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SUMMARY

Constituents of multiprotein complexes are required
at well-defined levels relative to each other. How-
ever, it remains unknown whether eukaryotic cells
typically produce precise amounts of subunits, or
instead rely on degradation to mitigate imprecise
production. Here, we quantified the production rates
of multiprotein complexes in unicellular andmulticel-
lular eukaryotes using ribosome profiling. By
resolving read-mapping ambiguities, which occur
for a large fraction of ribosome footprints and distort
quantitation accuracy in eukaryotes, we found that
obligate components of multiprotein complexes are
produced in proportion to their stoichiometry, indi-
cating that their abundances are already precisely
tuned at the synthesis level. By systematically inter-
rogating the impact of gene dosage variations in
budding yeast, we found a general lack of negative
feedback regulation protecting the normally precise
rates of subunit synthesis. These results reveal a
core principle of proteome homeostasis and high-
light the evolution toward quantitative control at
every step in the central dogma.

INTRODUCTION

How precisely cells tune gene expression is a fundamental ques-

tion in quantitative biology. A sufficient amount of each protein

must be produced to satisfy the demand for its activities in the

cell, and excess production can be wasteful. But to synthesize

proteins at levels that are ‘‘just enough’’ requires precisely tuned

rates of transcription, translation, and mRNA decay, as well as

selective pressure against overproduction. Elucidating the

general principles underlying the set-points of protein synthesis

rates is an important step toward understanding the design con-

straints of cells and the physiological impacts of gene expression

perturbations.

Obligate subunits of multiprotein complexes are an abundant

class of proteins whose minimally required levels are precisely

defined. At steady state, the synthesis rate of each subunit

must exceed or equal the minimum of its binding partners, but
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the benefit quickly diminishes when the subunit is made in

excess. In bacteria, a systematic study of the rates of protein

synthesis using ribosome profiling showed that nearly all

obligate subunits of protein complexes are produced at rates

proportional to their stoichiometry (Li et al., 2014). This principle,

termed proportional synthesis, indicates that bacteria have

evolved the ability to synthesize precise amounts of proteins

and that degradation of unassembled subunits is not the primary

process controlling protein abundance.

In contrast to bacteria, it remains unclear whether precise pro-

portional synthesis is a general strategy of gene expression in

eukaryotes. Several lines of evidence suggest that the evolu-

tionary constraints on protein production may be different. First,

eukaryotic cells have a much more elaborate capacity for, and

regulation of, protein degradation, which could efficiently buffer

against imprecise synthesis (Juszkiewicz and Hegde, 2018).

Second, whereas bacteria often face limited nutrients and ribo-

some capacity, it has been suggested that eukaryotes have

much lower selective pressure against wasteful production,

especially in multicellular organisms (Kafri et al., 2016; Lynch

and Marinov, 2015). Third, many bacterial protein complexes

are regulated by negative feedback that maintains expression

levels (Freedman et al., 1987; Mattheakis and Nomura, 1988;

Shen-Orr et al., 2002), but such intricate regulation is less well

documented in eukaryotes, even for the abundant ribosomal

proteins (Warner and McIntosh, 2009). In general, negative feed-

back regulation is uncommon in yeast, although it remains to be

determined whether subunits of complexes are exceptions to

this rule (Ishikawa et al., 2017; Springer et al., 2010). Finally, iso-

lated studies in eukaryotes have reported both complexes that

follow proportional synthesis and those that do not (Cleveland

et al., 1981; Lehnert and Lodish, 1988; Lodish, 1974). A system-

atic analysis of obligate protein complexes and their synthesis

rates is currently lacking.

An accurate and global assessment of proportional synthesis

in eukaryotes remains difficult for several reasons. In principle,

ribosome profiling can provide a genome-wide estimate of

protein synthesis rates under steady-state growth, whenmost ri-

bosomes complete full-length proteins and have similar elonga-

tion rates on average (Li et al., 2014). However, quantitation of

protein production by ribosome profiling requires faithful assign-

ment of short cDNA sequences derived from ribosome-pro-

tected mRNA fragments to coding regions, which is challenging

to realize for eukaryotic genomes with many paralogous genes

and pseudogenes that share regions of identical sequence.
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Commonly used analysis pipelines for ribosome profiling data

are not equipped to correctly handle ambiguous ribosome foot-

prints generated from these regions. Additionally, proportional

synthesis is expected only for stable and obligate complexes

with well-defined stoichiometry, but a comprehensive curation

of such complexes does not yet exist. Finally, quantitative com-

parison of expression among subunits should be made in cells

with regular or well-controlled gene dosage and ploidy, which

are often not satisfied in mammalian cell lines.

In this work, we refined the quantitation of protein synthesis

rates by correctly calculating ribosome footprint density for

genes that share regions of identical sequence with others. By

manually curating a comprehensive list of stable and obligate

protein complexes with well-defined stoichiometry in budding

yeast, we found that the majority of complex subunits are syn-

thesized at rates proportional to their stoichiometry. Proportional

synthesis was also observed for large protein complexes in

higher eukaryotic cells derived from primary tissues or whole an-

imals. To investigate whether this precise synthesis is ensured

by negative feedback loops, we systematically examined the

response to altered gene dosage in yeast strains harboring an

extra copy of single chromosomes. A 2-fold increase in synthesis

rate was observed for the majority of complex subunits encoded

by duplicated genes, including most ribosomal proteins.

Together, these results show that eukaryotes evolved precise

rates of protein synthesis, which are hard-coded in the genome

without widespread feedback regulation.

