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Genome-wide association studies uncover correlations between large 
numbers of genetic variants and single diseases or traits. A related 
approach, the phenome-wide association study, is designed to discover 
associations between many diseases and traits and single genetic vari-
ants, facilitating the investigation of pleiotropy (the effect of genetic 
variants on multiple phenotypic outcomes)1. However, phenome-wide 
association studies typically examine genotype–phenotype associations 
in isolation, and thus provide a limited view of the broad phenotypic  
consequences that can arise from a genetic mutation. Here we present 
a combinatorial method for analyzing phenotypic data that character-
izes the simultaneous and often subtle changes that occur in a large 
number of traits as a result of genetic variation.

We developed this approach in the context of Huntington’s disease 
(HD), which is caused by a dominant CAG (encoding glutamine (Q)) 
expansion in the huntingtin (HTT) gene2. Early symptoms of the 
disease include cognitive and psychiatric deficits, and these progress 
to chorea, dystonia, bradykinesia, dementia and, eventually, death. 
It is well established that the onset of diagnostic motor signs of HD 
and ultimate patient survival are inversely correlated with both CAG-
repeat length and age3,4, and that dysfunction and degeneration of 
corticostriatal circuits are involved in the observed symptoms5,6. 
However, the complex effects of age and CAG-repeat length on the 
resulting behavioral traits have not been previously characterized.

Simple behavioral traits have been used in ENU mutagenesis projects7 
to identify fully penetrant mutations, and standard behavioral tests have 

been used to study genetic polymorphisms in a series of expanded 
repeats8. More recently, machine learning techniques have been used 
to advance the investigation of phenotype–genotype relationships in 
autism spectrum disorder9. However, to our knowledge no previous 
study has developed a comprehensive and unbiased computational anal-
ysis to define predictive behavioral signatures for a disease genotype.

We integrated molecular, cellular and behavioral data sets to under-
stand the relationship between HD genotype and a broad range of  
phenotypes. Using custom-built computer vision software and 
machine learning algorithms, we measured 3,086 behavioral phe-
notypes generated by comprehensive high-throughput devices—
SmartCube, NeuroCube and PhenoCube—that analyze different 
behavioral domains such as cognitive, motor, circadian, social, anxi-
ety-like and gait10. We studied these phenotypes in a biological series 
that captured the broad phenotypic effects of progressively longer 
CAG repeats in Htt, allowing for influence by age, using a con-
genic series of heterozygous (HET) Htt CAG-knock-in (KI) mice.  
We used a computational method based on support vector machines 
(SVMs) to analyze the large-scale phenotypic information generated 
by the three systems and selected the phenotypes that best distin-
guished mice with CAG repeats of different lengths. The final model,  
which incorporated ~200 behavioral features, accurately predicted the 
CAG-repeat length of a blinded mouse line. Our results demonstrate 
the potential to predict underlying disease mutations by measuring 
subtle variations at the level of behavioral phenotypes.
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This work forms part of the HD Mouse Allelic Series Project, 
which is generating and integrating multidimensional data sets from 
mouse studies to construct a computational model for phenotypic 
changes that occur as a consequence of polymorphic expansions in 
CAG repeats. The transcriptomic and proteomic data sets accompa-
nying this study are publicly available11 to the wider research com-
munity (http://www.HDinHD.org), and additional data will follow  
as they are generated.

RESULTS
Generation of a systems biology data set
We generated a large, content-rich behavioral data set using a series 
of HET Htt CAG-repeat-KI mice with a range of CAG repeat lengths, 
assessed at different ages. In humans, the 40–55-CAG range is associ-
ated with the onset of HD motor symptoms in midlife. Longer CAG 
repeats are associated with onset during adolescence, and >110 CAG 
repeats result in early (juvenile) onset and severe signs of disease12–14. 
We used an allelic series consisting of three HET Htt CAG-KI lines 
expressing CAG-repeat lengths in the higher range (HdhQ80, HdhQ92 
and HdhQ111, where Q indicates an expected average glutamine tract 
length expressed from CAG codons; Online Methods)15 and extended 
the upper range with the HET CAG140 (ref. 16) and zQ175 KI17 
lines. Whereas the CAG140 and zQ175 HET mice showed robust  
pathological phenotypes within their first year18, the HdhQ111 HET 
mice had a mild behavioral phenotype17 late in life, and HET mouse 
models with lower CAG-repeat lengths did not display overt behav-
ioral deficits. We also examined the HdhQ50 line, the CAG length of 
which is more representative of clinically relevant repeats in humans. 
To test our algorithm’s predictive abilities, we also included a KI line 
with a CAG-repeat length blinded to the team responsible for testing, 
data analysis and data modeling.

Study design
Because HD pathology almost always occurs in a genetic context 
that includes wild-type HTT function, we focused on HET CAG-KI  
mice in which only one Htt allele carries an expanded CAG segment.  
We first tested three cohorts of HET mutant mice from six Htt 
CAG-KI C57BL/6J lines and corresponding wild-type littermates 
(Online Methods, Supplementary Tables 1 and 2) in the PhenoCube, 
SmartCube and NeuroCube systems over two consecutive weeks 
(Online Methods). We used a factorial design to test all lines at all ages 
to investigate the independent and combined effects of these two fac-
tors (gene mutation and age) on behavioral outcomes. In the 6-month-
old cohort we included a hypomorphic HdhQ50neo mouse line19,  
which has a neomycin (neo) selection cassette oriented such that 
expression of the mutant Htt allele is substantially reduced compared 

to that in HdhQ50 mice, to probe the model’s ability to differenti-
ate between the different mouse lines. In the CAG140 and zQ175 
mice, the neo cassette was inserted in reverse orientation to the  
Htt transcriptional unit and did not have a notable effect on the 
expression of Htt mRNA or protein in zQ175 C57BL/6J mice.

In a second study we tested HET mice from three KI lines, namely, 
HdhQ20, HdhQ50 and CAG140, and an Hdh KI line with a CAG repeat 
length that was not disclosed to the computational modeling team. 
This study focused on 6- and 10-month-old mice and followed the 
same experimental procedures described above. In both studies, once 
testing was completed, tissue was collected from skin, skeletal muscle, 
liver, gonads, heart, pancreas, kidneys, subcutaneous brown and white 
fat, striatum, cortex, cerebellum, hippocampus, brain stem, thalamus/
hypothalamus, corpus callosum, urine and plasma. Experimenters 
were blinded to genotype in both studies.

