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SUMMARY

Protein flexibility ranges from simple hinge move-
ments to functional disorder. Around half of all hu-
man proteins contain apparently disordered regions
with little 3D or functional information, and many of
these proteins are associated with disease. Building
on the evolutionary couplings approach previously
successful in predicting 3D states of ordered pro-
teins and RNA, we developed a method to predict
the potential for ordered states for all apparently
disordered proteinswith sufficiently rich evolutionary
information. The approach is highly accurate (79%)
for residue interactions as tested in more than 60
known disordered regions captured in a bound or
specific condition. Assessing the potential for struc-
ture of more than 1,000 apparently disordered re-
gions of human proteins reveals a continuum of
structural order with at least 50% with clear propen-
sity for three- or two-dimensional states. Co-evolu-
tionary constraints reveal hitherto unseen structures
of functional importance in apparently disordered
proteins.

INTRODUCTION

Many, if not most, proteins can adopt alternative functional con-

formations, and around half of all human proteins contain regions

of at least 40 residues classified as disordered by a number of

different bioinformatic methods (Oates et al., 2013; van der Lee

et al., 2014) (Figure 1 and Table S1), including many transcription

factors with hundreds of so-called disordered regions.

Conformational heterogeneity has long been recognized as

necessary for protein function (Koshland, 1959; Monod et al.,

1963; Perutz, 1970) and is associated with diverse cellular func-

tions, including metabolism, gene regulation, signaling, and

molecular transport, spurring growing interest in so-called disor-

dered and low-complexity sequences (Bah et al., 2015; Ferreon
158 Cell 167, 158–170, September 22, 2016 ª 2016 Elsevier Inc.
et al., 2013; Motlagh et al., 2014; Tokuriki and Tawfik, 2009;

Uversky and Dunker, 2010; Wells et al., 2008; Wright and Dyson,

2015). Most recently, low-complexity sequences have also been

associated with physiological prion-like polymers that form hy-

drogels and membrane-less compartments, such as Fus and

hnRNPA2 (Hyman et al., 2014; Kato et al., 2012; Kwon et al.,

2013; Patel et al., 2015). However, protein flexibility is also asso-

ciated with pathologies characterized by alternative folding or

illicit polymerization, such as cancer, diabetes, and neurodegen-

erative disorders (Knowles et al., 2014; Lorenzo et al., 1994;

Patel et al., 2015), and it remains unclear the extent to which

these alternate states may have physiological functions.

Unfortunately, the flexibility of proteins is a challenge for tradi-

tional and even state-of-the-art methods of experimental and

computational investigation. This leaves many of their functions

and tertiary (3D) structures out of reach, which is particularly

frustrating, as these proteins are at the heart of very active areas

of research. Bioinformatic algorithms that predict disorder are

typically based on sequence bias that has, in turn, been learnt

from experimental evidence fromCD or NMR spectra (Alexander

et al., 2009; Knowles et al., 2014; Mittag et al., 2008; Sambashi-

van et al., 2005; Tokuriki and Tawfik, 2009; Tompa, 2002; Uver-

sky and Dunker, 2010; Wells et al., 2008; Wright and Dyson,

2015). A small minority of proteins considered disordered have

been observed experimentally and they span a spectrum of

structuredness. These observations range from seeing solely

secondary structure propensity (Fuxreiter et al., 2004; Uversky

et al., 2002), to transient ensembles, through to more stable

order in specific conditions—for instance, after post-transla-

tional modification or when binding a ligand, a protein, DNA, or

RNA (Bah et al., 2015; Baker et al., 2007; Hurley et al., 2007;

Tompa and Fuxreiter, 2008).

However, except for a tiny percentage of cases (�1%), we do

not know whether apparently disordered proteins can take on

ordered states in vivo (Frederick et al., 2015), and the conditions

for functional and structural experiments are unlikely to be

known a priori for the vast majority. In the extreme, so-called

fuzzy complexes have functional disordered regions that have

been confirmed even when in their bound states (Tompa and

Fuxreiter, 2008). While it is possible that some disordered
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Figure 1. Co-evolutionary Analysis of Disordered Segments in the

Human Proteome

First, we identify contiguous regions of disorder; second, we search for similar

sequences and select robust alignments; third, we calculate ECs for each

alignment using an updated algorithm to compute significant long-range ECs
regions of proteins remain intrinsically disordered in all of their

physiological states (Guharoy et al., 2015), there may be many

disordered regions that have specific but as yet uncharacterized

conformations in vivo.

By exploiting recent advances in predicting tertiary contacts

and 3D structures from sequence alignments, we sought to un-

cover what evolutionary information from protein sequences

alone could reveal about 2D (secondary) and globular 3D struc-

tural states of low-complexity sequences or proteins considered

disordered (Hopf et al., 2012; Livesay et al., 2012; Marks et al.,

2011; Morcos et al., 2011, 2013; Thompson and Baker, 2011;

Weinreb et al., 2016). We made no assumption that the proteins

or regions take on any structural constraint in vivo and used co-

evolutionary analysis of thousands of genomic sequences to

predict the likelihood of structural constraints of the human

disordered proteome. The approach builds on recent successful

attempts to predict 3D structures from natural sequence varia-

tion (Hopf et al., 2012, 2014; Marks et al., 2011; Morcos et al.,

2013; Ovchinnikov et al., 2014; Weinreb et al., 2016), and here,

we develop statistical methods crucial for the applicability to

low-complexity sequences. Although we and others have re-

ported alternative residue contacts for alternative states (Hopf

et al., 2012; Morcos et al., 2013), this is the first report of a sys-

tematic exploration of alternative and disordered states in the

human proteome.

Here, we develop the evolutionary coupling (EC) method to

analyze protein sequences predicted or known to be disordered.

We first present the results of the method for a set of disordered

proteins that have experimental evidence of their structural

states (retrospective prediction set) and follow this analysis

with de novo predictions for a set of apparently disordered re-

gions that were assembled from all human proteins. Our compu-

tational inference is based only on sequence co-variation,

identifies accurate 2D and globular 3D structural constraints

for the retrospective set, and predicts evidence of structural con-

straints for >90% of disordered regions in the human proteome

that are currently amenable to the method.

RESULTS

Method Development
We surveyed all human proteins for disorder using standard

methods (Dosztányi et al., 2005), finding that�50%ofhumanpro-

teins have disordered regions of >30 residues,with 3,585proteins

containing 4,543 continuous disordered segments longer than

100 residues (Figures 1 and S1, Table S1, and STAR Methods).