RESULTS

Accurate Quantification of Ribosome Footprint Density
for Genes with Regions of Identical Sequence
A prerequisite for estimating rates of protein synthesis from

ribosome profiling data is accurate accounting of the number

of ribosome footprints per unit length of a gene, herein referred

to as ribosome density. Given the small ribosome footprint size

(z30 nucleotides), a sequenced fragment may be mapped to

multiple locations in the transcriptome, especially for organisms

with many gene duplication events. A universal strategy to

handle multimapping reads has not yet emerged. Commonly,

multimapping reads in ribosome profiling are either discarded

(Anders et al., 2015; Baudin-Baillieu et al., 2014; Guo et al.,

2010; Xiao et al., 2016) or arbitrarily (randomly or multiply) as-

signed to their best alignments (Gardin et al., 2014; Ingolia

et al., 2009; Trapnell et al., 2009). Neither of these read assign-

ment strategies accurately represent the density of ribosome

footprints for genes that share identical sequences (STAR

Methods; Figure S1). In the budding yeast S. cerevisiae in stan-

dard YPEDmedia, 16% of ribosome footprints can bemultimap-

ped and therefore incorrectly assigned. To remove any ambigu-

ity, we used a strategy that considers only ribosome footprints in

a computationally reduced transcriptome space without iden-

tical sequences. Any regions of R27 nt that have identical se-

quences elsewhere, i.e., regions that can generatemultimapping

reads, aremasked when calculating ribosome density (reads per

unit length) by excluding both their read count and length (Fig-

ure S1). Importantly, we keep track of the coordinate along

open reading frames for the unmasked region, so that a posi-

tion-dependent correction factor can be applied to account for
differences in ribosome elongation rates or drop-off (STAR

Methods; Figures 1A and S2).

The result of this masking strategy is illustrated for the two pa-

ralogous genes for enolase (ENO1 and ENO2) in S. cerevisiae,

which have substantial portions of their transcripts lacking

uniquely mapped reads (Figure 1B). Whereas discarding multi-

mapping reads underestimates footprint density for both genes,

and random assignment overestimates footprint density for the

lowly expressed ENO1, the masking strategy ensures that

density is calculated only for regions without ambiguity. The

resultant synthesis rates of Eno1 and Eno2, relative to their up-

stream glycolytic enzyme Pgk1 (3-phosphoglycerate kinase),

agree with their respective protein abundances (Figure 1B)

(Newman et al., 2006), consistent with the evidence that these

proteins share the same half-lives by dilution and therefore

have abundances proportional to their synthesis rates (Christi-

ano et al., 2014). This result is also consistent with a recent

probabilistic RNA sequencing (RNA-seq) quantification strategy

designed for distinguishing overlapping transcripts (Figure S1B)

(Bray et al., 2016).

Overall, a substantial fraction of eukaryotic genes requires

masking for accurate quantitation. In budding yeast, 5.4% of an-

notated open reading frames have over 10% of their positions

masked (Figure 1C). This group contains many highly expressed

proteins, such as glycolytic enzymes, ribosomal proteins, and

hexose transporters (Figure 1C). Faithful counting of ribosome

footprint density for these proteins is crucial when comparing

synthesis rates among components of complexes, as described

below (Figures S1C–S1E). In higher eukaryotes such as

zebrafish, mice, and humans, an even greater fraction of tran-

scripts has regions that can be erroneously mapped (14%,

17%, and 10% of annotated open reading frames, respectively;

Figure 1D). A proper strategy for handling multimapping reads is

therefore essential for estimating protein synthesis rates in

higher eukaryotes.

Proportional Synthesis of Complex Subunits in
Budding Yeast
With a rational footprint counting strategy, we systematically

examined the precision of protein synthesis rates for multi-

member complexes in the budding yeast S. cerevisiae. We

focused on proteins that are stably associated and obligatory

to complexes, without other known functions outside the com-

plex. The budding yeast is an ideal eukaryotic model for

this global analysis because of its well-characterized protein

biochemical properties, its relatively simple transcriptome

without extensive alternative mRNA isoforms, and its well-anno-

tated genome.

By manual curation, we first generated a stringent set of 577

proteins in 113 multiprotein complexes that have well-defined

and obligate stoichiometry (Table S2). Starting with an existing

database of complexes (Meldal et al., 2015), we applied three

additional criteria for inclusion. First, each member of a complex

must be stably associated as indicated by stoichiometric co-pu-

rification, without evidence for regulated association which

would cause a large portion of that subunit to be unbound. Sec-

ond, subunits must lack evidence for promiscuous interactions

or association with another complex, which might cause a

super-stoichiometric demand on its abundance. Finally, the
Cell Systems 7, 580–589, December 26, 2018 581
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Figure 1. Simple Masking Strategy Ensures Correct Estimate of Protein Synthesis Rates

(A) Computational workflow for the masking strategy.

(B) Comparison of enolase paralog abundances (relative to the upstream phosphoglycerate kinase, Pgk1) with apparent synthesis rates estimated by three read-

mapping strategies. Misassigned ribosome density for enolase paralogs was shown for each of the commonly used read-mapping strategies. Red indicates

shared sequences between the paralogs.

(C) Yeast genes ranked by the fraction of their sequences that are not unique. Genes whose products are ribosomal proteins, glycolytic enzymes, and hexose

transporters are highlighted.

(D) Same as (C), with data for higher eukaryotes.
stoichiometry of each subunit within the complex must be clearly

and quantitatively defined, as this sets our expectation for pro-

portional synthesis (STAR Methods). A list of complex subunits

excluded in our analysis can be found in Table S3.

