesis reactions were 
carried out for each sample. cDNA was primed with oligo(dT). The adaptors 
used in the cDNA library construction sequences (SMART IV oligonucleotide 
and CDS III/3′ PCR primer) are listed in Supplementary Data Set 3.

All first-strand RNA obtained from the reaction was used for second-strand 
synthesis. We modified the synthesis cycling protocol from that specified by 
the manufacturer by increasing the extension time from 3 to 6 min to favor the 
synthesis of long strands. After protocol optimization, a total of 18 cycles was 
used to obtain the full-length cDNA libraries. The resulting cDNA was quanti-
fied with a NanoDrop ND-1000 full-spectrum spectrophotometer (Thermo 
Scientific). The library length and quality were also verified by Bioanalyzer.

Capture. Library preparation. cDNA samples were used to create barcoded, 
full-length libraries. The two aliquots of cDNA obtained in the preceding 
step were pooled, and 1 µg was used for library preparation. One adenine 
was added to blunt cDNA 3′ extremities, and Illumina Truseq adaptors 
were ligated. Different barcoded adaptor hexamer indexes were used to dis-
criminate each sample (Supplementary Table 7 and Supplementary Data  
Set 3). The overall structure of cDNA libraries is represented schematically in 
Supplementary Figure 2c.

The library was amplified for ten PCR cycles under standard Kapa 
Biosystems PCR conditions (low-throughput library prep; Kapa Biosystems, 
KK8232), except that the PCR extension step was increased to 3 min to allow 
long fragments to be fully amplified. The quality and length of libraries were 
checked with an Agilent 2100 Bioanalyzer. Library quantification was done 
with Qubit dsDNA BR assays (Thermo Fisher). For each cDNA sample, an 
additional Covaris-fragmented Illumina sequencing library was prepared for 
MiSeq and HiSeq sequencing according to standard protocols.

Standard Illumina 6-mer indexes were used for compatibility with blocking 
oligonucleotides in the SeqCap capture protocol (see below). We note that the 
use of these relatively short indexes led to the loss of information during later 
demultiplexing steps. Improving this issue through the use of standard 16-nt 
PacBio indexes should be a priority in future versions of CLS.

Sample pooling. Samples were pooled separately by species, such that all 
six human libraries were mixed at equimolar ratios, and similarly for mouse 
libraries. The final amount of each pool was 1 µg.

cDNA capture. Human and mouse pools were dried and prepared for 
hybridization to NimbleGen SeqCap EZ Choice XL library capture probes 
according to the manufacturer’s protocol (SeqCap EZ Library SR User’s  
Guide Version 5.0). Hybridization was carried out for 72 h. A total of five 
separate parallel captures were performed for each species; four were used 
for subsequent PacBio sequencing, and the one remaining sample was used 
for Illumina sequencing.

Subsequent to the presented work, we managed to further optimize the  
efficiency of this capture process by implementing four changes to the 
described protocol:

1. � Dry cDNA for resuspension before capture at 60 °C instead of 55 °C
2.  Hybridization incubation time: 20 h instead of 72 h
3.  For washing steps after capture, use a water bath instead of a dry bath
4. � Blockers: additional blockers targeting the SMARTer adaptors used during 

library construction (sequences in Supplementary Data Set 3, “SMARTer_
blocker” and “SMARTer_5p_PCR_blocker”)

Amplification and quality control of captured cDNA. After hybridization, 
human and mouse pools were washed with m-280 streptavidin Dynabeads 
(Invitrogen 11205D) to eliminate nonspecific hybridization according to the 
recommendations in the Roche protocol. Human and mouse washed pools 
were PCR-amplified with Kapa HotStart ReadyMix 2X (Kapa Biosystems; 
KK1006). Two independent PCR reactions containing half of the washed 
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pool each were prepared to avoid PCR duplicates. Eighteen PCR cycles were 
performed, with an increased extension step of 3 min to allow long fragments 
to be fully amplified. The length of post-capture PacBio and Illumina libraries 
was verified by Bioanalyzer, and quantity was verified by Qubit.

PacBio sequencing of captured cDNA. Pooling. After quantification and qual-
ity control, the four post-capture libraries were pooled together by species to 
produce one unique human and one unique mouse pool. The 110 µl of each 
sample were again quantified by Qubit dsDNA BR assay (Thermo Fisher), with 
12.3 µg for human and 9.57 µg for mouse.