Some of these proteins may have 3D structures in specific condi-

tions or alternatively exist in an ensemble of states in any single

condition. Inorder tocompute thestructural propensity,wedevel-

oped the ECs method in three areas: sequence alignments, EC

inference and statistical score, and fold probability.

Sequence Alignments

After conducting systematic iterative alignments using jack-

hammer (Johnson et al., 2010), we found that 1,469 (32%)
and secondary structure propensity from short-range ECs; finally, we assess

these predictions to reveal the likelihood of secondary and tertiary structure

(STAR Methods).
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segments recovered sufficient numbers of similar sequences

(>5L sequences after redundancy reduction, where L is the

length of the sequence) to move forward with the analysis. How-

ever, many of the alignments looked as though they may be arbi-

trary, which is to be expected when there are high substitution

rates (Brown et al., 2010) and low-complexity amino acid

composition that is one of the hallmarks of disorder classifica-

tion. Since success of the co-evolutionary model for residue

interactions depends critically on the quality of the sequence

alignment, the challenge here was to develop criteria that mea-

sure alignment uncertainty. We therefore developed a pipeline

that fetches and aligns sequences across a range of parameters,

requiring a stable alignment as a condition for coupling calcula-

tions. The alignment robustness score represents the agreement

of the amino acid composition of the alignment columns after

different rounds of re-alignment iterations (Figures 1 and S1).

EC Inference and Statistical Score

Wemodifiedour previously publishedmethod for determining ac-

curate 3D constraints from sequences (Hopf et al., 2014; Marks

et al., 2011; Morcos et al., 2011) so that gaps in the sequence

alignment are excluded in the calculation in a self-consistent

way. Gap removal is particularly critical for the evaluation of local,

short-range ECs that are otherwise dominated by noise created

by gap-gap correlations. To assess the quality of the inferred

ECs, we defined a statistical confidence measure based on the

EC score distribution (without using any structural information).

The distribution is approximated by a Gaussian-lognormal

mixturemodel, andwe defined the tail of the distribution as those

scores that have >90% probability of belonging to the lognormal

component. ECs in this tail are defined as high probability.

Fold Probability

We assessed how likely the protein (or region) was to have some

three-dimensional fold(s) by using the number of high-probability

long-range ECs computed from the alignment in proportion to

the length. Similarly, we identified propensity toward secondary

structures in disordered proteins without relying on standard

secondary structure prediction methods (Yachdav et al., 2014),

as these are trained on predominantly ordered sequences.

Here, we considered the relative strength of local ECs ((i to i+3)

and (i to i+4) for a helices, and (i to i+2) for b strands) (Figure S2A).

Retrospective Prediction: ECs Capture Known States of
Structural Plasticity
We next tested, completely blindly, whether ECs can capture the

secondary (2D) and tertiary (globular, 3D) states of proteins that

have been observed in an ordered conformation but also have

experimental evidence of disorder. We assembled a set of 83

proteins that contain disordered regions (45 proteins) or confor-

mational changes (38 proteins) and have robust alignments; an

additional 13 disordered regions were filtered out based on our

alignment quality criteria (Table S2). These proteins included ex-

amples ranging from relatively simple conformational changes to

those with evidence of complete disorder unless bound to a

ligand or partner. Out of all the proteins tested, 79% of the

ECs were close in the corresponding known structures (Figures

2A and S2B), which is comparable to the prediction accuracy for

ECs of well-ordered proteins previously published (Marks et al.,

2011), and 97% (37/38) of the proteins with known alternative
160 Cell 167, 158–170, September 22, 2016
conformations have high-confidence ECs that correspond to

contacts unique to at least one conformation (Figure S3A and

Table S2A). Since the secondary structure prediction approach

is novel, we tested our method blindly on more than 2,800 inde-

pendent domain families with known structures resulting in pre-

cisions of 86% for a helices and 52% for b strands (Figure 2A and

Table S3). We noted that we tend to over-predict b strands,

which could be due to a combination of under-annotation, multi-

mer signals, and less evolutionary constraint.

Alternative States

Our EC approach successfully predicts alternative structural

states. The peptidyl carrier protein (PCP) undergoes large

conformational changes when it binds its cofactor, 40-phospho-
pantheine, resulting in two distinct states that have been

captured by NMR (Koglin et al., 2006). The ECs capture contacts

that are unique to the active or bound (holo) co-factor bound

form (16 pairs) and those unique to the inactive or unbound

form (apo) of PCP (5 pairs), as well as those contacts between

residues that remain the same in the two states (Figures 2B

and S3A). Folding the protein with the EVfold pipeline results in

a structure similar to an average of the two structures and

most similar to a third structure in which the protein is captured

in a transition state (PDB: 2GDZ [Koglin et al., 2006]). In contrast,

folding PCP using ECs that are satisfied in all conformations

together with those unique to each structure in turn gives 3D

all-atom structures that are 2.5–3 Å Ca rmsd from each of the

respective crystal structures (PDB: 2GDY [Koglin et al., 2006]

[apo] and PDB: 2GDX (Koglin et al., 2006) [holo]). This shows

that the respective ECs are sufficient to constrain the specific

alternate functional fold. Correspondingly, local ECs capture

alternative secondary structure elements.With PCP, ECs predict

helix 3 (H3) that is unique to the transition state (Figure 2B) and

strand and helix alternatives in the chloride intracellular channel

protein (CLIC1) (Figures 2C and S3C).

Disorder to 2D and 3D

Next, we tested the ability of the method to identify 2D and 3D

contacts of disordered proteins that have been observed in spe-

cific conditions. Most of the significant ECs matched residues

that were close in the observed conformations (Figure S4; Table

S2B). Two of the most accurate predictions were for the disor-

dered domain of the transcription factor Lef-1 (Love et al.,

2004), where ECs perfectly recapitulate 73 contacts of the folded

state (Figure 3A), and for the disordered domain of the chap-

erone Calnexin, where ECs recapitulate contacts observed in

the crystal structure (Schrag et al., 2001; Williams, 2006) in the

extended arm of a chaperone wrapping around the substrate

molecule, including the observed b strands (Figure 3B).

In the third example, we were able to identify 3D contacts

arising during chaperone-bound folding of phoA, the dynamics

of which were recently captured using state-of-the-art relaxation

NMR experiments (PDB: 2MLX, 2MLY, 2MLZ [Saio et al., 2014]).