Using a deep ribosome profiling dataset for S. cerevisiae to

ensure sufficient read coverage for most complex subunits (Sub-

telny et al., 2014) (Table S4; STAR Methods), we found that the

majority of stable, obligatory protein complexes in the cytosol

and nucleus follow proportional synthesis. Among 41 small com-

plexes made up of two subunits of equal stoichiometry, all but

one have closelymatched synthesis rates with <2-fold difference

(75%within 1.42-fold difference). The absolute expression levels

among these complexes span three orders of magnitude,

ranging from the lowly expressed Mms4/Mus81 DNA endonu-

clease to the highly expressed histone H3/4 proteins (Figures
582 Cell Systems 7, 580–589, December 26, 2018
2A and S3A). The concordance between obligate partners is in

stark contrast to the synthesis rates of randomly sampled inter-

acting protein pairs (Szklarczyk et al., 2017) (Figure 2B).

For medium-sized complexes, such as the three-component

eIF2 and the nine-component core exosome, the subunit synthe-

sis rates are also tightly distributed relative to each other after

normalization by their respective stoichiometry (75% within

1.61-fold difference) (Figures 2C and S3B). Similarly, the core

subunits of large protein complexes, such as the ribosome and

proteasome, have synthesis rates distributed almost completely

within a 2-fold range (86%, 100%, 89%, and 86% of subunits

for 80S ribosome, 20S proteasome, and 19S proteasome, and

V-ATPase, respectively) (Figure 2D). Our masking strategy is

particularly important for subunits with paralogs that have re-

gions of identical coding sequences, such as ribosomal proteins
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Figure 2. Proportional Synthesis of Multi-

protein Complex Subunits Is Ubiquitous in

Budding Yeast

(A) Synthesis rates for stable complexes

composed of two different subunits (encoded by

genes ‘‘A’’ and ‘‘B’’) with equal stoichiometry. 82

subunits and 41 complexes are included.

(B) Cumulative distribution of synthesis rates for

equimolar complexes (red), interacting protein pairs

as annotated by STRING (Szklarczyk et al., 2017)

(black), and random pairs selected from the prote-

ome (gray). Synthesis rates are shown relative to the

logarithmically transformedmedianofeachcomplex.

Shaded region indicatesa2-fold spread (max tomin).

(C) Cumulative distribution of synthesis rates for

individual medium-sized stable protein complexes

(3–10 members) (red). Synthesis rates for subunits

present in more than one copy per complex were

divided by the stoichiometry and shown relative to

the logarithmically transformed median of each

complex. 244 subunits and 52 complexes are

included. Black line shows the aggregate distribution

among all medium-sized complexes. Gray vertical

lines indicatea2-foldspread (maximumtominimum).

(D) Cumulative distribution of synthesis rates for

core subunits of the 80S ribosome, 20S protea-

some, 19S proteasome, and V-ATPase, respec-

tively. Synthesis rates are shown relative to the

logarithmically transformed median of each com-

plex. Paralogs of ribosomal proteins were grouped

together. Shaded region indicates a 2-fold spread

(maximum to minimum).
(Figures S1C–S1E). Consistent with a previous observation that

yeast genes have a narrow range of translation efficiencies, the

transcript abundances for these subunits, as measured by

RNA-seq, demonstrate proportionality similar to their synthesis

rates (Figure S5) (Weinberg et al., 2016). Notably, among all

obligate complexes, the few atypical subunits that are synthe-

sized at a higher rate than their partners tend to have shorter

half-lives (Figure 3) (Christiano et al., 2014). This group is en-

riched in nuclear-encoded subunits of mitochondrial complexes

(17 out of 24 atypical subunits) that appear to be synthesized

less proportionally than the cytosolic and nuclear complexes

(Figure S4). Subunits with secondary binding partners or moon-

lighting functions, which we excluded from the list of obligatory

complexes, were also produced in excess (Figures S3C and

S3D; STAR Methods). In summary, the general concordance

suggests that protein synthesis rates have evolved to precisely

match cellular demand and produce proportional amounts of

protein complex subunits in this organism.

Large Protein Complexes Are Synthesized
Proportionally in Higher Eukaryotes
We next examined whether proportional synthesis is also a rule

for cells of higher eukaryotes, such as fish and mammals.

Compared to budding yeast, the relative scarcity of biochemical

and genetic characterization for these organisms makes it chal-

lenging to define a high-confidence set of stable and obligatory

complexes with known stoichiometry. We therefore restricted

the analysis to large protein complexes such as the ribosome

and proteasome. However, even in these cases, we note that

the constituents of the core complex are still not fully deter-
mined, especially given the increasing amount of evidence for

specialized ribosomes and proteasome components in higher

eukaryotes (Dahlmann, 2016; Shi et al., 2017). It is therefore plau-

sible that some of the subunits analyzed here are not required in

stoichiometric amounts.

Nevertheless, we found that the majority of ribosome and pro-

teasome subunits are synthesized at near-stoichiometric ratios.

Ribosome profiling data for primary tissue-derived samples

showed that 78% of subunits are synthesized with less than

2-fold variation for human foreskin fibroblasts (Tirosh et al.,

2015), 79% for mouse embryonic stem cells (Ingolia et al.,

2014), and 86% for zebrafish 5 days post-fertilization (Chew

et al., 2013) (Figure 4; Table S5). Therefore, despite differences

in the prevalence of protein degradation, energetic constraints,

and growth rates between the unicellular and multicellular

organisms, higher eukaryotes have also evolved precise rates

of synthesis for multiprotein complexes.

Probing Regulation of Precise Synthesis Using
Aneuploid Yeast
Precise rates of protein synthesis can be hard-coded through

tuned cis-regulatory sequences or maintained through feedback

loops. The presence of negative feedback regulation is typically

detected by targeted perturbation to gene copy number, with a

proportional increase in synthesis indicating the absence of

feedback regulation. Aneuploid yeast strains represent a conve-

nient system to test these possibilities on a genomic scale.