Size selection. Samples were subsequently size-selected with E-gel 
(Invitrogen) into three different ranges: 1,000–1,500 bp, 1,500–2,500 bp and 
>2,500 bp. We collected two shorter fractions of 200–500 bp and 500–1,000 bp, 
but after reviewing the preliminary sequencing data we decided not to scale 
them up because of the large number of reads in this size range obtained in the 
larger fractions. After size selection, each size fraction was dried and resus-
pended with 20 µl of water and quantified by Qubit dsDNA BR assay (Thermo 
Fisher). These samples were then amplified again by PCR (four cycles) with 
Kapa HiFi HotStart (Kapa Biosystems) to reach the required amount for PacBio 
library preparation. The quality and length of obtained libraries were verified 
with Bioanalyzer and Qubit.

We checked the efficiency of size selection via analysis of spike-in sequences 
(Supplementary Fig. 1d). For each size-selected captured library, and for 
pre-capture libraries, we calculated the sequencing efficiency as a function of 
spike-in sequence length. Sequencing efficiency was defined for each spike-
in sequence as follows: (number of reads)/(molar concentration × sequence 
length × total read count). This showed that, as expected, size selection boosted 
the sequencing of longer templates.

PacBio library preparation. Approximately 2 µg of each of the size-fraction-
ated and amplified DNAs was used for each of the human and mouse pools, 
for a total of 6 (3 × 2) distinct samples. Sizes and concentrations were verified 
by Bioanalyzer. PacBio libraries were constructed for each sample with kit 
#100-250-100 (Pacific Biosciences) as per the manufacturer’s protocol. Briefly, 
this involved polishing the PCR amplicon ends to ‘blunt’ them, ligating the 
SMRTbell adaptors, removing linear (nonligated) fragments of DNA, and car-
rying out AMPure bead purification followed by Bioanalyzer analysis to assess 
the size distribution and Qubit quantifications.

PacBio sequencing and collection of post-capture data. We ran each of the 
PacBio libraries on an initial SMRT cell to assess their respective performance 
and optimal sequencing concentration. Those that performed well were then 
scaled up to an additional 20 SMRT cells for deep data collection. The PacBio 
reagents and metrics used for each sample are listed in Supplementary Table 8.  
The sequencing was performed on a PacBio RSII instrument. Upon completion 
of the sequencing, SMRT cells from a given library were aggregated on SMRT 
Portal, and the PacBio post-processing method “RS_ReadsOfInsert.1” was run 
on each aggregated sample to generate ROIs for downstream processing. This 
yielded a single FASTQ file per library.

HiSeq sequencing of captured cDNA. Post-capture Illumina cDNA libraries 
were sequenced on a HiSeq 2500 machine (2 × 125 nt, v4, high-output mode). 
One sequencing lane was generated per species at a depth of ~212 million 
(human) or ~156 million (mouse) pairs of reads. Read pairs were demulti-
plexed with Illumina software. Note that these libraries were unstranded and 
Covaris-fragmented before capture.

Demultiplexing of ROIs according to sample barcodes. As previously men-
tioned, PacBio reads contained Illumina Truseq adaptors, universal (59 nt) 
and indexed (65 nt), that flanked targeted cDNAs (Supplementary Fig. 2c). 
To demultiplex samples (i.e., to determine the tissue of origin of each ROI), 
for each adaptor we selected its middle 26 nt. Each of the 26-mers derived 
from the indexed adaptors contained the hexamer barcode in the center. We 
used the GEM mapper55 to demultiplex samples. PacBio reads were compiled 
into a FASTA file (one file per species) and indexed by GEM. Mapping the 
middle 26-mer of indexed adaptors to the PacBio read allowed us to assign it 
to its tissue of origin. The additional presence of the universal adaptor within 
ROIs was used to confirm the completeness of the insert. The GEM-based 
demultiplexing procedure allowed up to three mismatches (-m 0.1) and 

three indels (-e 0.1) for accurate identification of the barcodes. The follow-
ing non-default GEM parameters were used during the mapping step: -T 3 
--max-big-indel-length 0 -s 3 -D 4. We filtered out ‘chimeric’ 
ROIs (that is, reads arising from the concatenation of inserts during adaptor 
ligation) by removing those reads that contained more than one indexed or 
more than one universal TruSeq Illumina adaptor sequence.

Overall, we were able to demultiplex 1,627,322 and 1,509,374 ROIs in 
human and mouse samples, respectively (Fig. 2a, Supplementary Fig. 2b). 
As shown in Supplementary Figure 2d, only a minute fraction of human ROIs 
were assigned a mouse barcode (and vice versa), which highlights the high 
specificity of the demultiplexing procedure.