Characterization of the Htt CAG-KI lines
qPCR analysis with endogenous Htt-allele-specific primers showed 
that levels of endogenous wild-type Htt mRNA were 40–60% lower 
in cortex in all HET CAG-KI lines compared to the wild-type, as 
expected (Supplementary Fig. 1; for all comparisons P < 0.0001, 
analysis of variance (ANOVA) with Bonferroni post hoc correction).  
RNA-seq analysis demonstrated significant CAG-dependent (Q20 
through Q175) changes in the steady-state levels of total Htt in HET 
mice across all ages tested (2, 6 and 10 months; Supplementary Fig. 2; 
for all comparisons P < 0.003; ANOVA with Bonferroni post hoc cor-
rection; HdhQ50 was compared using t-test, P < 0.007, at 10 months), 
consistent with previous reports of CAG length affecting HTT mRNA 
levels20. As CAG-dependent variation in steady-state HTT mRNA 
levels is independent of age, any CAG- and age-dependent behavioral 
deficits that are identified are likely to be the result of downstream 
effects on the function of the mutant HTT protein.

Two-class bioinformatics analysis
We first assessed the differences between the HET and wild-type mice 
using supervised machine learning algorithms to analyze the set of 
3,086 features collected from the three Cubes. To identify the feature 
combination that best separated the two classes (HET versus wild-
type), we constructed decorrelated (i.e., statistically independent) 
combinations of the original features that we then ranked according 
to their discrimination power (Online Methods). To quantify sepa-
rability and build a ‘discrimination index’, we measured the rank- 
mediated overlap between the 2D Gaussian estimates approximat-
ing the two groups in the newly formed decorrelated/ranked feature 
space. The difference between the zQ175 HET and wild-type mice 
as determined using data from all Cubes is shown in Figure 1a, with 
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Figure 1 Discrimination between wild-type and HET mice.  
(a) Gaussian distribution of points corresponding to the HET mice  
from the zQ175 line (blue) as compared to wild-type littermate  
controls (red). The axes represent the two features that best separated  
the two samples. Data used were obtained with the three Cube  
platforms. The inner (darker) circles show the s.e., and the outer (lighter) 
circles show the s.d.; each individual point represents a single subject. 
DRF, decorrelated ranked feature. (b) Discrimination values for all  
CAG models against the corresponding WT controls, at all ages studied. 
Q20, HET mice from HdhQ20 line; Q80, HET mice from HdhQ80 line; 
Q92, HET mice from HdhQ92 line; Q111, HET mice from HdhQ111 line; 
Q140, HET mice from CAG140 KI line; Q175, HET mice from zQ175 
line. The sample size for each group is presented in Supplementary  
Table 2. P-values (*P < 0.05; **P < 0.0001) were obtained from  
t-test calculations.
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the corresponding Gaussian distributions (clouds) projected onto the 
first two highest-ranked new feature axes. The overlap between clouds 
was significant at 2 months of age but decreased with advancing age, 
indicating (as expected) a progressive phenotype. The top features 
separating 6-month-old zQ175 HET mice from wild-type controls 
included a cluster that indicated decreased abrupt movements in 
response to startling stimuli and reduced startle response (clustered 
features in position 1 and 10 out of 62 clusters, respectively), and a 
cluster including measures of mobility, rearing, digging and complex-
ity of trajectory (cluster 3 out of 62). Notably, the changes in these 
features were in the same direction in the 2- and 10-month-old mice. 
Indeed in the data set for 10-month-old zQ175 mice, reduced startle 
and associated measures ranked at the top, and the same cluster rep-
resenting reduced mobility, rearing, digging and trajectory complexity 
ranked number 3. This suggests that there is a phenotype continuum 
consisting of similar deficits in the early and late disease stages in 
these lines, and that the machine learning algorithms were not simply 
finding arbitrary fluctuations in the data that happened to provide 
good class separation. We aimed to capture this continuum with the 
multiclass modeling described below.

The two-class discrimination index was calculated for all KI lines 
at all ages versus their corresponding wild-type controls. We also 
repeated the calculations using randomized labels to calculate the 
distribution of spurious discrimination indexes and a P value for the 
probability that was due to chance (Online Methods). CAG-repeat 
length and age were positively associated with better discrimina-
tion (Fig. 1b).

Multi-class bioinformatics analysis: CAG and age effects
We next sought to determine whether a continuum exists among 
CAG-repeat sizes in subjects of a given age. We analyzed all behav-
ioral data (3,086 features) from the different CAG lines and from 
mice of all ages, using a probabilistic SVM (Fig. 2; Online Methods). 
This algorithm finds the vectors in hyperspace that best define sepa-
ration between classes, in this case the different KI groups within 
each age class or the different age classes independent of CAG 
length (discussed below). We combined the SVM with a feature-
ranking-and-selection algorithm to reduce dimensionality and to  
identify and more heavily weigh the top features that contributed most 
to the CAG signatures.

Some mice (<5% of total) were not recognized by their own CAG 
classifier, and these intrinsically inconsistent samples21 were excluded 
from all subsequent model training or cross-validation. We trained 
the algorithm on the complete data set comprising the six lines at the 
three ages tested, using the wild-type mice to identify and remove 
those features that reflected intertrial variability. To test the model’s  
predictive power, we used the trained classifier to determine the 
CAG-repeat lengths of individual mice excluded from the training 
set (leave-one-out cross-validation (LOOCV22)). Accuracy was still 
high (Fig. 2), indicating that the CAG behavioral model successfully 
captured CAG signatures. To assess predictive ability, we trained with 
five out of six lines and then predicted the CAG length of the sixth 
line left out after features correlation and ranking (Online Methods).  
We repeated this process for each of the six lines; although accuracy 
was lower at this step than for the LOOCV test set, the CAG model was 
still able to predict the CAG length, in particular for the 50–140-CAG  
range in the older mice (Fig. 2). These analyses show that the CAG 
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Figure 2 Performance of the CAG model  
during training and testing as assessed by 
regression on predicted versus observed  
CAG-repeat length. Open and closed  
symbols correspond to female and male  
mice, respectively. Top: the performance  
of the CAG models during prediction of  
CAG-repeat length for one example (LOOCV)  
not included in the training set was relatively 
good (both sexes combined). R2 increased  
from 0.8 (in 2-month-old mice) to 0.9  
(in 10-month-old mice), indicating increasing 
CAG signal strength with advancing age.  
The same was found for the observed- 
versus-predicted regression slope (regression 
lines shown in black, identity lines shown 
in blue). Performance of the CAG model 
built separately on male and female data 
sets required up to 50% fewer features to 
yield similar goodness of fit (R2 ~ 0.9), suggesting that data sets for each sex were more uniform than the combined set. Bottom: to challenge the 
combined-sex model in a more stringent manner, we left out a whole line and trained with the remaining lines. The scattergrams show the observed-
versus-predicted results for the predicted lines. The slopes and R2 values remained comparable with those for the LOOCV example. Q20, HET mice from 
HdhQ20 line; Q50, HET mice from HdhQ50 line; Q80, HET mice from HdhQ80 line; Q92, HET mice from HdhQ92 line; Q111, HET mice from HdhQ111 
line; Q140, HET mice from CAG140 KI line; Q175, HET mice from zQ175 line. 
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model successfully captured a CAG-length-dependent signal across 
the HET Htt CAG-KI mice. As expected, the predictive power of the 
CAG model was completely lost when the classifier was trained on 
samples with randomized labels.