Haploid lines have been constructed, which stably retain an

extra copy of one chromosome (referred to as disomic strains),

allowing measurements of dosage compensation during
Cell Systems 7, 580–589, December 26, 2018 583
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tween the bins shown in boxplot.
steady-state growth (Torres et al., 2007). Previous characteriza-

tion has shown that dosage compensation is largely absent at

the level of transcription for most disomic strains (Dephoure

et al., 2014). Ribosome profiling for two disomic strains did not

detect widespread translational compensation, although the

quantitation of paralogs may be influenced by ambiguous

assignment of multimapped reads (Dephoure et al., 2014; Thor-

burn et al., 2013). On the other hand, at the level of protein

abundance, a subset of the proteome is attenuated to euploid

levels (Dephoure et al., 2014). This subset is enriched for protein

complex subunits, and it is possible that translational feedback

regulation is a driver of this attenuation.

To determine the mode by which proportional synthesis is

maintained and systematically characterize the sources of pro-

tein abundance attenuation, we performed ribosome profiling

on 11 disomic strains (chromosomes I, II, V, VIII, IX, X, XI, XII,

XIII, XV, and XVI) and their corresponding parental strain. We

found that disome XV showed a large deviation of protein syn-

thesis from its parental strain, likely reflecting a global transcrip-

tional response, and we therefore excluded it from our analysis

(Figure 5) (Sheltzer et al., 2012). A number of other disomic

strains (including II, XIII, and XVI) appear to demonstrate such re-

sponses, albeit milder than disome XV. For all expressed genes

encoded by each duplicated chromosome, their protein synthe-

sis rates were tightly distributed around 2-fold of that measured

in the parental (77% between 1.5 and 2.5; Figure 5). This sug-

gests an absence of dosage compensation of protein synthesis

for most genes, consistent with the genome-wide heterozygous

deletion study (Springer et al., 2010).

Feedback Control for Proportional Synthesis Is Rare in
Budding Yeast
Although most proteins are produced in proportion to their gene

copy number, it is possible that obligate subunits of protein com-
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plexes represent a subset that is feedback regulated. Feedback

regulation of protein synthesis might be more common for ribo-

somal proteins as their abundances have been shown to be

compensated for gene dosage (Dephoure et al., 2014). To test

this possibility, we first examined the synthesis of ribosomal pro-

teins encoded on the duplicated chromosome across disomic

strains (excluding disome XV) and compared it with the parental

strain.

Mapping ribosome footprint density for ribosomal protein

genes has traditionally been challenging due to the widespread

presence of highly similar paralogs, which can now be circum-

vented by the masking strategy presented in this work (Figures

S1 and 6A). By quantifying the specific contribution of

each gene locus, we found that the majority of 69 paralogs

on the duplicated chromosomes are synthesized 2-fold higher

compared to euploid levels, whereas their non-duplicated

counterparts remain at euploid levels (Figures 6A and 6B). To

determine whether the combined synthesis rate from all paral-

ogous loci is subject to dosage compensation, we compared

the observed synthesis rates of each ribosomal protein in

disomic strains with what would be expected from the effective

dosage change without compensation, i.e., the sum of relative

synthesis rates weighted by gene dosage (Figure 6C). The ma-

jority of ribosomal proteins displayed increased synthesis rates

matching the effective dosage change, indicating a general lack

of negative feedback control under such perturbations (Fig-

ure 6C). Interestingly, a small number of proteins deviate from

this trend, and these include the ribosomal proteins whose pro-

duction were previously shown to be negatively autoregulated



Figure 5. General Lack of Dosage Compen-

sation at the Synthesis Level in Budding

Yeast

Manhattan plots for protein synthesis rates across

the yeast genome for different disomic strains.

Dashed lines indicate 2-fold increase from euploid

levels. A small number of genes exceed the +/�
10-fold range on the vertical axes, and these values

can be found in Table S6.
by unassembled, excess subunits, such as L4, S9, L22, and L3

(Gabunilas and Chanfreau, 2016; Pearson et al., 1982; Plocik

and Guthrie, 2012; Presutti et al., 1991). Our data suggest

that only a few other proteins are regulated this way (Figures

6A and 6C).

Although previous results demonstrate that subunits of non-ri-

bosomal complexes are enriched for proteins whose abun-

dances are dosage compensated (Dephoure et al., 2014), our

data suggest that the compensation does not generally occur

at the level of synthesis. We compared the synthesis of

our curated non-ribosomal subunits encoded on the duplicated

chromosome across disomic strains (excluding XV) to the me-

dian synthesis rate of their non-duplicated partners (Figure 6D).

Whereas the non-duplicated subunits maintain their relative

synthesis rates, the majority of duplicated subunits were synthe-

sized 2-fold more than their binding partners (88% above

1.5-fold), indicating a limited number of genes feedback-regu-

lated at the level of synthesis. Even among the subunits whose

protein abundance is attenuated in disomes as measured by

mass spectrometry (Dephoure et al., 2014), most are still synthe-

sized in excess (83%above 1.5-fold). Taken together, these data

suggest that precise synthesis rates are not actively maintained

via feedback regulation for most protein complexes.
Cell Sy
DISCUSSION

Ribosome profiling has revolutionized

our ability to quantitate protein synthesis

across the genome. Here, we presented a

simple solution to the challenge of handling

ribosome footprints of ambiguous origin,

which can account for 16% of footprints

in yeast. This rational approach to

measure ribosome density for genes with

paralogous partners enabled quantitative

comparison of synthesis rates among

components of multiprotein complexes,

revealing the general principle of propor-

tional synthesis in eukaryotes. The same

strategy to process ribosome profiling

data should also enable more quantitative

analyses for studies of translation effi-

ciency, ribosome pausing, and noncanoni-

cal translational events, especially for

genomeswith histories of regional or global

chromosome duplications.