Read-mapping. All read-to-genome alignments were performed on genome 
assemblies GRCh38/hg38 (human) and GRCm38/mm10 (mouse). Mapping 
of ROIs from post-capture PacBio libraries to human and mouse genomes (in 
addition to sequences of 96 ERCC spike-in controls) was done with STAR56 
(v.2.4.0.1) compiled for long reads. For improved accuracy in splice junction 
mapping, a reference annotation was provided as a guide to the aligner. The 
reference annotation for human genes was built with the GENCODE v20 set 
and sequences of all other targeted regions. For mouse genes, exonic sequences 
of PipeR predictions along with sequences of all other additional targets were 
added to the reference annotation of GENCODE vM3. The following non-
default parameters were used during the mapping step: --outFilter-
MultimapScoreRange 20 --outFilterScoreMinOverLread 

0 --outFilterMatchNminOverLread 0.5 --outFilter-

MismatchNmax 1000 --winAnchorMultimapNmax 200 --

seedSearchStartLmax 50 --seedPerReadNmax 100000 

--seedPerWindowNmax 100 --alignTranscriptsPerReadN-

max 100000 --alignTranscriptsPerWindowNmax --genome-

SAsparseD 4 --outSAMunmapped Within --runThreadN 6.
For analysis of MiSeq (pre-capture cDNA) and HiSeq (post-capture) 

data, FASTQ files were aligned to the human and mouse genomes (plus the 
sequences of 96 ERCC spike-in controls) with STAR56 (v.2.4.0.1) compiled for 
short reads. The reference annotations described above were used to guide the 
mapper. To maximize the mapping rate, we aligned the mates of each pair of 
reads separately. The following non-default STAR parameters were specified:
--outFilterMismatchNoverLmax 0.04 --alignIntron-

Min 20 --alignIntronMax 1000000 --alignMatesGapMax 

1000000 --outSAMunmapped Within --runThreadN 6.

Analysis of CLS performance and on-target enrichment. RNA-capture 
on-target enrichment. We evaluated the overall RNA-capture performance 
by calculating an on-target rate in both MiSeq pre-capture and PacBio post-
capture libraries. The on-target rate was defined as the ratio of the number 
of distinct ROIs mapping to targeted genomic regions (excluding ERCC 
RNA spike-in controls) to the total number of mapped ROIs. The number of  
reads overlapping targeted regions was calculated directly from the STAR BAM 
file with bedtools intersect57. Overlap was defined as ≥1 bp of intersection 
between the sequencing read and the exonic span of a feature on the same strand. 
The overall on-target fold enrichment was computed as the on-target rate in the 
post-capture library divided by the on-target rate in the pre-capture library.

We calculated enrichment separately by referencing two distinct sequencing 
data sets of post-capture cDNA: (a) the main PacBio reads, and (b) Illumina 
MiSeq of the same material. Figure 2d shows data for enrichments calcu-
lated with the latter data set: MiSeq post-capture versus MiSeq pre-capture. 
Equivalent enrichments for the former comparison (PacBio post-capture ver-
sus MiSeq pre-capture) were 16.6-fold/11.1-fold for human/mouse.

We compared CLS enrichments to values from a previous capture short-
read sequencing (CSS) study24. We focused our analysis on the CSS tissues that 
were also assayed in CLS (human brain, heart, liver and testis), and computed 
on-target rates on lincRNAs more than 5 kb away from any protein-coding 
gene in both studies, based on GENCODE v20 and v19 for CLS and CSS, 
respectively. CSS pre-capture rates were estimated from pre-capture MiSeq 
libraries generated in the present work, and remapped to hg19/GENCODE 
19. Across the four tissues studied, CLS outperformed CSS in terms of both 
on-target enrichment (in all samples) and post-capture on-target rate (in brain 
and testis only) (Supplementary Fig. 2f,g).
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Breakdown of sequencing reads by gene biotype. Both human and mouse 
genomes, as well as ERCC spike-in sequences, were segmented into distinct 
classes of locus regions according to their gene biotype annotation and capture 
status (i.e., on-target versus off-target). The on- and off-target categories cor-
responded to standard, GENCODE-annotated gene biotypes (in simplified cat-
egories, as described in Supplementary Note 1, in addition to “Other,” which 
comprised mitochondrial genes), whereas the “Intergenic” class included all 
nontargeted and unannotated genome segments. Next, we calculated the pro-
portion of pre- and post-capture MiSeq reads originating from each genome 
partition, using the read BAM files and the bedtools coverage utility57. Note 
that when a given read overlapped multiple regions of distinct biotype classes, 
it was counted in each of those classes separately. Secondary targets (i.e., 
genes that were not targeted per se but that overlapped targeted regions) were 
included in on-target biotype subclasses. The following additional hierarchical 
rules were applied in the assignment: the highest priority in the read classifica-
tion was given to capture-targeted (“On-target”), then “Off-target”, and finally 
the “Intergenic” class; these three categories were mutually exclusive.