We further validated our model by predicting the CAG-repeat 
length of a new mouse line with a blinded genotype. After analysis 
we determined a mean CAG length of 93.4 (with s.e. of 8.7) and 96.1 
(s.e. of 3.1) for 6- and 10-month-old mice in this line, respectively. 
Figure 3 shows the support vector regression (SVR) prediction for the 
blinded line at 10 months of age. This prediction was in close agree-
ment with the actual mean CAG-repeat length, which was revealed 
to be 102.0 and 102.7 for the 6- and 10-month-old mice, respectively 
(Supplementary Table 1).

Finding features that predicted CAG length was not trivial, requir-
ing 200–500 behavioral features (Supplementary Fig. 3). Using more 
than 700 features resulted in lower performance, probably as a result 
of overfitting and reliance on random feature variations that were 
poor predictors of the left-out example for the LOOCV task.

Testing HdhQ50 and HdhQ50neo

We checked our approach for consistency by projecting all KI lines, 
together with the HdhQ50 line, onto the decorrelated ranked feature 
analysis plane (Online Methods) that best separated the zQ175 line 
from the first study and the pooled HdhQ20 control mice from both 
studies (to remove study-to-study variability). We monotonically 
aligned the HdhQ50 and other KI lines from lowest to highest (Fig. 4a). 

When we used the HdhQ50neo line instead, its projected feature values 
fell out of order (Fig. 4b; also note the large variability), indicating that 
this line differs substantially from the HdhQ50 and other lines.

Features that define the CAG signature
The top features selected by the feature-ranking algorithm for each of 
the three ages studied (2, 6 and 10 months) reflected the emerging phe-
notypic deficit. In 2-month-old mice, the top behavioral features were 
subtly different, particularly at low CAG-repeat lengths. For instance, 
both activity during the light phase and rearing were inversely propor-
tional to CAG-repeat length (Fig. 5a). None of these changes alone was 
enough to distinguish the different lines; only the combined power of 
these features allowed discrimination at such an early age.

In 6-month-old mice, five of the top ten features describing the 
CAG-dependent signature were more progressively altered from low 
to high CAG-repeat length. Time huddling together was higher in 
the low-CAG-repeat than in the high-CAG-repeat lines, and a cog-
nitive measure (win-shift) was lower in the high-CAG-repeat lines 
(PhenoCube). The temporal complexity of the locomotor trajectory, 
the same feature that ranked at the top in the two-class analysis, was 
lower in the high-CAG-repeat lines. The latency to stretch attend 
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Figure 5 Top-feature score changes across 
different CAG-repeat lengths and ages.  
(a) Using Q175 as a guide, we chose  
10 features with smaller Q175 z-scores from 
among the top 50 features for each age.  
The same ten features are shown for each  
of the CAG-repeat KI lines in each panel;  
from 1 to 10, trajectory complexity, clustering, 
rearing, huddling, cognitive (win-shift), gait 
(base width), stretch-attend, mobility, activity 
and transitions to activity. Very low Q175  
z-scores tended to grow larger as the CAG-
repeat length decreased; this pattern was more 
robust in older animals. (b,c) Complexity of  
the trajectory in time (b) and percent duration 
of clustering (c) for the three age groups as  
a function of CAG-repeat length. Asterisks 
denote significant differences as compared 
to the wild-type (WT) line (CAG main effect 
ANOVA, P < 0.0001; Bonferroni post hoc tests, 
P < 0.0083). Data are presented as group 
means ± s.e.m. The exact sample size for each 
group is presented in Supplementary Table 2  
(n = 21–32 in HET groups, n = 183–224 in 
wild-type groups).
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(forward elongation of head and shoulders, followed by retrac-
tion to original position) was longer in the low-CAG-repeat lines 
(SmartCube) (Fig. 5a).

In 10-month-old mice, the top features showed a clear pattern of 
decreasing change from low to high CAG-repeat length, although not 
every individual feature precisely conformed to the pattern. Huddling 
time was higher for low-CAG-repeat lines than for high-CAG-repeat 
lines (PhenoCube), and rearing was robustly decreased in high-CAG-
repeat versus low-CAG-repeat lines. Transitions between moving and 
scanning (horizontal head movements) were higher in low-CAG-
repeat lines (SmartCube). Base width (side-to-side distance between 
the lines joining the two paws) was wider in the high-CAG-repeat lines, 
suggesting the appearance of a gait deficit (NeuroCube) (Fig. 5a).

Feature examples
We selected one top feature from the two- and multi-class analyses to 
plot individually as an example. The complexity of the trajectory is a 
measure of the convolutedness of the trajectory in time, that is, how 
much a mouse twists and turns over time. This feature showed a clear 
progression from low to high CAG-repeat length in the multiclass anal-
ysis (Fig. 5b, 6 months of age, feature 1), with complexity decreasing 
with both age and CAG-repeat length. These changes revealed signifi-
cant effects of CAG-repeat length at each age (P < 0.0067; ANOVA with 
Bonferroni post hoc correction) mainly due to the high-CAG-repeat 
lines. This supports the view that a combination of more than 200 fea-
tures, instead of a small subset, is required to capture the CAG-depend-
ent behavioral effects for the low and middle CAG-repeat lengths.

The second example, a feature identified by the multi-class analysis 
as particularly important for the 6-month-old classification, is the 
duration of clustering (Fig. 5c), where clustering is registered when 
two or more mice are together for more than 1 s and less than 1 min. 
Although the data were noisier for 10-month-old mice and showed 
no difference for 2-month-old mice, mice with higher CAG-repeat 
lengths stayed together for a shorter time than mice with low CAG-
repeat lengths did in the 6- and 10-month-old groups (P < 0.02; 
ANOVA with Bonferroni post hoc correction).

Age signature and defining features
We also trained our classifiers using age as the independent vari-
able separately for the wild-type and HET mice (Fig. 6a,b). Accuracy,  

as measured by the coefficient of correlation of the regression line 
connecting the observed versus the predicted CAG-repeat lengths 
(R2), was high for both models: 0.91 for HET and 0.94 for wild-type 
(Fig. 6a). Figure 6b shows the performance of the HET-only age 
model separately for each line. In general, age was predicted slightly 
more accurately in higher-CAG-repeat lines.