The widespread occurrence of propor-

tional synthesis suggests that eukaryotes

have evolved to produce precise amounts
of proteins, despite seemingly small costs of overproduction and

an extensive proteostasis network to buffer against mismatches

in synthesis. Post-translational quality control, such as degrada-

tion of excess subunits, is likely to serve as an important fail-safe

mechanism and not the main gatekeeper for stoichiometric

abundance under normal conditions. Because the synthesis of

most proteins is not subject to negative feedback regulation,

precise rates of synthesis imply that there is a lowmargin of error

for every molecular step leading to protein production—tran-

scription, splicing, export, translation, silencing, and degrada-

tion—and perturbations to these steps should be associated

with selective disadvantage of the organism. Understanding

the functional consequence of imbalanced subunit synthesis

under the protective proteostasis network in eukaryotes will pro-

vide insights into the evolution of gene expression and dysregu-

lation in diseases.

Our observation of disproportionate subunit synthesis in aneu-

ploid yeast cells highlights a crucial scenario in which wide-

spread degradation has to be activated. Without substantial

dosage compensation until subunits are synthesized, as demon-

strated here, the proteostasis network must encounter a

much larger flux of unassembled proteins than it normally does

when subunits are synthesized proportionally. The fact that the
stems 7, 580–589, December 26, 2018 585
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Figure 6. Synthesis of Protein Complex Subunits Scales with Gene Dosage
(A) Synthesis rates for all ribosomal proteins encoded on a duplicated chromosome, normalized to that of the median ribosomal protein within each sample. The

duplicated paralogs are shown on the right, and the non-duplicated paralogs are shown on the left. Synthesis rates can be found in Table S7. Blue bars show

synthesis rates in wild-type, and red bars show synthesis rates in disomic strains. Solid line indicates 2-fold increase from the wild-type level. Error bars represent

25th and 75th percentiles of bootstrapped distributions.

(B) Boxplot showing synthesis rates of individual paralogs between disomic and wild-type strains for all ribosomal proteins genes encoding a duplicated ribo-

somal protein. Synthesis rates are normalized to that of the median ribosomal protein within each sample. Whiskers show 5th and 95th percentile. For ribosomal

proteins encoded by two genes, synthesis rates from the duplicated and non-duplicated paralogs are considered separately. Red points indicate proteins for

which dosage compensation has been observed at the level of synthesis.

(C) Scatterplot showing synthesis rates of individual ribosomal proteins in the disomic strains. The y axis illustrates the observed fold-change of synthesis for each

ribosomal protein (for proteins encoded by multiple paralogs, their synthesis rates are summed). The x axis represents the effective increase in gene dosage for

each ribosomal protein in the disomic strain, dictated by the fraction of synthesis that comes from the duplicated gene. Gray lines indicate the expected synthesis

rates given no feedback and perfect feedback. Red points indicate proteins for which dosage compensation has previously been observed at the level of

synthesis. Error bars represent 25th and 75th percentiles of bootstrapped distributions.

(D) Boxplots show synthesis rates of complex subunits expressed from non-duplicated or duplicated chromosomes. Complexes with three or more subunits

were considered, with synthesis rates divided by subunit stoichiometry. Subunits from the duplicated chromosomes were further separated by the presence of

dosage compensation observed at the final protein level (attenuated and non-attenuated). Ribosomal and mitochondrial proteins were excluded, as well as

proteins encoded by multiple genes. Statistics were calculated as Wilcoxon rank-sum test between indicated groups, with n.s. indicating p value > 0.05.
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Figure 7. Synthesis of Large Protein Complexes in Higher

Eukaryotes during Zebrafish Development

Cumulative distribution of synthesis rates for core subunits of the 80S ribo-

some, 20S proteasome, and 19S proteasome at 5 developmental time points.

Genes that overlap or encode multiple distinct protein products were not

considered in this analysis (see STAR Methods).
abundances of complex subunits remain largely invariant in

aneuploid strains (Dephoure et al., 2014) indeed suggests that

the excess proteins are constantly turned over in this situation.

Abnormal futile cycles of protein synthesis and rapid degrada-

tion likely restrict the capacity of quality control pathways, lead-

ing to the widely observed proteotoxic stress in aneuploid cells

(Oromendia et al., 2012; Torres et al., 2008).

Are there other physiological conditions in which proportional

synthesis is not expected to hold? Our analysis focused on

populations of cells during steady-state growth, in which imbal-

anced synthesis would lead to a constant flux of unassembled

subunits. The selective pressure to maintain precise synthesis

may differ when cells are under transition and the flux of unas-

sembled subunits is only transient or small in magnitude. For

example, for E. coli following cold shock, obligate complex

subunits do not appear to be produced proportionally for the

first few hours (Zhang et al., 2018). However, because overall

protein synthesis is drastically reduced during this time period,

the accumulation of unassembled proteins may be too insignif-

icant to be selected against. Similarly, translation is low in an-

imal oocytes following fertilization, and we found evidence

that protein complexes are also produced less proportionally

(Chew et al., 2013) (Figure 7). In these situations, transiently

discordant synthesis is not necessarily accompanied with

increased degradation, as the newly synthesized proteins ac-

count for a small fraction of the total pool. Technically,

measuring the precise rates of synthesis using ribosome

profiling is challenging for cells transitioning from or to a

slow-growth state, because some of the assumptions that are

required, e.g., constant translation elongation rate and little

ribosome drop-off, may not hold. A critical evaluation of this

and alternative tools will be necessary to quantitatively examine

the precision of protein synthesis for cells out of steady-state.
In all domains of life, protein synthesis is an engine for prolifer-