In the reducing environment of the cytosol, phoA is disordered

(Saio et al., 2014), and it only folds when oxidized. The alignment

of�3,095 sequences had 111 significant ECs, coinciding largely

with contacts in the globular, oxidized structures (PDB: 1AJA

[Dealwis et al., 1995]). However, there are also three pairs of sig-

nificant ECs for contacts that are made only in the chaperone-

bound ‘‘unfolded state’’ and that are more distant in the folded
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protein (Figure 3C). These results suggest that this chaperone-

bound state seen in the NMR experiments may be under

selection.

Since some disordered proteins are known to have folds when

they co-fold with their binding partners, we also tested whether

the signal from ECs was improved by using a joint multiple

sequence alignment of a pair of proteins that bind, specifically

in the case of anti-s factor FlgM bound to RNA polymerase

s-factor FliA (O67268) (Sorenson et al., 2004). The ECs calcu-

lated on the whole-complex alignment, rather than on FlgM

alone, more accurately capture FlgM’s internal contacts, sug-

gesting that the information for the structured fold of FlgM is

partly encoded in the protein’s partner, RNA polymerase s-factor

FliA (O67268) (Figure S5). This observation has implications for

de novo, real-world predictions, suggesting caution on the inter-

pretation of a lack of signal for either secondary or tertiary con-

tacts; i.e., structured states may exist but may be invisible to

EC analysis unless the biomolecular partner is included in the

statistical analysis. Despite the high correspondence of EC pairs

to observed close residues, there are some significant ECs

involving residue pairs that are not close in the experimentally

captured states (�20%, Figure 2A and Table S2). These false

positives may reflect constraints that are not the result of mono-

meric residue proximity—for instance, multimers, ligand, and

other biomolecular interactions, as discussed in previous work

(Marks et al., 2011). It remains to be seen if these represent

‘‘true’’ false positives or residues that are close in as-yet unseen

conformations, and in two of the cases seen here, there is addi-

tional experimental support for these putative alternative states

suggested by the ECs (Figure 4).

Some Proteins May Have Additional States

Some proteins in the validation set have ECs that suggest an

additional structural state. To be conservative, we still count

these ECs as false positives in the overall evaluation, even

though some have evidence for additional as-yet unobserved

states. A few high-ranked ECs in the protein phosphatase inhib-

itor II (PPI2) are between residues distant in the structure of the

bound inhibitor (PDB: 2O8A [Hurley et al., 2007]) but consistent

with observations made in NMR studies of its free state, where

contacts between regions 140–150 and 65–75 are observed

(Dancheck et al., 2008; Marsh and Forman-Kay, 2012) (Fig-

ure 4A). Similarly, ECs between the two helices of the LH domain

in the disordered p27KIP1 protein (a cyclin-dependent kinase in-

hibitor) are distant in the structure of p27KIP1 bound to cyclin A

(PDB: 1JSU [Russo et al., 1996]) (Figure 4B). However, the regu-

lar pattern of consecutive pairs suggests that the antiparallel he-

lical-packing arrangement is evolutionarily conserved.

The ECs for the HIV Rev protein recapitulate the known 3D

structure of the N-terminal region, including multimer contacts

seen in a number of experimental structures (Daugherty et al.,
(B) PCP undergoes large conformational changes, including the repacking of its he

2GDX). ECs reflect interactions between helix 1 and helix 2 (magenta circle, only

structure). Many residue-residue distances change substantially between the tw

and E58, which form a salt bridge in the apo form, while they are >20 Å apart in the

PCP, the third being present only in the intermediate state between the apo and

(C) ECs agree with a known conformational switch in the CLIC1 that undergoes re

transitions.
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2010; Jayaraman et al., 2014) (black and yellow ovals, Figure 4C).

These contacts include a number of pairs (e.g., F21-R58) that are

only close when Rev is bound to the RRE (Rev response element)

in HIV (Daugherty et al., 2010; Jayaraman et al., 2014). A high-

ranked EC residue pair between the N- and C-terminal domains,

S61-S112, and a number of other clustered ECs are consistent

with additional multimer contacts (yellow ovals, Figure 4C). We

also predict ECs that form a network of tertiary contacts and

well-defined secondary structure in the C-terminal region of

Rev—contacts so far unseen in experimental structures.

To explore possible 3D states of p27, PPI2, and Rev, we

computed 3D models using distance constraints from long-

range ECs and secondary structure prediction from local ECs.

These predicted structures have EC-derived contacts that could

be salt-bridges and, in the case of PPI2, bring together a region

close to the putative phosphorylation switch.

No 3D Signal

PSMD4 (Rpn10/S5a) is a di-ubiquitin binding protein and part of

the 19S regulatory proteasome that captures substrates with

two ubiquitin-interacting motifs (UIMs). None of the contacts

that we predict are long range, agreeing with the NMR structures

of PSMD4 bound to di-ubiquitin (PDB: 2KDE [Zhang et al., 2009])

(Dikic et al., 2009). Nevertheless, our short-range ECs predict the

a helices of PSMD4 seen in the NMR structures, and the top two

ECs (Q292-Q296, A290-S294) of PSMD4 lie in a helical segment

that binds ubiquitin (Figure 5A) (Walters, 2005), suggesting that

local enrichment of couplings can capture functional residues

in this disordered domain. Intrinsically disordered bovine

HMGN2 has been explored using methyl-based NMR to assess

its binding to histones and DNA (Kato et al., 2011), and we do not

see a signal for long-distance contacts in this region despite a

signal for some b strands. Similarly, there is an absence of a

3D signal in the C-terminal end (110–210) of the H1.0 histone,

while we accurately predict 3D and 2D signals from ECs in the

N-terminal region (42–110) matching the known structure of

the linker histone domain (PDB: 1GHC [Cerf et al., 1994]) (Fig-

ure 5B). In summary, this set of retrospective predictions (83 pro-

tein regions) demonstrates both that high-confidence ECs are

generally accurate, whether in 3D or 2D, and that the lack of a

3D signal from ECs often coincides with proteins in which exper-

imental evidence supports the lack of definable structure (Fig-

ures S4 and S5 and Tables S2 and S3).