HD and aging
We performed several overlap analyses of features that best modeled 
age and CAG-repeat length. The overlap among features for wild-
type-only and HET-only age models was about 50% (Supplementary 
Fig. 4a), suggesting that age-specific features were captured regard-
less of phenotype and that aging occurs differently in wild-type mice 
compared to HET mice, although many features contribute to both.

We also calculated overlaps among features modeling CAG-repeat 
length for each age and overlaps between these features and age fea-
tures (Supplementary Fig. 4b). More than half (140–142 out of 250) 
of the best CAG-only modeling features for each age overlapped with 
age-only modeling features, indicating that (1) some features describe 
both age and CAG-repeat length and (2) there exist strictly CAG-only 
(i.e., totally age-unrelated) features for a given age. Notably, features 
best modeling CAG repeats for each particular age changed over time; 
that is, there was only ~20% overlap between each CAG feature for 
any two ages, and overlap between all three CAG models was very 
small (about 1%). Furthermore, we found no features that were shared 
simultaneously among all of the CAG and age models, suggesting that 
HD is not simply an accelerated aging process.

Modeling Htt CAG-repeat length and age simultaneously
As age and CAG-repeat length are factors with both common and 
independent features, we sought to evaluate the combined power of 
CAG-repeat length and age to enable simultaneous analysis of phe-
notypic changes in these two dimensions. Such a model could then 
capture changes in each of these two factors at once without miss-
ing their interaction, as single-factor models might. To predict both  
CAG-repeat length and age with our SVR model, we built a corre-
spondence map by connecting the two-dimensional CAG–age pairs 
to a one-dimensional dependent variable (Online Methods). Cross-
validation results are shown in Figure 6c. Unlike the age model  
(Fig. 6a,b) that almost perfectly discriminated animals by age, the 
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Figure 6 LOOCV performance of the age model during training and testing as assessed by regression on the predicted versus observed age. (a) The 
performance during the prediction of age for the examples not included in the training set for wild-type (WT) and HET mice was relatively good. The 
slopes of the regression lines were higher than 0.8, and R2 was above 0.9 (regression lines shown in gray and sky-blue for WT and HET, respectively; 
identity line shown in dark blue). (b) Predicting age for each KI line separately yielded better regressions for the high-CAG-repeat lines, with slopes 
increasing from about 0.8 to 0.9 with increasing CAG-repeat length, and R2 around 0.9. (c) Performance of the CAG–age model during LOOCV as 
assessed by regression on the predicted versus observed CAG–age combined score. The performance of the model during prediction of CAG–age for 
examples not included in the training set was relatively good. The slope of the regression and R2 were both above 0.8 (regression line shown in black, 
identity line shown in blue).
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CAG–age model suggested that there is substantial overlap in behavio-
ral patterns for older low-CAG-repeat and younger high-CAG-repeat 
mice. This algorithm allows for the incorporation of future data from 
other age × CAG model studies and will enable any given perturbation 
or treatment to be compared among all three models (CAG-dependent,  
age-dependent and simultaneous interactions). This could aid in the 
interpretation of behavioral signatures in terms of effects along age 
and CAG axes. For example, a treatment that shifts Q175 mice toward 
a younger age profile without affecting the CAG profile in the cur-
rent model might be affecting compensatory networks underlying 
the aging process, which could be confirmed in the age-only model. 
Conversely, an anti-CAG treatment that shifts the signature toward 
a lower CAG-length profile but does not affect the age-only model 
might be affecting proximal HD causal networks.

DISCUSSION
We used a computational approach to describe an extended phenotype 
—complex changes in behavior—that is capable of distinguishing sub-
tle differences in an underlying pathogenic repeat polymorphism. 
Our analysis provides a comprehensive behavioral characterization 
of the CAG-expanded HET KI lines in our allelic series23–26. Both 
the two-class and the multi-class models performed well in identify-
ing CAG-repeat length. The combined CAG–age model seemed to 
capture the CAG signal even when age was integrated into the CAG 
dimension, suggesting that HD is not simply accelerated as a result of 
aging. The top features that captured aspects of the CAG signature in 
the two- and multi-class analyses included, not surprisingly, decreased 
mobility at higher CAG repeats. We found that mice with increas-
ing CAG-repeat length spent less time huddling during the dark 
phase of the diurnal cycle and had decreased trajectory complexity  
(the extent to which the animal twists and turns). To our knowledge, 
the former observation has not been reported previously in a KI line, 
and it is tempting to speculate that this might reflect the social deficits 
observed in some cases of HD; it also suggests that this feature could 
be an indirect measure of dopamine depletion in the striatum. The 
latter observation is reminiscent of amphetamine action on increased 
locomotion complexity27. The model suggests that none of these fea-
tures alone is sufficient to accurately separate mice according to either 
CAG-repeat length or age. Rather, it is the combination of more than 
200 features that provided sufficient discriminatory power to accu-
rately predict the CAG-repeat length of a blinded mouse line.

It is noteworthy that although Htt mRNA levels are comparatively 
decreased in higher-CAG-repeat KI mouse lines, independent of age, 
here behavioral CAG signatures emerged in an age-dependent manner. 
This suggests that the behavioral phenotype is driven by CAG-repeat-
length effects that do not include reduced levels of Htt mRNA. We 
tested this hypothesis using a hypomorphic HdhQ50neo HET KI mouse 
line that expresses approximately half the total amount of Htt mRNA 
as the wild type19. This line did not exhibit a behavioral signature con-
sistent with the CAG-repeat-dependence signal captured by our CAG 
model, supporting the view that loss of function due to reduced HTT 
levels is not in itself sufficient to explain the behavioral signatures 
observed in this study. Previous work with a cellular allelic KI series 
revealed a CAG signature consisting of 73 CAG-length-dependent  
gene expression profiles involved in 172 CAG-length-correlated 
pathways15. Here we have extended that work to a CAG-correlative 
approach inclusive of downstream functional effects using a compre-
hensive behavioral battery and careful experimental design.

The multiparametric phenotyping platform we describe has 
distinct advantages over other behavioral assessment tools. It  
generates high-content data sets comprising thousands of features that 

can be mined using machine learning algorithms, it is unbiased and 
captures every measurable behavior through computer vision algo-
rithms, it eliminates human intervention and subjectivity, and it offers  
high-throughput drug screening for in vivo CNS activity28 using a 
phenotypic approach29. Furthermore, this system could be used to 
estimate a drug’s ability to rescue a disease phenotype while assessing 
its side effects10, or to discover new and unexpected animal model 
phenotypes30. One limitation of the approach is that it excludes tests 
of higher cognitive functions (e.g., learning and memory) that require 
training in multiple sessions over time but may be important for 
translation to the clinic31.