ation and a hub for regulation. Taken together with previous

studies, our findings suggest that both bacteria and eukaryotes

adhere to a general principle of precise synthesis, which provides

stoichiometric amounts of components for the cell. Our study

also highlights a key difference in the underlying regulation be-

tween the two domains, with negative feedback loops largely ab-

sent in eukaryotic protein synthesis. More broadly, the improved

ability to quantitate protein synthesis in organisms with complex

genomes should open new avenues to precisely define and inter-

rogate regulation at the proteomic level.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains and Culture Conditions
Disomic yeast strains are derivatives of W303 (details in Table S1). Overnight cultures for all strains except disome V and its corre-

sponding wild-type were grown under selection in synthetic complete (SC) histidine drop-out medium with 1 g/L monosodium gluta-

mate (1.7 g/L yeast nitrogen base without amino acids or ammonium sulfate (Sigma Aldrich), 1.92 g/L drop-out medium supplement

(Sigma Aldrich), 2% glucose). Selection was maintained with 200 mg/mL G418 (Thermo Fisher Scientific). Disome V and its paired

wild-type were grown with 5 g/L ammonium sulfate instead of monosodium glutamate, which could reduce the efficacy of G418

selection. Ribosome profiling indicated, however, that this hadminimal impact on retention of the duplicated chromosome (Figure 5).

Outgrowth prior to harvesting for ribosome profiling was performed in YPED (20 g/L peptone, 10 g/L yeast extract, 2% glucose)

without selection for all strains. All growth in liquid culture was carried out shaking at 30�C.

METHOD DETAILS

Ribosome Profiling
Overnight cultures were grown from a single colony in SC medium –His+G418 and back-diluted to OD590 = 0.002 in 500 mL YPED.

Cultures were grown to OD590 = 0.5 and harvested at 30�C by rapid filtration through a filter with a 450 nm pore-size (Supor Mem-

brane Disc Filters, Sigma Aldrich) and flash freezing in liquid nitrogen. Cell pellets were combined with 2.5 mL of frozen lysis buffer

(10 mM Tris pH 7.4, 5 mMMgCl2, 100 mM KCl, 200 mg/mL heparin, 1% sodium deoxycholate, 1% Triton X-100, 2mM DTT, 20U/mL

SuperaseIN, 100ug/mL cycloheximide, with 1 tablet cOmplete EDTA-free protease inhibitor per 10 mL buffer). The cell and buffer

pellet mixture was ground in pre-chilled 25 mL grinding jars (QIAGEN) for 6 cycles of 3 minutes at 15 Hz, cooling in liquid nitrogen

between cycles. Ground lysates were thawed and clarified by centrifugation at 20,000 RCF at 4�C for 10 minutes. 20 A260 units of

lysate were digested with 300 U RNase I (Ambion) at room temperature for 1 hour. Immediately following RNase I digestion, digested

lysates were separated on a sucrose gradient and monosomes were collected.

For all samples, RNA was extracted by hot-phenol extraction. Ribosome footprints were purified by denaturing polyacrylamide gel

electrophoresis (15% TBE-Urea, Thermo Fisher Scientific), excising fragments bounded by 28 and 31-nucleotide size standards. For

disome V and its paired wild-type sample, subsequent library prep and sequencing were carried out nearly as described previously

(Lalanne et al., 2018). The only modification to this protocol was an rRNA removal step prior to reverse transcription, rather than

following circularization, utilizing selective hybridization to six 50-biotinylated oligonucleotides (IDT, 50GATCGGTCGATTGTGCACC,

50CCGCTTCATTGAATAAGTAAAGAAAC, 50GACGCCTTATTCGTATCCATCTATA, 50GGGACCTTGAATGCTAGAACGTGGAAAA,

50TTAGCCAGAAGGAAAGGCCCCGTTGGAA, 50CATTGATTTTTTATCTAATAAATACATCTCT) followed by MyOne Streptavidin C1

Dynabead purification (Thermo Fisher Scientific).

For all other ribosome profiling samples, footprints were dephosphorylated with 20 units of T4 polynucleotide kinase (NEB) at 37�C
for 1 hour, and cDNA libraries were prepared using the SMARTer smRNA sequencing kit (Clontech) as per manufacturer’s

instructions. Prior to PCR amplification, rRNA sequences were depleted in all libraries through selective hybridization with a mixture

of six 50-biotinylated oligonucleotides (IDT, 50TTTTCCACGTTCTAGCATTCAAGGTCCC, 50TTCCAACGGGGCCTTTCCTTCTGG

CTAA, 50AGAGATGTATTTATTAGATAAAAAATCAATG, 50GGTGCACAATCGACCGATC, 50GTTTCTTTACTTATTCAATGAAGCGG,

50TATAGATGGATACGAATAAGGCGTC) and MyOne Streptavidin C1 Dynabead purification. PCR reactions were then set up as

per kit instructions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genome Sequence and Annotation
For Saccharomyces cerevisiae, the S288C genome sequence and annotation (release R64-2-1) were downloaded from SGD (Cherry

et al., 2012).Mus musculus (GRCm38.90), Homo sapiens (GRCh38.91), and Danio rerio (GRCz10.91) genome sequences and anno-

tations were downloaded from Ensembl (Zerbino et al., 2018). All annotation files were filtered to remove dubious transcript isoforms

prior to use. For S. cerevisiae, this was achieved by removing all transcripts tagged as dubious in the annotation file. For all other

species, any transcript isoform which was not annotated as principal or alternative in the APPRIS database (Rodriguez et al.,

2013) was removed from the annotation. Each reference genome was then parsed and any contig which did not encode a transcript

in the filtered reference was removed.