Evolutionary Signal for Amyloid and Non-native States

For the functional amyloid curlin, csgA, in E. coli, we see a strong

secondary structure propensity signal for b strands along the

length. Here, long-range significant ECs match previously pre-

dicted pairs of b sheet hydrogen-bonded residues in the amyloid

of csgA (Tian et al., 2015). We cannot exclude the possibility that

some of the evolutionary constraints that lie in parallel to the di-

agonal are artifacts of the repeat nature of the sequences.
lices, upon cofactor binding (left: apo form, PDB: 2GDY; right: holo form, PDB:

in apo 3D structure), as well as helix 1 and helix 4 (blue circle, only in holo 3D

o conformations. For example, there is strong coupling between residues K18

holo form. Our secondary structure propensity score predicts all four helices of

holo form (PDB: 2GDW).

dox condition-dependent conformational switch, including a-helix to b strand
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Nevertheless, additional, antiparallel clusters of ECs in the mid-

dle of each repeat, together with b-strand signals from local

ECs, are consistent with previously proposed amyloid organiza-

tion (Figure S6) (Tian et al., 2015). Similarly, there is a distinctive

pattern of ECs in the N-terminal disordered region of FUS, a

gene associated with both oncogenesis and the pathogenesis

of amyotrophic lateral sclerosis (ALS). Local ECs predict b

strands consistent with reports that this region may have a

propensity to form functional b-strand fibrils (Figure S6) (Kato

et al., 2012). In contrast, ECs predict only a-helical secondary

structure for a-synuclein and no strong b-strand propensity.

This prediction is therefore not in agreement with a b hairpin

observed in a structure of a-synuclein observed bound to an

engineered protein (PDB: 4BXl [Mirecka et al., 2014]). However,

our prediction is in agreement with the a-helices seen in most

of the structural experiments, including the micelle-bound,

partially folded conformations of a-synuclein captured by NMR

and EPR (PDB: 2KKW [Rao et al., 2010]) (Figure S6). These re-

sults suggest that evolutionary information may be useful to

explore the propensity of amyloid formation, and further work

should specialize in determining signals for higher order struc-

ture formation.

Screening the Human Disordered Proteome
3D Contacts Predicted

32% of the disordered regions that we identified for exploration

had a sufficient number of sequences, enough diversity, and

good coverage (Meff > 5 per residue), resulting in 1,469 seg-

ments, of which 965 had robust alignments (Figure 6A and Table

S4). The majority (92%) of this set of 965 regions have an evolu-

tionary signal for 2D or 3D structural constraints, and roughly

42% have significant long-range ECs that indicate a constrained

3D fold or folds. 8% do not show a signal for structure despite

having sufficient sequences and robust alignments (Figures

6A–6C). For a small subset of proteins (33) with 3D contacts,

there is a related sequence with known 3D structure for part of

the disordered query region—but the remaining most likely

represent de novo predictions of 3D contacts of proteins that

have been previously considered as disordered.

381 protein regions have high 3D signals (more than 0.1L long-

range ECs [where L = length of disordered region], including re-

gions in an RNA binding protein, RBM28 [Q9NW13], a DNA

repair protein, RAD28 [Q9NS91], a zinc-finger protein, ZNF358

[Q9NW07], and a Bcl-2-like protein [Q9BXK5]) (Figure 6C). The

longer-range ECs are clustered in away that is typical of second-

ary structure 3D packing and correspond to the independently

computed secondary structural elements from the local EC

scores. In many examples, the contacts resemble those from

3D folds related to the known function of the whole protein.

For instance, for some proteins containing annotated zinc fin-

gers, the predicted contacts of the unknown regions resemble

zinc-finger motifs, and the ECs of a disordered region of

RBM28 resemble a typical RNA-binding domain.
(C) phoA has been captured experimentally in the folded state (1aja) and unfolded

are unique to the folded state (pink circles) and some unique to the unfolded st

that are only close in the ‘‘unfolded’’ state (between 416D–423S and 406P–411A,

state) (right).
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Sincewefind that a significant proportion of these regions have

secondary or tertiary predicted contacts, we wondered whether

the regions in our set that retrieved enough sequences may be

biased toward structuredness. We do indeed find that the extent

of predicted disorder is somewhat shifted between our

computed set and the set of the remaining regions that had

insufficient sequences or non-robust alignments. However, the

bias is small; for example, 72% of the computed set versus

82% of the non-computed set have disorder scores > 0.6. (Fig-

ure S2B). In addition, we do not see bias toward less disorder

with those regions that have a clearer 3D signal. Around 90 pro-

teins have a large proportion of significant ECs that are long in

chain distance, resulting in globularity scores higher than one

might expect from a typical globular fold. In theory, these could

be due to multimer contacts but are more likely to be a signature

of repeats that will result in couplings between residues in

multiples of the lengths of the repeats. We expect to develop

the method to deconvolute these signals in future work.

Regions with Primarily Secondary Structure

505 regions have very few, if any, long-range contacts but never-

theless have predicted secondary structure for at least 10% of

their residues. This includes regions in the guanine nucleotide

binding protein (GNL3, Q9BVP2), a tumor necrosis factor recep-

tor (TNSRSF4, P43489), and the cancer/testis antigen family

member (CT45A1, Q5HYN5), that have strong a-helical predic-

tion, which may indicate that they form these structures while

bound to protein partners (in analogy to p27 [Figure 4B]) or sta-

bilize through self-multimerization. In contrast, the region in the

oncogene BRAF (P15056) has a series of b-strands but also

has some long-range ECs that fall just below the statistical

threshold. These long-range ECs constrain residues between

predicted secondary structure elements, thus reinforcing the

long-range predictions made independently. This suggests

that users search below threshold, where they may have prior

knowledge. Similarly, we predict propensity for b strands in his-

tone tails (notoriously disordered) (Hansen et al., 2006), and the

predicted four b strands for the C-terminal region of histone

H11 (P08287) are consistent with the observation that this tail

may contain b strands when phosphorylated (Roque et al.,

2008). Confidence in this prediction for the histone tail also

comes from the accuracy of the blind prediction of contacts in

the N-terminal region (precision = 0.91, H11L, PDB: 1GHC

[Cerf et al., 1994]; Figure 5B).

Regions Without 3D or 2D Signal

Finally, 79 regions have no, or very little, indication of either 3D

or 2D structure, including many disease-associated genes

such as the Forkhead box protein G1 (FOXG1/P55316), BRD9

(Q9H8M2), and DNA polymerase g (DPOG1, P54098). The lack

of predicted order of DPOG1 (between amino acids 1–102) is

consistent with the experimental observation of DPOG1 in func-

tional complex that, despite being the full-length protein, has

missing density or no secondary structure up to position 100

(PDB: 5C53 [Sohl et al., 2015]).
state when bound to a chaperone (PDB: 2MLZ) (left). ECs capture contacts that

ate (blue circles) (middle). Specifically, two pairs of ECs predict residue pairs

�16 and �13 Å apart in the folded state and 3.8 and 2 Å apart in the unfolded
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Figure 4. EVFold Predictions of Novel States of Disordered Proteins

(A) Protein phosphatase 1 inhibitor 2 (IPP2_MOUSE), a disordered regulator, binds to its complex partner via three anchoring regions (residues 12–17, 44–56, and

148–151), while the rest of the molecule remains invisible in the crystal structure (blue shading). ECs predict the existence of the helical anchors, as well as the

long-range interactions between these regions.