SVM and SVR approaches have been successfully used in the past 
to relate genotype and phenotype features in neurodevelopmental 
disorders9. Our SVM/SVR approach incorporates an inherent feature-
ranking mechanism that selects the most relevant features for the 
algorithm and appropriately weights their specific contributions to the 
prediction of the dependent variable. In the analysis of high-content 
data sets where the total number of collected features far exceeds the 
number of samples—a classical systems biology problem—inclusion 
and/or equal weighting of all features’ contributions usually makes 
machine learning models overfitted and unstable, whereas exclusion 
of tangentially relevant features inevitably leads to the loss of relevant 
information. Because our method does not require the inclusion of 
noisy or irrelevant features, it makes it possible to build good SVM 
models from data sets containing a virtually unlimited number of 
features of different origins.

Notably, we now have phenotypic measures to test moderate CAG-
repeat-length models (such as Q50, Q80, Q92 and Q111) in vivo, 
which may offer new drug-testing strategies not dependent on aggres-
sive, fast-progressing HD mouse models such as the R6/2 and zQ175 
lines that may have narrow pharmacological sensitivity. Most of the 
studied pharmacological targets for HD have produced preclinical 
results in such mice that are difficult to reproduce32–34 or have led 
to unsuccessful clinical trials35–38. Although some drug targets have 
been identified39–43, they have been unsuccessful in slowing progres-
sion of the disease. Future studies could potentially use the CAG-
dependent extended phenotype to test compounds in both mild and 
severe HD mouse models and interpret their effect across increasing 
genotoxic stress levels (i.e., CAG-repeat length). The computational 
models described here might also be used to quantify the effect of a 
therapy that may, for example, reduce the CAG-repeat profile from 
high to low or the age profile of a high-CAG-repeat model from old 
to young, or any interaction between these two axes.

The HD Mouse Allelic Series Project is providing coherent in vivo 
data sets that recapitulate some of the complexity of HD in an intact 
organism, including the dynamic effects of aging. We are developing a 
crowdsourcing platform (http://www.HDinHD.org) that the research 
community can use to mine and model these data sets and, ultimately, 
identify novel and robust drug-development opportunities for the 
treatment of HD.

METHODS
Methods and any associated references are available in the online 
version of the paper. 

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Ethics statement. This study was carried out in strict accordance with the 
recommendations in the Guide for the Care and Use of Laboratory Animals, 
NRC (2010). The protocols were approved by the Institutional Animal Care 
and Use Committee of PsychoGenics, Inc., an AAALAC International accred-
ited institution (Unit #001213).

Subjects. We tested HET mutant mice from six KI lines and corresponding  
wild-type littermates. For each one of the six lines, male HET mice were 
crossed with C57BL/6J female mice at JAX. For each line, animals born within 
3–4 d from litters having 4–8 pups were identified by ear tags, tail-sampled for 
genotyping and weaned at around 3 weeks of age, and re-genotyped after tissue 
collection. At 5 weeks of age, the selected experimental mice were re-housed 
in groups of ten according to the procedure described below. All lines were 
backcrossed over ten generations to the C57BL/6J strain.

Subject selection. Experimental animals were selected according to the fol-
lowing guidelines: No more than one animal per sex per genotype was selected 
from each litter. Animals originating from litters that could contribute to the 
experimental group with four animals were preferred over litters contributing 
three, which in turn were preferred over litters contributing two animals. HET 
mice were selected on the basis of CAG repeats to allow a Gaussian distribu-
tion of CAG repeats in the experimental cohort, to avoid skewed distributions.  
Best Gaussian fit was judged by eye (Supplementary Table 1). Experimental 
animals had to weigh more than 11 g (females) or more than 13 g (males) by 
5 weeks of age (the re-housing week). Animals presenting any anomaly at the 
time of re-housing were excluded. Unacceptable anomalies were cataracts, 
malocclusion, missing/small eye, ear infection, and unreadable or missing 
tags. Sample size was determined according to our previous studies, where 
we established that 8+ animals per group were enough to detect differences 
among groups with 95% confidence (if such differences in fact existed).  
We used 16 animals per genotype per sex per line as a starting point to account 
for expected attrition due to aging-related problems, aggression, unexpected 
death, mix-up of animals during re-housing, experimental failures (for exam-
ple, failure to lick during PhenoCube testing) and removal of outliers.

Husbandry. Final experimental cages housed 8–10 animals in rat Opticages 
(Animal Care Systems, Inc.)—about half HET and half wild-type (same sex), 
originating from ten different litters. Animals were housed at JAX with dispos-
able nestlets and Shepherd Shacks (Shepherd Specialty Papers) as enrichment 
until shipping (at 6 weeks of age). Mice were fed 5001 rodent diet (Harlan-
Teklad). The shipped Shepherd Shacks and a handful of bedding from the  
shipping crates were introduced in the new cage to reduce stress and aggres-
sion. In addition, cages were enriched with the standard PsychoGenics 
(PGI) enrichment: two play tunnels, a plastic bone and enviro-dri (Shepherd 
Specialty Papers). For each line and CAG-KI line, every week for 6 weeks 
we received 78–80 wild-type and littermate HET mice (half males and half 
females) in random order from JAX. On the week of arrival, one tail snip was 
collected for genotype confirmation, and electronic transponders (Data Mars) 
were implanted. One week after arrival, mice were handled twice for about 
1 min each. The first cage change was scheduled around 10 d after arrival to 
minimize disturbance of the cages that could trigger fighting. From the first 
cage change onward, only the standard PGI enrichment was provided to the 
animals, and cage changes occurred weekly.

Extra animals (up to 2) were removed from the cage 2 weeks after arrival 
once re-genotyping results were received. The extra mice were euthanized. 
The goal of the removal of the extras was to create a final experimental cage 
containing four HET and four wild-type mice. Mice were removed from the 
study for differing reasons, such as failure to lick in PhenoCube, aggression, 
dermatitis and other causes. For the multi-class analysis (see below), we 
included only mice for which a complete data set existed for all time points 
and Cube technologies. This resulted in about 20–30% of mice excluded for 
this analysis only. Supplementary Table 2 presents the number of animals per 
age/line/genotype/sex available for testing, tested in PhenoCube, included in 
the two-class analysis and in modeling (multi-class analysis).