Read Trimming and Alignment
Raw FASTQ files were trimmed of appropriate poly(A) or linker sequences using Cutadapt (Martin, 2011) with parameters –u 1 –m 24.

The first nucleotide was trimmed to reduce mismatches due to non-template addition during reverse transcription common in

many library preparation protocols. For all samples prepared with the SMARTer smRNA sequencing kit, -u 3 was used instead

of –u 1. Data obtained from (Subtelny et al., 2014) were trimmed of their adapter and first 8 nucleotides using an in-house

Python script rather than Cutadapt. RNA-seq (non-ribosome profiling) data from this study were further trimmed from their 30

end to a uniform length of 27 nt. Trimmed readswere depleted for ribosomal RNA sequences prior to genome alignment by alignment

to pre-rRNA transcript sequences using bowtie v2.0.0b3 (Langmead et al., 2009) with parameters –v 0 –k 1 –best. Unmapped reads
Cell Systems 7, 580–589.e1–e4, December 26, 2018 e2



were then aligned to the appropriate filtered reference transcriptome using tophat v1.4.1 (Trapnell et al., 2009) using parameters –G

$annotation_file –no_novel-juncs –transcriptome-only –N 1. For analyses which require random assignment of multimapping

reads, -g 1 was also specified in tophat. For analysis which required discarding multimapping reads, bowtie v2.0.0b3 was used

for alignment to the genome using parameters -m1 -v1 -k1 –best –strata. The 50 end of all alignments were mapped with an offset

of +13 nucleotides.

For all analyses, aligned ribosome protected fragments were read with custom python scripts written utilizing the plastid library

(Dunn and Weissman, 2016). To enrich for high-quality ribosome footprints, only reads between 27 and 33 nucleotides were consid-

ered in our analyses. Read length distributions from the disomic libraries demonstrated slightly elevated lengths (with amode of 31 for

the wild-type), likely due to a combination of slight under-digestion with RNAse I and additional nucleotides being added to the 50 end
during SMARTer smRNA-seq template switching. Due to the polyadenylation and template switching strategy used during library

preparation, the 50 and 30 ends of ribosome footprints in our dataset cannot be precisely resolved, limiting codon-resolution analysis.

This does not impact our analyses, which focus only on transcript-level read density.

Rationale for Masking Identical Sequences
To illustrate the potential artifacts in conventional read-counting strategies, consider two genes that share some regions of identity

and are expressed at different levels (Figure S1A). While discarding multimapping reads (Common strategy 1) preserves the density

ratio between the two genes, it artificially reduces the measured density for both genes (Figure S1A). On the other hand, strategies

that retain all reads, such as random assignment (Common strategy 2) ormultiply counting, artificially shift read density from themore

highly expressed gene to the lowly one (Figure S1A). A third and less commonly used strategy is to assign multimapping reads prob-

abilistically based on prior knowledge of the read density averaged over unique neighboring regions, which could in principle provide

more accurate quantitation (Bray et al., 2016; Hashimoto et al., 2009; Kahles et al., 2016) (Figure S1B). However, the probabilistic

assignment does not add any additional information to ribosome flux if there is already prior knowledge based on unique regions.

The latter can be determined by our masking strategy.

Mask Generation
Masked positions were stored as BED files, encoding regions of ambiguous sequence within each reference genome. To generate

these files, a modified version of the crossmap program in the plastid library (Dunn andWeissman, 2016) was used. In this approach,

filtered reference transcriptomes were broken into 27-mers and aligned back on themselves using tophat2 v2.1.1 (Kim et al., 2013)

with parameters –G $annotation_file –bowtie1 –transcriptome_only –no_novel-juncs –N 1. The resulting BAM files were then filtered

by MAPQ score, flagging any position which corresponds to the 50 end of a 27-mer that mapped with a score not equal to 50, which

corresponds to uniquely mapping reads. These positions were then compiled as a BED file. The positions in this file were offset

by +13 nucleotides to match the offset applied to ribosome profiling reads after mapping.

Synthesis Rate Calculation
Ribosome profiling allows calculation of protein synthesis rates if two assumptions are made: no premature ribosome drop-off and

equal average elongation rates across mRNAs (Li, 2015). Many eukaryotic datasets demonstrate significant bias in read coverage

towards the 50 of coding regions (Figure S2A), suggesting some degree of deviation from these assumptions. This bias may lead

to overestimation of ribosome density for short genes and underestimation of ribosome density for long genes, making it difficult

to evaluate proportional synthesis. Our quantification pipeline must therefore explicitly correct for this positional bias in observed

ribosome density for accurate estimation of protein synthesis rates, as described below.

Elevated ribosome density towards the 5’ of coding regions is likely to be due to either of two events: aborted translation as ribo-

somes move downstream or slow elongation rates at early stages of translation. In the first case, the actual rates of protein synthesis

can be estimated by correcting the observed ribosome occupancy profile by an expected drop-off profile at each position, thereby

removing contributions of ribosomes that do not finish translation. In the second case, the actual rates can be estimated by correcting

the observed ribosome occupancy profile by an expected elongation rate profile, thereby removing contributions of uneven elonga-

tion. For both of these cases, the expected profile used for correction can be estimated using a metagene analysis which generates

an averaged position-wise ribosome density across all genes.