Comparison of capture protocols and long cDNA capture efficiency. We wished 
to compare the performance of the CLS protocol to that of other methods. We 
judged performance on the basis of (1) the percentage of reads in post-capture 
cDNA that originated from a targeted region (on-target rate), and (2) the 
enrichment, defined as the ratio of on-target rates in post/pre-capture cDNA. 
In all experiments, the off-the-shelf SeqCap RNA lncRNA enrichment kit 
(Roche) was used. Four distinct experiments were performed. For each one, 
the same aliquot of human kidney total RNA was used, and sequencing was 
done with Illumina MiSeq. The experiments were as follows:

1. � Original CLS protocol (as used and described here), polyA-selected, unfrag-
mented

2.  Improved CLS protocol, polyA-selected, unfragmented
3.  Improved CLS protocol, total RNA, unfragmented
4.  Roche SeqCap RNA protocol, total RNA, fragmented

‘Improved’ CLS incorporated several adjustments designed to boost enrich-
ment: the use of LoBind tubes, a drying step at 60 °C, a shorter incubation 
time, the use of Smarter blockers, and the use of a water bath at 47 °C for 
post-capture washes.

Findings are presented in Supplementary Figure 2h,i and together sug-
gest that capture of long cDNAs yields lower on-target efficiency. Additional 
methods are included in Supplementary Note 1. Summary statistics on UMD-
ROIs and double-bounded reads are presented in Supplementary Table 9. A 
comparison/integration of polyadenylation and splice junction strand infer-
ence approaches is presented in Supplementary Table 10. Supplementary 
Table 11 shows the CAGE support of novel versus known PacBio TSSs. Details 
about TSS versus ChIP-seq and TSS conservation analyses are included in 
Supplementary Tables 12 and 13.

Code availability. All computer code used in this study is available from the 
corresponding authors upon request. Most programs have been deposited in 
GitHub as specified in “URLs.”

Data availability. Raw and processed data have been deposited in the Gene 
Expression Omnibus under accession GSE93848. RT-PCR validation sequences 
are available in Supplementary Data Set 4. Genome-aligned data were assembled 
into a public Track Hub, which can be loaded into the UCSC Genome Browser 
(see “URLs”). A Life Sciences Reporting Summary for this paper is available.
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    Experimental design
1.   Sample size

Describe how sample size was determined. One sample per tissue type

2.   Data exclusions

Describe any data exclusions. None

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

N/A

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

N/A

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

N/A

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

Nature Genetics: doi:10.1038/ng.3988



2

nature research  |  life sciences reporting sum
m

ary
June 2017

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

R, perl, bedtools, STAR, StringTie, Cufflinks, liftOver, custom software available on 
GitHub, as specified in the "Code availability" section of the manuscript.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No restrictions

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

N/A

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. See Online Methods

b.  Describe the method of cell line authentication used. See Online Methods

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

See Online Methods

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

Mouse RNA samples were obtained from commercial sources.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Human RNA samples were obtained from commercial sources.

Nature Genetics: doi:10.1038/ng.3988


	High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing
	RESULTS
	Application of CLS to complete lncRNA annotations
	CLS yields an enriched long-read transcriptome
	CLS expands the complexity of known and novel lncRNAs
	Assembling a full-length lncRNA annotation
	Redefining lncRNA promoter and gene characteristics
	Discovery of new potential open reading frames

	DISCUSSION
	Methods
	ONLINE METHODS
	Library design.
	Sample preparation.
	Capture.
	PacBio sequencing of captured cDNA.
	HiSeq sequencing of captured cDNA.
	Demultiplexing of ROIs according to sample barcodes.
	Read-mapping.
	Analysis of CLS performance and on-target enrichment.
	Code availability.
	Data availability.

	Acknowledgments
	AUTHOR CONTRIBUTIONS
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 Using the CLS approach to extend GENCODE lncRNA annotation.
	Figure 2 CLS yields an enriched, long-read transcriptome.
	Figure 3 Extending known lncRNA gene structures.
	Figure 4 Full-length transcript annotation.
	Figure 5 Properties of full-length lncRNA transcripts.
	Figure 6 Protein-coding potential  of full-length lncRNAs.


	Button 2: 
	Page 1: Off

	Button 4: 
	Page 1: Off