(B) Predicted contactmap of p27 (CDN1B_HUMAN) reveals alternative states that are not compatible with the bound structure andmight formwhen free or bound

to another partner.

(C) Rev protein of HIV (REV_HV1H3) was captured experimentally in a dimeric state that is corroborated by the EC map, which has contacts for the helix-helix

packing and the dimer contacts of the experimental structure (PDB: 3LPH). Additionally, possible multimer contacts may explain the higher-order oligomerization

of Rev. The C-terminal, invisible in experiments thus far, has a signal for helical structure and has long-range evolutionary constraints indicative of a folded state

(predicted 3D model, C, right).
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(A) The experimental 3D structure of PSMD4 in complex with di-ubiquitin (PDB: 2KDF) has no long-range contacts between the helices, ensuring the separation of

the two ubiquitin interacting motifs (UIMs) (top). Consistent with this, there are no ECs between residues distance in chain, but nevertheless, local ECs identify the

helices formed when bound to ubiquitin as well as a weaker signal for possible b strands.

(B) ECs (pink circles) match the known contacts (gray circles) in the structure of the N-terminal end of the histone H1.1 (PDB: 1GHC [P08287]) but do not predict

long-in-chain contacts in the C-terminal tail, consistent with observations that the histone tail is flexible in vivo. Secondary structure prediction of C-terminal

region suggest b strands.
DISCUSSION

The flexibility of proteins is ubiquitous, but determining their po-

tential conformations is experimentally challenging. The first part

of this work systematically re-iterates what we (and a few others)

have anecdotally reported previously: that one can see alterna-

tive 3D states in the pattern of ECs, provided the alternative

states result in alternative residue contacts. The second part of

this work explores to what extent our approach can determine

whether or not there are 3D or 2D states of proteins that are

considered disordered, sometimes called ‘‘intrinsically disor-

dered.’’ The third part is a screen of the human proteome for

disordered regions that are amenable to the current approach,

providing a rich resource for experimental work.

Strictly speaking, regions of disorder are inferred from inability

to crystallize, lack of density in otherwise structurally observable

proteins, or experiments that are able to verify that the protein is

in a fluctuating, non-stable ensemble such as 1H-15N HSQC.

More practically, the biological community has extrapolated

from these experimental observations to other proteins that
166 Cell 167, 158–170, September 22, 2016
have similar kinds of low-complexity sequences, and bio-

informatic tools use this information in one way or another to pre-

dict how ‘‘disordered’’ a protein or region is likely to be. Here, we

took a new approach to the problem of disorder, using statistical

ECs in aligned sequences to test whether or not there is a

signal for 3D folds or secondary structure. Our results suggest

that >50% of so-called disordered regions may have some 3D

contacts, but not necessarily enough to constrain a single

conformation, and about 10% have more than enough long-

range contacts to indicate a constrained folded state. An addi-

tional 42% have predominantly secondary structure propensity,

indicating that they make stable conformations in specific condi-

tions. As the example with the inhibitor of flagellar assembly

demonstrates (Figure S5), we anticipate that three-dimensional

states of some apparently disordered proteins will be revealed

when the interacting proteins are computed together.

Low-complexity sequences are notoriously hard to align to

other sequences with traditional alignment methods due to a

tradeoff between the desire to allow longer gaps and insertions

than higher-complexity sequences and the desire to avoid
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Figure 6. Human Proteome-wide Prediction of Structural States of Disordered Proteins

(A) Out of the 4,543 disordered segments analyzed, 21% (965) of these had alignments with sufficient sequences that also met our convergence criteria; 381

(40%) of these segments have long-range ECs giving a globularity score >0.1; another 52% have predicted 2D constraints (secondary structure propensity

score >0.1) but very few 3D constraints; and the remaining 8% show almost no signal for any structural constraints. Almost 10%also have EC patterns suggestive

of repeats.

(B) Distribution of long-range predicted contacts (left) and the propensity to secondary structure (right) across the proteins.

(C) Four examples of proteins with high proportion of long-range ECs (yellow) that have no known structure and are considered disordered. Secondary structure

predictions (yellow along axes) correspond well to tertiary structure packing indicated by the long-range ECs.

(D) Four examples of proteins without evidence of a 3D contact, but with predicted secondary structure elements. All of our predictions and data files are available

on the web at https://marks.hms.harvard.edu/disorder/.
aligning sequences due to composition biases. Although our

alignment procedure method addresses these concerns to

some extent, iterating and measuring alignment certainty

before proceeding, we expect this to be an important area

of future algorithmic development, and we urge care with

alignments.
Our analysis does not exclude the existence of a genuinely

intrinsic disorder that rarely, if ever, takes specific conformations

for any functionally relevant time period—for instance, as

observed with the R region of CFTR (�200 residues) (Baker

et al., 2007). Rather, the ECs analysis supports the idea of a

spectrum of states and suggests that there is a large number
Cell 167, 158–170, September 22, 2016 167
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of these uncharted regions that may have residue-residue con-

straints despite a current lack of biophysical evidence. We

anticipate that our approach will enable focused functional

investigation of thousands of disordered and flexible proteins,

especially in collaboration with experimental approaches.
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METHOD DETAILS

Disordered proteins for validation set
To explore whether evolutionary information captures alternative conformational states and potential 2D and 3D structures of intrin-

sically disordered proteins we collected a comprehensive set from the Protein Data Bank (PDB: www.rcsb.org) and DisProt