Behavioral high-throughput systems: the Cubes. PGI’s comprehensive 
high-throughput systems—the PhenoCube, NeuroCube and SmartCube 
systems—capture different domains of behavior, namely, cognitive, motor, 
circadian, social, anxiety-like, gait and others, using custom-built computer 
vision software and machine learning algorithms10.

PhenoCube is a high-throughput platform that assesses circadian, cognitive, 
social and motor behavior exhibited by group-housed mice. Experiments are 
conducted using extensively modified Intellicage units (New Behavior AG), 
each with a camera mounted on top of the cage for computer vision analysis. 
Intellicages have four corners with small doors, containing antennas to pick 
up the ID data from the electronic chips in the mice. Inside the corners, two 
small gates give access to water bottles and allow measurement of nose-poking 
and cognitive performance30,44.

We conducted PhenoCube experiments using eight units. We added intra-
maze spatial cues to the environment by placing laminated paper with green 
and white stripes outside the long sides of the cage, with the stripes being hori-
zontal on one side and vertical on the other. Additionally, two climbing rods 
were located along one of the long sides of the cage with an additional climbing 
structure positioned in the center of one short cage wall and a rectangular  
object in the center of the cage.

Animals were evaluated in 72-h test sessions, being placed in the Intellicage 
environment after a 16-h water-deprivation period in the home cage. The 
cages were maintained on a 12:12 light/dark cycle, with white light during the 
day and red light during the night, and a low subjective light level maintained 
for the subjects during the night period. While mice were inside the cage, 
water was available only from within the Intellicage corners, whereas food was 
freely available on the cage floor at all times. When possible, mice were left  
undisturbed during the course of experimental sessions.

The test animals initially received magazine training through a simple ‘habit-
uation’ protocol, which allowed them to freely retrieve water from the Intellicage 
corners. Prior to lights-out on day 1, after the mice had spent 6 h in the cage, 
we switched the protocol to a training protocol described as ‘alternation’, 
which required the animals to visit specific locations to retrieve water and to  
alternate between potentially reinforced locations (Supplementary Fig. 5).

Habituation. In the habituation phase used at the start of an experiment, 
all four of the Intellicage corners were open, with both doors to water open-
ing as soon as any mouse entered and remaining open until the mouse left 
the corner. Measures included visits to corners, nose-poking frequency and 
alternations.

Alternation. Mice were required to visit two of the four Intellicage corners 
in alternation in order to gain access to water. For each subject, two adjacent 
(active) corners were contingently rewarded, and the other (exploratory) two 
were never rewarded. The alternation protocol was set up to train the animals 
to switch between the two active corners, with reinforcement only for alternat-
ing visits. For example, if corners 1 and 2 were active, an initial visit to corner 1 
would be considered a correct visit and would be rewarded. To obtain further 
reinforcement, the mouse would then be required to visit corner 2; repeat 
visits to corner 1 would be classified as incorrect, and mice would not receive 
a reward for them. After the mouse visited corner 2, the corners would switch 
again such that reinforcement would be available only in corner 1, and so on. 
The only event leading to a switch in the correct-corner identity was a visit to 
the correct corner at that time, in which reinforcement was available.

Alternation data were calculated within an interval of leaving an active 
corner such that only a visit to the correct corner 113 s or less after exit-
ing an active corner counted as a correct. Alternation with any visit to the 
incorrect corner counted as incorrect; visits to the exploratory corners were 
irrelevant. Each corner contained two nose-poke recesses used to deliver 
water reinforcement during correct visits. Only the left-hand side provided 
a reward in active corner 1, and only the right-hand side provided a reward 
in active corner 2. Reward consisted of 8 s of access to the liquid reinforce-
ment. No penalty was imposed for initially nose-poking on the incorrect side.  
Data collected included frequency of alternations, repeat visits to all cor-
ners, total visits, number of alternations after obtaining or failing to collect 
reward, nose pokes to the correct side and the percentage of correct initial nose  
pokes in each visit.
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Computer Vision data. In addition to collecting data through the Intellicage 
apparatus, we collected general activity data through PGI’s proprietary  
computer vision automated video scoring system. The primary measures used 
for this study were measures of distance traveled, time in locomotion, time 
immobile (in isolation), time on an object, time climbing, time and frequency 
of rearing, and time huddling or in occlusion (two or more mice together).  
For the bioinformatics analysis, data were summarized in 12-h bins.

NeuroCube is a platform that uses computer vision to detect stance charac-
teristics, gait geometry and dynamics in rodent models of disorders.

Mice were allowed to acclimate in the experimental room for 1 h before 
testing. After acclimation, mice were placed in the NeuroCube and allowed to 
walk in the apparatus for 5 min. Subjects were returned to their colony room 
after testing. Data collected included gait features (stride length, step length, 
base width, stride duration, stand duration and swing duration), speed, ‘paw 
features’ (area of contact of the paw, perimeter of the paw print, minimal and 
maximal diameter of the paw image, intensity of the paw image), body motion 
(range of change of body dimensions, variability in body dimensions, range 
of body motion, variability in body motion), coordination (correlation of gait 
signals between pairs of paws) and paw positioning (paw position relative to 
body center, angles defined by every possible three-paw position).

SmartCube is a platform that uses computer vision and mechanical actuators 
to detect changes in body geometry, posture and spontaneous behavior and 
reactions to particular challenges29. Mice were taken in their home cage to the 
SmartCube suite of experimental rooms, where they remained until they were 
placed in the apparatus. A standard SmartCube protocol ran for a single session 
lasting 45 min. After the session, mice were placed back into to their home cage 
and were returned to the colony room. Any abnormal behaviors before and after 
the session, such as seizures or tremors, were noted. Mouse behavior was cap-
tured by digital video using purposely designed hardware that presents multiple 
challenges in a single test session and was analyzed with computer algorithms. 
Digital videos of the subjects were processed with computer vision algorithms 
to extract more than 1,400 dependent measures, including frequency and dura-
tion of behavioral states such as grooming, rearing, locomotor trajectories, 
posture, abrupt movements, stretched attend posture and startle.