To do so, we extracted read count profiles across each protein coding region, excluding the first and last 5 codons (yeast and

mouse datasets) or 25 codons (human and zebrafish datasets) of the open reading frame. These additional nucleotides are trimmed

from human and zebrafish coding regions due to high local variability at the 50 end of their metagene profiles. Coding regions are

excluded if their corresponding gene encodes two or more isoforms with non-identical coding regions, if more than 50% of positions

are included in our mask file, or if fewer than 128 reads map. The signal within each codon was averaged and the smoothed profile

was then normalized by dividing the signal at each position by the mean signal of the first 150 positions. We then calculated a 90%

winsorized mean of the normalized signal at each position relative to the trimmed CDS start across all genes. This metagene profile

was smoothed by averaging over a 51-nucleotide sliding window, generating a position-wise correction factor used in downstream

synthesis rate calculations.

To convert read density to protein synthesis rate, we extracted the read count profiles for the coding region of each gene. Genes

encoding at least two isoforms distinct coding regions were flagged for removal in downstream analysis. Genes with overlapping

coding regions were also omitted from our analysis. The ends of the coding region were trimmed as during the metagene calculation,
e3 Cell Systems 7, 580–589.e1–e4, December 26, 2018



and the position-wise metagene correction was applied by dividing each position by the corresponding value in the smoothed

metagene curve. Because the number of genes used to calculate the metagene at each position decreases with length, this correc-

tion factor becomes increasingly noisy at positions far from the CDS start. For this reason, at positions beyond 3000, the median

value of the metagene curve between positions 2900 and 3000 was used. Synthesis rates were calculated as the mean read count

in this corrected profile, excluding positions which are defined by the mask for the relevant reference transcriptome. Overall, this

metagene correction should have the greatest effect on relative quantification between short and long genes, and was found to

improve the observed proportionality of synthesis rates between complex subunits of greatly differing lengths (Figure S2B).

Curation of Obligate Protein Complexes
To generate a database of obligate S. cerevisiae protein complex subunits, we used the EMBLComplex Portal (Meldal et al., 2015) as

a starting point. This database was last accessed in July of 2018. Complexes were individually sorted, using functional annotation

from SGD (Cherry et al., 2012) and review of relevant literature to determine the potential for promiscuous or non-obligate interaction

of any subunit. For complexes in which a stable, non-promiscuous core could be identified, this reduced complex was included. In

the cases of functionally redundant genes encoded by paralogs, these proteins were considered as a single functional unit and

combined in subsequent analysis. Additional complexes and information about subunit stoichiometry not contained in the EMBL

database was mined from primary literature. A full accounting of the included complexes can be found in Table S2 and excluded

complexes in Table S3.

In total, 577 subunits of 113 complexes were included in our curation. Excluding subunits localized to the mitochondria, 459 sub-

units of 101 complexes remain. In the wild-type budding yeast dataset studied in Figure 2 (Subtelny et al., 2014), all but one complex

(a heterodimer) passed a cutoff of 128 reads per quantified region, a threshold abovewhich counting statistics likely do not contribute

to the spread of estimated synthesis rates (Ingolia et al., 2009). This evidenced by Figures S3A and S3B, which show that the spread

in synthesis rates among complex subunits does not appear to be strongly determined by absolute expression level.

Considering the subunits whichwere removed due tomoonlighting functions, we found that these subunits are produced in excess

of their complex stoichiometry (Figure S3C). Further, we found that moonlighting subunits which participate in a well-defined sec-

ondary complex are produced at a rate which is equal to the sum of synthesis rates of each complex individually (Figure S3D). These

results highlight the necessity of curation of our complex annotation and show that expectations for precise synthesis based on our

curation are met.

Bootstrapping Error Estimates
To estimate error of our estimates for protein synthesis rates, we generated a bootstrapped distribution of ribosome density. To do

this, we randomly re-sampled each gene’s corrected and masked read count profile with replacement 1000 times, generating

simulated profiles equal in length to the original. We then calculated the mean for each of these profiles, generating a distribution

of simulated synthesis rates. When calculating relative synthesis rates between samples, as in Figure 6C, we generated 10,000 in-

dividual bootstrapped ratios, each time resampling to generate a synthesis rate for all genes of interest and subsequently calculating

the desired quantity.

DATA AND SOFTWARE AVAILABILITY

Sequencing Data
The 13 ribosome profiling datasets generated in this paper are available at the Gene Expression Omnibus with accession number

GSE118676. Additional ribosome profiling datasets analyzed in this work are available at accession numbers GSE53313 (Subtelny

et al., 2014), GSE60095 (Ingolia et al., 2014), GSE69906 (Tirosh et al., 2015), and GSE46512 (Chew et al., 2013).
Cell Systems 7, 580–589.e1–e4, December 26, 2018 e4


	Production of Protein-Complex Components Is Stoichiometric and Lacks General Feedback Regulation in Eukaryotes
	Introduction
	Results
	Accurate Quantification of Ribosome Footprint Density for Genes with Regions of Identical Sequence
	Proportional Synthesis of Complex Subunits in Budding Yeast
	Large Protein Complexes Are Synthesized Proportionally in Higher Eukaryotes
	Probing Regulation of Precise Synthesis Using Aneuploid Yeast
	Feedback Control for Proportional Synthesis Is Rare in Budding Yeast

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Strains and Culture Conditions

	Method Details
	Ribosome Profiling

	Quantification and Statistical Analysis
	Genome Sequence and Annotation
	Read Trimming and Alignment
	Rationale for Masking Identical Sequences
	Mask Generation
	Synthesis Rate Calculation
	Curation of Obligate Protein Complexes
	Bootstrapping Error Estimates

	Data and Software Availability
	Sequencing Data