(Table S2) (Sickmeier et al., 2007). We parsed PDB for all proteins that have at least 2 different experimental structures (16,583 pro-

teins with > 1 structure per Uniprot ID). We compared all structures (excluding EM data and structures with resolution > 3Å) of the

same protein sequence and selected the two most divergent representative structures per Uniprot ID. We evaluated structural dif-

ferences by calculating RootMean Square Deviation (rmsd) over all atoms, and the fraction of residue-residue contacts unique to one

conformation. Many of the resulting proteins were chimeras, domain swaps, or duplicates, which we removed. The resulting 50 pro-

teins from the PDB were selected from the total by including only (i) proteins with > 10 Å all atom rmsd between any two conforma-

tions and > 20% unique residue-residue contacts on average for each conformation (contacts defined by any atom-atom distance

between the residues is < 5 Å) (ii) one protein per protein family (defined here by PFAM family) based on largest structural deviation

between any two conformations for the same protein. We also parsed the literature for biologically significant conformational

changes requiring secondary structure switches and rearrangements and added 8 to this set (total 58 proteins). Note that we

compared alternative structures of the exact same protein (same sequence, same organism) only, therefore our large-scale analysis

cannot identify conformational diversity between orthologous proteins from different organisms. We also included proteins defined

as having all or partly intrinsically disordered domains fromDisProt v6.02 (Sickmeier et al., 2007). Additionally, we applied a sequence

based disorder predictor (IUPred (Dosztányi et al., 2005)), and we required more than 50 residues long segments with a disorder

score > 0.4 (165 non-redundant proteins). Taken together we tested 223 proteins for sufficient alignment coverage. After applying

our exhaustive sequence search and alignment quality tests (see Multiple sequence alignments section in Methods), we found

sufficiently large and robust sequences alignments, and statistically significant couplings for 88 proteins. Our set of experimentally

validated flexible and disordered regions contained 38 proteins with two known conformations and 45 proteins with at least one

known structure (83 proteins, Table S2, Figure 2).

Human proteome analysis: prediction dataset
We assessed proteome-wide disorder in H. sapiens and E.coli by predicting disordered residues using IUPred (Table S1) (Dosztányi

et al., 2005). In order to identify extended disordered regions, we first identified disordered segments more than 6 residues in length
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(defined as a segment with an average disorder score of > 0.5 and a maximum of 3 consecutive residues scoring < 0.5). We then

merged disordered segments < 7 residues apart, and report the distribution of segments more than 30 residues in length (Figures 1

and S1 and Table S1). For downstream analysis we employed a further hierarchical merging procedure, merging segments of > 30

residues in length that had < 50 residues between them. Thus the final set that we analyzed consisted of thesemerged segments with

a length of between 100 and 300 residues. All sequences were checked for PFAM domain annotation and PDB structure overlap

using HMMscan and PFAM to PDB mappings.

Multiple sequence alignments
Sequence search was performed by our in-house implementation of jackhammer (Johnson et al., 2010). using 8 iterations of the pre-

diction queries against the UniProt and UniRef databases (release 2015_02 [UniProt Consortium, 2015]). The relevant E-value inclu-

sion thresholds were chosen blindly by selecting for the alignment with the most significant ECs while requiring sufficient coverage

(Meff/residue of > 5) and that jackhammer returned the query sequence with greater than 95% of the amino acids aligned to the final

jackhammer model. We excluded sequences that had < 50% length coverage relative to our query sequence. Since disordered, low-

complexity sequences are hard to align, we tested the reliability of our alignments bymeasuring their convergence after 11 iterations.

We compared the alignment columns’ amino acid frequencies after different numbers of alignment iterations (0 to 11, Figure S1). For

each column within an alignment we calculated the frequency of each amino acid in addition to gaps. As a measure of robustness to

iteration, we correlated (r2, Pearson correlation) the frequencies of amino acids in each column of an alignment with the frequencies of

those same amino acids in the corresponding columns after fewer iterations. We discarded alignments with an r2 of less than 0.80 for

themost frequent amino acid after the 9th-10th-11th iterations. If the character was a gapwe removed this column before calculating

the correlation. For the statistical inference, we excluded columns that had more than 50% gaps in our final alignments (available at

https://marks.hms.harvard.edu/disorder/). To account for the uneven sampling of sequence space by evolution in our downstream

analysis, we reweighted sequences in proportion to their number of neighbors, defined as 90% identity, such that 90% identical clus-

ters receive unit weight. We calculated the Meff/residue as previously described (Equations 3, 4, and 5 from Supplemental Text in

reference (Marks et al., 2011)), and for our analysis we only included alignments with sufficient sequence diversity defined as having

a Meff/residue of > 5.

Secondary structure prediction
We predicted secondary-structure elements using short-range ECs and simple helix and strand geometry. For a helices we took all

sets of 5 consecutive residues with ECs and created four vectors, A1.A4, each containing the mean of ECs where ji-jj = n for each

positive integer n from 1 to 4. For b strands we took all sets of 3 consecutive residues with ECs and created two vectors, Bn, each

containing themean of ECswhere ji-jj = n for n = 1 and n = 2. To normalize ECswe regressed themean of the i+1 ECs for each of over

3800 PFAM alignments (calculated using plmGwith the same parameters, Table S3) against the mean i+2, i+3, i+4, and i+5 ECs. The

mean i+2, i+3, i+4, and i+5 ECs are all correlated to the mean i+1 EC, which explains 91%, 89%, 75% and 65% of the variance

respectively. We residualized the i+2, i+3, i+4, and i+5 mean ECs after accounting for the mean of i+1 ECs and see that the i+3

and i+4 residuals remain correlated (coefficient 1.32, r2 = 0.71), while i+2 and i+3 residuals are somewhat anti-correlated

(coefficient �0.42, r2 = 0.20) and the i+4 and i+5 residuals are uncorrelated (coefficient 0.08, r2 = 0.03) (Figure S2). This supports

our notion of helix/strand geometry. We used the coefficients from the above regressions (0.7 for i+2, 0.6 for i+3, and 0.55 for i+4)

to normalize A2, A3, A4, and B2. Additionally, we calculated the standard deviation of all of the i+1 ECs across each alignment,

Stdi+1. Using the normalized values and this standard deviation, for a helices we calculated a score for each residue of (A4 + A3 –

A2 – A1)/Stdi+1 and for b strands we calculated a score for each residue of (B2 – B1)/Stdi+1. These scores were assigned the index

of the middle residue. We independently called a helices and b strands when two consecutive residues for the corresponding score

were above threshold values of 1.5 for a helices and 0.75 for b strands, extending the called structure by 1 residue on each side for a

minimum structure size of 4 residues.

Generating model structures of disordered proteins
We computed all-atom 3D structures of proteins using the Crystallography & NMR System (CNS, version 1.21). We used distance-

geometry algorithms as previously described (Marks et al., 2011) to fold the proteins starting from an extended polypeptide chain.