Quantitative assessment of disease phenotype. The outcome of all of our 
Cube analyses was a vector of hundreds of features (behavioral parameters) 
that could be used for various other analyses (for example, one run through 
SmartCube produces more than 2,500 features, whereas PhenoCube and 
NeuroCube result in ~400 and ~100 feature values, respectively). Many of 
these features were correlated (for example, rearing counts and supported  
rearing counts). Therefore, using a proprietary decorrelation algorithm, simi-
lar in ideology to semi-blind independent component analysis45, we formed 
feature-rank-weighted statistically independent combinations of the origi-
nal features (referred to herein as decorrelated features) that discriminated 
between the two groups more effectively. Each decorrelated feature extracted 
information from the whole cluster of the original features so that the new 
feature space had lower effective dimensionality, for two reasons. First, the 
clustered features formed statistically independent combinations, and thus the 
number of such combinations was limited (these combinations were essentially 
eigenvectors of the original features with combination coefficients additionally 
modified by feature ranks). Second, the ranks (weights) of the new features 
decayed a lot faster than the ranks of the original features, so only a handful 
of the new features meaningfully contributed to the discrimination. Typically, 
we were able to obtain a faithful 2D representation (for visual assessment) 
regarding the similarity between the two groups, although weighted contri-
butions from all new features were accounted for in the calculation of the 
actual quantitative similarity measure. The rank of the newly formed features 
decayed so rapidly that we refer to it as ‘reduced’ dimensionality, even though 
contributions beyond dimension 5 rarely matter for any practical purposes. 
We typically applied a decorrelated ranked feature analysis approach to get 
an overall qualitative picture of a data set and assess the discriminability of 
its components (for example, Q lines), whereas we used original (non-trans-
formed) features for building the SVM/SVR models that we used for actual 
CAG and/or age predictions, as SVM-type methods can gracefully handle 
virtually unlimited numbers of features, highly correlated or not.

Next we applied a proprietary feature-ranking algorithm to score each fea-
ture’s discrimination power (i.e., its ability to separate two groups, such as 
control and disease). In brief, the more sensitive the decision line (defined 
by support vectors) is with respect to the change of a particular feature value, 
the higher the rank (weight, relevance) that will be assigned to that feature. 
Ranking is an important part of our analyses because it weighs each feature 
change by its relevance: if there is a significant change in some irrelevant 
feature measured for a particular phenotype, the low rank of that feature will 
automatically reduce the effect of such a change (and effective dimensional-
ity) in our analyses, so we don not have to resort to the conventional ‘feature 
selection’ approach and discard information buried in the less informative 
features. The ranking algorithm can be applied to either original or new fea-
tures to gain insight about the key differences between disease and control 
states (Supplementary Fig. 6).

In the new feature space, the overlap between the ‘clouds’ (Gaussian distri-
butions approximating the groups of mice in the ranked decorrelated-features 
space) served as a quantitative measure of separability (‘distinguishability’) 
between the two groups (Supplementary Fig. 7). For visualization purposes 
we plotted each cloud with its semi-axes equal to 1 s.d. along the correspond-
ing dimensions. Note, however, that although the overlap between any two 
Gaussian distributions is always nonzero, it might not necessarily be seen at 
the ‘1-sigma’ level.

Discrimination significance (generalized P value, i.e., the confidence meas-
ure of the discrimination probability) was calculated in the following way. 
First, each labeled set of candidates was randomly split with a 1:3 ratio, and 
larger groups from each set were used to calculate the discrimination probabil-
ity using previously described methods. This procedure was repeated multiple 
times with different random splitting for each iteration to build a distribution 
of the ‘true’ discrimination probability ptrue (Supplementary Fig. 8) (step 1). 
The number of iterations was limited by a fraction of the total number of split 
combinations available. Next, all candidates from both groups were combined 
together without individual class labels (step 2). Similar to the previous step, 
this set was split randomly multiple times. The larger group of candidates for 
each split was randomly divided into two ‘classes’ and used to calculate the 
discrimination probability. After many iterations, the distribution of ‘random’ 
discrimination probability prandom was built (Supplementary Fig. 8) (step 2). 
Both distributions were normalized, and their mutual weighted overlap was 
calculated. The resulting value represented a generalized quantity of what is 
well known as the P value indicating statistical significance. Basically, our 
method is a bootstrap procedure for determining how label randomization 
influences a classifier’s accuracy.

Multi-class analysis of independent CAG and age effects. We combed all 
behavioral data from the different CAG-KI lines and ages studied using a 
proprietary version of SVM/SVR. The SVM algorithm finds the landmarks 
(vectors) in hyperspace that best define separation between classes, in this 
case the different KI groups for each age class or the different age classes 
independent of CAG-repeat length. We used a feature-ranking selection  
algorithm to reduce dimensionality and to identify and more heavily weight 
the top features that contributed most to the CAG and age signatures.  
Our SVM/SVR approach is very similar to LIBSVM46 with a modified 
Gaussian kernel with an individual exponent for each feature (modification 
of each exponent is proportional to the corresponding feature’s rank). Cost 
value was optimized to achieve maximal LOOCV performance. Features were 
ranked by their sensitivity, i.e., the magnitude of decision line change as a 
response to each feature variation.

We used a feature-ranking curve to select the optimal number of top-ranked 
features that maximized the classifier predictive performance (for example, 
to predict CAG values for the HET lines). Furthermore, we analyzed the data 
pool for the wild-type mice in order to remove features that formed spurious 
feature patterns in the training set (which would disappear with larger sam-
ple sizes). To achieve this, we ranked all features according to their ability to 
discriminate between wild-type mice belonging to different KI-line cohorts, 
separately for each age group. We then removed the top-ranked features that 
separated the wild-type groups and made them undistinguishable, effectively 
removing any effects that were not CAG- or age-dependent.
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Code availability. The code that uses publicly available open source code 
to demonstrate the features of the described approach and reproduce 
major results presented in this paper is freely available from http://www.
psychogenics.com/FileShare/BehavioralAllelicSeriesCode.zip and as  
Supplementary Code.

CAG signature modeling. We tested the ability of many machine learning 
methods to model CAG signatures. We found that the methods derived from 
minimization of Bayesian probability of misclassification—namely, Kernel 
Gaussian Process, Relevance Vector Machines/Regression and especially 
SVM/SVR—turned out to be especially well suited. SVM seems to be espe-
cially convenient for the problem at hand, not only because of its typically 
superior performance but also because proprietary PGI SVM-based models 
can be used immediately for feature ranking/selection, which often improves 
performance.

We judged the robustness of training by using an LOOCV approach45. For 
each subject we trained a classifier on all other subjects, excluding the one 
for which we made a prediction. After we had performed this procedure for 
all subjects, we calculated the coefficient of determination from predicted 
versus true values47.

Age signature modeling. We used the modeling technique described above 
(namely, a proprietary version of SVR) to build the age-predicting classifier. 
In brief, ages 2, 6 and 10 months served as the one-dimensional ‘response 
variable’ to which machine learning regression (SVR) mapped the features 
collected from SmartCube, NeuroCube and PhenoCube.