Distance constraints were applied on residue-residue pairs that had EC scores above the statistical threshold. Additionally, angle and

dihedral angle constraints were added based on our secondary structure prediction algorithm. We tested the effect of adding

different numbers of constraints and generated 10 candidate structures for each set of constraints. We chose the best model struc-

ture that satisfies the maximum number of stereochemical and secondary structure geometric constraints: we excluded structures

with knots and distorted secondary structure elements.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis was conducted primarily using python scripts and iPython notebooks (Pérez and Granger, 2007).
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Inference of Evolutionary Couplings from sequence alignments
We applied a maximum entropy model to identify evolutionarily coupled pairs of columns in the alignments as described previously

(Marks et al., 2011). We inferred the parameters of our model using penalized Maximum Likelihood with a pseudo-likelihood approx-

imation (pseudo-likelihood maximization; PLM) (Ekeberg et al., 2013; Hopf et al., 2014; Weinreb et al., 2016) rather than with a pre-

viously applied mean-field approximation (Hopf et al., 2012; Marks et al., 2011). We excluded alignment columns that had > 50%

gaps and also excluded gap states from the calculation of the likelihoods such that each interaction is parameterized by a 20 by

20 matrix for the 20 different amino acid types (https://github.com/debbiemarkslab/plmc). In this approach, each sequence is

modeled by a distribution that covers only the coding portions of the sequence, but all distributions share the same global parameter

set. To account for the uneven sampling of sequence space by evolution, we reweighted sequences in proportion to their number of

90% identical neighbors such that 90% identical clusters receive unit weight. For regularization, we used an L2 penalty with lh = 1 for

the single column fields, and le = 10 for the pair couplings.

Defining significant ECs based on the tail of their distributions
Evolutionary Constraint scores are distributed approximately normally around zero with a skewed tail of positive outliers. Interpreting

the distribution around 0 as noise and the outliers as signal, we used a mixture modeling approach to distinguish outliers from the

noise. For each distribution of scores, we fit it with a mixture distribution of a zero-mean normal component for the noise together

with a lognormal component describing the long tail. We inferred the mixing fraction, normal variance, and lognormal mean and vari-

ance parameters by Maximum likelihood, and then used the posterior probability of membership in the lognormal component as a

way of identifying significant EC scores (we used posterior probability 0.9 as a threshold, code available). The number of significant

EC pairs greatly varies between proteins depending on the depth of the alignments and the complexity of the structures (Table S2, list

of ECs at https://marks.hms.harvard.edu/disorder/).

Metrics of success
Predicted evolutionary constraints were compared to observed contacts from experimental structures and precision was calculated

as the proportion of ECs that were true contacts. True residue-residue contacts were assigned if the distances between two residues

were < 5 Å in the experimental structure. True ECs were defined as having residue-residue contacts < 8Å in the experimental

structure. Contact maps show residue-residue pairs that are < 5Å in the experimental structures (in any of the models in case of

an NMR ensemble). ‘Unique contacts’ to one conformation were defined as having < 5Å residue-residue distance in one conforma-

tion and > 8Å distance in the other conformation. ‘Common contacts’ were defined as having < 8Å residue-residue distance in both

conformations, or having > 5Å and < 8Å residue-residue distance in one conformation and > 8 Å in the other conformation. Only sta-

tistically significant ECs were considered (see section Defining significant ECs based on the tail of their distributions) that represent

long-range contacts (> i+4 residue distance in chain for proteins with 2 known conformations, and > i+3 residue distance in chain for

disordered proteins). ECs between residues that are invisible in the crystal structures (missing density) were excluded from EC pre-

cision calculations.

For the evaluation of our secondary structure propensity score we ran the PLM on over 3860 PFAM alignments using the same

parameters. We parsed the PFAM alignments for the included secondary structures and created a consensus secondary structure

string for each alignment. This string includes all residues with density in at least one structure. We classified the residue as a helix if it

appeared as a helix in at least one structure, a b strand if it appeared as a b strand in at least one structure, and a helix/b strand if it

appeared in different structures as both an a-helix and a b strand. We then ran our secondary structure method on the ECs from the

above PLM runs on the PFAM alignments and predicted a secondary structure using our propensity score (Secondary structure pre-

diction). For our validation set we parsed known PDBs and created a consensus secondary structure string using the same rules. To

calculate the precisions we included all residues that we called as helix/b strand for both b strand and helix. To calculate the% Alter-

native we took the number of residues that we called as a secondary structure element of interest (i.e., helix) that were not observed in

a structure as that secondary structure and divided it by all residues that had density in at least one structure and never appeared as

the secondary structure element of interest (i.e., helix).

DATA AND SOFTWARE AVAILABILITY

Human proteome analysis is available at https://marks.hms.harvard.edu/disorder/ and will updated as new sequences are depos-

ited. Code for EC calculation (PLMC), code for exploration of secondary structure signal learned from local ECs, EVcouplings_SS and

analysis code available at https://github.com/debbiemarkslab. (Additional data analysis code available on request, but check up-

dates to github first). All supporting data files (alignments, EC files, EC distributions, significant ECs mapped to structures) available

from web site: https://marks.hms.harvard.edu/disorder/.
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Figure S1. Discovering Evolutionary Signal for Conformations of Flexible and Disordered Proteins, Related to Figure 1

Pipeline:We applied the ECsmethod on�4,500 100–300 residues-long disordered regions of the human proteome. First, we created high-quality alignments and

judged the number of sequences and the robustness of the alignment. The alignment robustness score represents the agreement of the amino acid composition

of the alignment columns after different rounds of re-alignment iterations. Then, we applied a maximum entropy model to identify evolutionarily coupled pairs of

columns in the alignments as described previously (Marks et al., 2011). We inferred the parameters of our model using penalized Maximum Likelihood with a

pseudo-likelihood approximation (Ekeberg et al., 2013; Hopf et al., 2014) and excluded gap states from the calculation of the likelihoods (PLMC, code available

upon request). Then, we assessed the significance of ECs based on a statistical model of scores. We automated the detection of significant EC pairs using a

(legend continued on next page)



mixturemodel distribution providing consistency across all proteins. Using local ECs, we calculated the propensity for a-helical and b-strand secondary structure

elements (STAR Methods). Based on the predicted 2D and 3D constraints, we proposed the structural constraints of a protein and predicted the residue-level

secondary structure propensities and long-range residue-residue contacts. We can determine whether there is evolutionary signal for ordered states.

Example: Proteasome subunit 4 (PTM4_HUMAN). We define disordered regions using a sequence-based predictor, IUPred. First, we searched Uniprot for

homologous proteins and created alignments. Then, we tested the robustness of the alignment after different numbers of re-alignment iterations. If the alignment

converged after 9 to 11 iterations, we proceeded with the EC calculations. We fit the distribution of the ECs with a Gaussian-lognormal mixture model and

determined a significance threshold. We applied the novel secondary structure propensity score to predict helices and strands along the sequence. We judged

our prediction against known experimental structures if available.
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Figure S2. Related to Figure 2

(A) Secondary structure propensity score reflects helical and strand geometry. Schematic representation of a-helical and b-strand geometries (left). Correlation of

mean neighboring EC scores (i.e. i+2 and i+3) across�3,800 PFAM families before and after residualizing for i+1 scores (right) demonstrate that mean i+3 and i+4

scores remain correlated even after correcting for the mean i+1 score in each PFAM family (STAR Methods).

(B) Prediction set disorder distribution and validation set precisions by disorder. Our prediction set is representative of disordered segments in the human

proteomewith disorder score only slightly biasing the probability that an alignment contains enough sequences for EC analysis. Overall performance in predicting

experimental contacts for the 83 proteins with known structures with varying overall disorder (fraction of disordered residues marked as blue gradient).
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Figure S3. Prediction Accuracy for Proteins with Alternative States, Related to Figure 2

(A) Comparison of alternative structural states. The fractions of contacts (number of contacts are indicated above the bars) that are unique to the first (dark gray) or

second (light gray) conformations. Unique contacts were defined as residue-residue distances <5Å in one conformation and >8Å in the other conformation.

(B) Overall performance in predicting alternative contacts. The fraction of false positives that are actually true positives in the alternative conformation (blue bars,

considering only the first conformation [dark gray in a]; and pink bars, considering the second conformation only [light gray in a]). For instance, 100%means that

all of the false-positive ECsmapped on one conformation are actually true contacts in the other conformation. Overall true positive rates are shown as yellow stars

(considering both states).

(C) Highlighted structural details of four proteins. Left panel: overlay of the two structures. Middle panel: unique contacts of the first structure. Right panel: unique

contacts of the second structure. Unique ECs of the first and second structures are pink and blue spheres, respectively; common ECs are yellow circles, while

false-positive ECs are black empty circles. Secondary structure annotations (by dssp) are drawn for the first and second structures as pink and blue cartoons. TP

ECswere calculated on the overlapping regions of the structure only (black box in left panel). Regions that aremissing from the experimental structure are colored

with gray background. The contact maps and predicted ECs for all proteins in our dataset (Table S2A) are available on the web supplement (https://marks.hms.

harvard.edu/disorder/).

https://marks.hms.harvard.edu/disorder/
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Figure S4. Blind Prediction of 3D Contacts of Disordered Proteins with Known Structures Captured by ECs, Related to Figures 2, 3, 4, and 5

Contact maps of all disordered proteins in our dataset that were captured in a 3D conformation (28 proteins, Table S2B). Contacts in experimental structures are

shown as grey spheres, predicted contact are shown as pink spheres. False positive ECs are shown as empty circles. True positive rates (TP) are indicated above

each contact map plot (Table S1). Predicted disorder scores (by IUPred) are shown as blue color gradient in the background. Uniprot IDs and PDB codes and

chains are as follows: RS12_ECOLI (PDB: 3J0E_F), MYT1L_RAT (PDB: 1PXE_A), RS19_ECOLI (PDB: 2YKR_S), O66683_AQUAE (PDB: 1RP3_B),

Q8G9G1_STRPY (PDB: 2X5P_A), GRB14_HUMAN (PDB: 2AUH_B), RL27_ECOLI (PDB: 3J5L_W), STMN4_RAT (PDB: 3RYC_E), CALX_CANFA (PDB: 1JHN_A),

HMGB1_HUMAN (PDB: 2YRQ_A), RWDD1_HUMAN (PDB: 2EBM_A), ICAL_RAT (PDB: 3DF0_C), RL33_ECOLI (PDB: 3J5L_1), CYBP_MOUSE (PDB: 2JTT_C),

LEF1_MOUSE (PDB: 2LEF_A), CREB1_RAT (PDB: 1KDX_B), RSEA_ECOLI (PDB: 3M4W_E), TAT_HV1BR (PDB: 1JFW_A), CDN1B_HUMAN (PDB: 1JSU_C),

CBP_MOUSE (PDB: 1KBH_B), MAX_HUMAN (PDB: 1NKP_B), CADH1_MOUSE (PDB: 1I7W_B), H11L_CHICK (PDB: 1GHC_A), NKX31_HUMAN (PDB: 2L9R_A),

SMBP_NITEU (PDB: 3U8V_A), IPP2_MOUSE (PDB: 2O8A_I), HMGA1_HUMAN (PDB: 2EZF_A), CPLX1_HUMAN (PDB: 3RL0_g), RD23A_HUMAN (PDB:

1QZE_A), NUCL_HUMAN (2FC8_A).
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Figure S5. Prediction of FlgM in Complex with Sigma 28 Improves Accuracy, Related to Figures 2 and 3

Anti-s factor FlgM is disordered in solution and forms an extended a-helical structure upon binding s factor 28 (PDB: 1RP3) (Sorenson et al., 2004). In order to

capture intermolecular constraints between FlgM and sigma 28, ECs were calculated from a concatenated alignment of the two proteins (O66683_AQUAE and

O67268_AQUAE) (Hopf et al., 2014). High-ranking ECs correspond to intermolecular contacts (left, significant ECs for monomer FlgM; right, significant ECs for

complex alignments) and predict the binding interface of helix 3 and 4. Notably, complex-based intra-molecular ECs for both FlgM and sigma 28more accurately

capture the internal contacts, suggesting that the information for the fold of the one protein is encoded also in the protein partner (TP ECs are 0.55 vs. 0.71 and

0.73 vs. 0.79).
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Figure S6. ECs Predictions of Proteins that May Form Amyloids, Related to Figures 4 and 6

(A) Predicted contact maps of the regions with unknown structures in Csga (CSGA_ECOLI), Fus N-terminal low-complexity domain (FUS_HUMAN) and alpha-

synuclein (SYUA_HUMAN, PDB: 2KKW_A).

(B) Secondary structure inference from local ECs for CsgA, Fus prion domain, and alpha-synuclein predict malleable secondary structure (STAR Methods).
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