Multi-class analysis of simultaneous CAG and age effects. To account for 
both CAG-dependent and age-dependent effects/features, we built an age 
model in which the dependent (response) variable was a combination of an 
animal’s age and its CAG-repeat length. To predict both CAG-repeat length 
and age with our SVR model, we built a correspondence map by combining the 
two-dimensional CAG–age pairs with a one-dimensional dependent variable. 
Note that modeling of a multi-dimensional dependent variable (for example, 
CAG + age) can be easily reduced to the one-dimensional case via the so-called 
RGB-to-wavelength approach (Supplementary Figs. 9 and 10).

Statistical analysis of complexity of the trajectory and percent duration 
of clustering. We analyzed data using ANOVA. For post hoc tests we used a 
Bonferroni correction for the critical alpha value, which yielded α = 0.05/6 = 
0.0083, considering only six comparisons against the wild-type line.

Quantification of endogenous huntingtin by qPCR Total mRNA extraction. 
Cortical and cerebellar tissues were homogenized twice for 1 min each time at 
25 Hz in 750 µl of QIAzol Lysis Reagent (79306; Qiagen, Valencia, CA) with 
TissueLyser (Qiagen, Valencia, CA) and 5-mm stainless steel beads (69989; 
Qiagen, Valencia, CA). Once tissues were disrupted, samples were allowed 
to incubate at room temperate for 5 min. For RNA extraction, we followed 
the manufacturer’s protocol for the RNeasy 96 Universal Tissue Kit (74881; 
Qiagen, Valencia, CA) for RNA isolation. Briefly, 150 µl of chloroform (C2432; 
Sigma-Aldrich, St. Louis, MO) was added and samples were shaken vigorously 
for 15 s, after which they were incubated for 3 min at room temperature. 
The aqueous phase was separated from the organic phase by centrifugation at 
6,000g (Beckman Coulter Avanti J-30I) and 4 °C for 15 min. The aqueous phase 
was then transferred to a new 96-well block, and total RNA was precipitated 
with an equal volume of 70% ethanol. The entire content was transferred  
to an RNeasy 96-well plate and then centrifuged at 6,000g (Beckman Coulter 
Avanti J-30I) at room temperate for 4 min. Total RNA bound to column 
membranes was treated with the RNase-Free DNase set (79254; Qiagen, 
Valencia, CA) for 30 min, and this was followed by three washing steps with 
RW1 and RPE buffers (provided with the RNeasy 96 Universal Tissue Kit).  

RNA samples were eluted with RNase-Free water (20 µl for striatum samples 
and cerebellum samples).

Total mRNA quantification and reverse transcription. Samples were quan-
tified using a NanoDrop 8000 (Thermo Scientific). Total RNA (0.1 µg of 
RNA) was reverse-transcribed into cDNA with 3.2 µg of random hexamers 
(11034731001; Roche Applied Science, Indianapolis, IN) and 1 mM each 
dNTP (11814362001; Roche Applied Science, Indianapolis, IN), 20U Protector 
RNase Inhibitor (03335402001; Roche Applied Science, Indianapolis, IN), 
1X Transcriptor Reverse Transcription reaction buffer and 10U Transcriptor 
Reverse Transcriptase (03531287001; Roche Applied Science, Indianapolis, 
IN) in a 20-µl total volume. The reactions were allowed to proceed at room 
temperature for 10 min and then at 55 °C for 30 min, and then they were 
inactivated at 85 °C for 5 min in a GeneAmp PCR Systems 9700 thermal 
cycler (Applied Biosystems, Foster City, CA). cDNA samples were diluted 
tenfold with RNase-Free water for qPCR analysis. For statistical analysis of 
the first study, we used pooled data from wild-type mice from all lines for the 
6-month-old age group. Because of the high cost, we reduced the number of 
wild-type controls and used only those obtained from the Q20 line for the 
2-month and 6-month age groups for the first study and for the Q50 analysis 
in the second study.

Quantitative PCR (qPCR). For all reactions using Universal Probe Library 
Probes, 5 µl of the diluted cDNA was amplified with 12.5 µl of 2× FastStart 
Universal Probe Master (Rox) (04914058001; Roche Applied Science, 
Indianapolis, IN), 0.5 µl of Universal Probe Library Probe (Roche Applied 
Science, Indianapolis, IN), 200 nM gene-specific primer (HPLC-purified; 
Sigma-Aldrich, St. Louis, MO) in a 25-µl reaction volume. For all reactions 
using hydrolysis probe (GAPDH), 5 µl of the diluted cDNA was amplified 
with 12.5 µL of 2× FastStart Universal Probe Master (Rox) (04914058001; 
Roche Applied Science, Indianapolis, IN), 300 nM TaqMan probe (FAM-
labeled), 400 nM each gene-specific primer (HPLC-purified; Sigma-Aldrich, 
St. Louis, MO) in a 25-µL reaction volume. The reactions were run on the 
ABI 7900HT Sequence Detection System (Applied Biosystems, Foster City, 
CA). qCPR conditions were 95 °C for 10 min for activation of FastStart Taq 
DNA Polymerase followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min.  
For primers and Universal Probe Library used for qPCR, please refer to 
Supplementary Table 3.

qPCR data analysis. Small aliquots of z_Q175KI HET samples (tissue-
matched) were pooled and used as a calibrator (the calibrator was diluted in 
the same way as the sample cDNA) to normalized plate-to-plate variations. 
Each cDNA sample (diluted 1:10) was assayed in triplicate, and the Ct values 
were averaged. Values that were greater than 0.5 s.d. of the average were dis-
carded. The relative quantity of the PCR product (relative to the calibrator) 
was calculated as follows: Relative Quantity = (PCR Efficiency)(Ct calibrator 
− Ct sample). The geometric mean (GM) for the three housekeeping genes 
was then calculated and used to normalize the level of the target gene as  
follows: Normalized Quantity = Relative Quantity/GM. Finally, DNA levels 
were further normalized to the 5-week-old wild-type group.

Statistical analysis of qPCR results. Analyses were carried out using ANOVA 
at each age. For post hoc tests, a Bonferroni correction was used for comparison 
against the wild type only (endogenous Htt) yield α = 0.0062. For multiple 
comparisons, α = 0.0025.

44. Balci, F. et al. High-throughput automated phenotyping of two genetic mouse models 
of Huntington’s disease. PLoS Curr. http://dx.doi.org/10.1371/currents.hd.124aa0
d16753f88215776fba102ceb29 (2013).

45. Cichocki, A. & Amari, S. Adaptive Blind Signal and Image Processing: Learning 
Algorithms and Applications (Wiley, 2006).

46. Chang, C.-C. & Lin, C.-J. in LIBSVM: A Library for Support Vector Machines  
Vol. 2 (ACM, 2011).

47. Steel, R.G.D. & Torrie, J.H. Principles and Procedures of Statistics with Special 
Reference to the Biological Sciences (McGraw-Hill, 1960).
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