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The use of liquid biopsies for cancer detection and management is 
rapidly gaining prominence1. Current methods for the detection 
of circulating tumour DNA involve sequencing somatic mutations 
using cell-free DNA, but the sensitivity of these methods may be low 
among patients with early-stage cancer given the limited number 
of recurrent mutations2–5. By contrast, large-scale epigenetic 
alterations—which are tissue- and cancer-type specific—are not 
similarly constrained6 and therefore potentially have greater ability 
to detect and classify cancers in patients with early-stage disease. 
Here we develop a sensitive, immunoprecipitation-based protocol 
to analyse the methylome of small quantities of circulating cell-
free DNA, and demonstrate the ability to detect large-scale DNA 
methylation changes that are enriched for tumour-specific patterns. 
We also demonstrate robust performance in cancer detection and 
classification across an extensive collection of plasma samples 
from several tumour types. This work sets the stage to establish 
biomarkers for the minimally invasive detection, interception and 
classification of early-stage cancers based on plasma cell-free DNA 
methylation patterns.

The analysis of circulating tumour DNA (ctDNA) has numerous 
potential clinical applications. However, certain settings—such as 
cancer screening and the detection of minimal residual disease after  
treatment—require a degree of analytical sensitivity that is often 
beyond current technical limits of mutation-based ctDNA detection 
methods. The major obstacles to improved sensitivity of these methods 
include the limited number of recurrent mutations available to distin-
guish between tumour and normal circulating cell-free DNA (cfDNA) 
in a cost-effective manner, and technical artefacts (errors) introduced 
during sequencing. We reasoned that specific enrichment of methyl-
ated DNA fragments from cfDNA could overcome both of these issues.

To assess whether the higher number of DNA methylation changes 
in cancers could translate to increased sensitivity at lower sequencing  
costs, we performed bioinformatic simulations that examined the 
detection probability across varying numbers of differentially meth-
ylated regions (DMRs), coverage and ctDNA abundance (Fig. 1a, 
Extended Data Fig. 1a). We found improved sensitivity as the number 
of DMRs increased, even at lower sequencing depth and ctDNA abun-
dance, which suggests that the recovery of cancer-specific DNA meth-
ylation changes could enable highly sensitive and low-cost detection, 
classification and monitoring of cancer.

However, this is challenging in practice owing to the low abundance 
and the fragmented nature of plasma cfDNA3, which have restricted 
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Fig. 1 | The cfDNA methylome as a sensitive approach to detect ctDNA 
in low levels of input DNA. a, Simulated probability of detecting at least 
one epimutation as a function of ctDNA concentration (0.001% to 10%; 
columns), number of DMRs analysed (1 to 10,000; rows) and sequencing 
depth (10× to 10,000×; x axis). b, Across a serial dilution series (n = 7 
dilution points, two technical replicates, each replicate was used per 
protocol) of HCT116 DNA spiked into MM.1S multiple myeloma DNA, 
near-perfect correlations are observed between observed and expected 
methylation signal within DMRs in reads per kilobase of transcript per 
million mapped reads (RPKM). FDR at 5%, r2 = 0.99; P < 0.0001.  
c, Frequency of ctDNA (human) as a percentage of total cfDNA (human 
+ mouse) in the plasma from two colorectal cancer, patient-derived 
xenografts (PDX) before (input) and after (IP) cfMeDIP–seq.
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most of the previous plasma methylation profiling to locus-specific 
PCR-based assays7–9. Although whole-genome bisulfite sequencing 
(WGBS) of cfDNA has been attempted10,11, this approach is inefficient 
owing to degradation of around 84–96% of the input DNA during 
bisulfite conversion12, high cost, and limited information recovery given 
the low genome-wide abundance of CpGs. Therefore, we developed 
cell-free methylated DNA immunoprecipitation and high-throughput  
sequencing (cfMeDIP–seq) for genome-wide bisulfite-free plasma 
DNA methylation profiling. This method can enrich CpG-rich, poten-
tially more informative fragments, thus enhancing cost-effectiveness.

In brief, we optimized an existing low-input MeDIP–seq proto-
col13 that is robust down to 100 ng of input DNA, using exogenous 
Enterobacteria phage λ DNA (filler DNA) to increase the initial amount 
(Extended Data Fig. 1b). This is crucial for applications that are based 
on plasma cfDNA samples, which yield much less than 100 ng of 
cfDNA. We then performed extensive benchmarking of the optimized 
protocol. A comparison of low-input cfMeDIP–seq with gold-standard  
MeDIP–seq using colorectal cancer (CRC) HCT116 DNA that was 
sheared to mimic cfDNA showed robust CpG enrichment (Extended 
Data Fig. 2a–c) and inter-replicate correlation (Extended Data Fig. 2d). 
cfMeDIP–seq (1 to 10 ng input DNA) also recapitulated profiles from 
gold-standard MeDIP–seq (100 ng), reduced representation bisulfite 
sequencing (RRBS) (1,000 ng) and WGBS (2,000 ng) (Extended Data 
Fig. 2e).

Next, cfMeDIP–seq was compared to ultra-deep hybrid capture 
mutation sequencing based on unique molecular identifiers (UMIs)14 
across a serial dilution of CRC DNA into multiple myeloma MM.1S cell-
line DNA (Extended Data Fig. 3a). With cfMeDIP–seq, near-perfect  
linear associations were found between observed and expected num-
bers of DMRs (5% false discovery rate (FDR) threshold) and signals 
within DMRs, down to 0.001% dilution (both r2 = 0.99, P < 0.0001) 
(Fig. 1b, Extended Data Fig. 3b–e). Hybrid capture mutation sequenc-
ing, however, detected CRC-specific mutations down to only 0.1% 
and 1% with single-strand consensus sequence (SSCS) and duplex 
consensus sequence (DCS), respectively (Extended Data Fig. 3f, g). 
This highlights the excellent analytical sensitivity of cfMeDIP–seq for 
the detection of cancer-derived DNA. We also evaluated the ability of 
cfMeDIP–seq to enrich ctDNA through biased sequencing of CpG-rich 

sequences that are frequently hypermethylated in cancer when com-
pared to normal tissue15. Plasma from mice that carry patient-derived 
xenografts was used for cfMeDIP–seq, and a twofold enrichment of 
human-tumour-derived cfDNA was found after immunoprecipitation 
as compared to the input sample (Fig. 1c).

To investigate whether cfMeDIP–seq could detect ctDNA in  
early-stage cancer, we generated cfMeDIP–seq profiles from pre- 
surgery plasma cfDNA of 24 patients with primary early-stage pancreatic  
cancer (pancreatic ductal adenocarcinoma; PDAC) (cases) and 24 
age- and sex-matched healthy controls (controls) (Fig. 2a, Extended 
Data Fig. 4a–f). In addition to plasma cfDNA, the microdissected 
primary tumours and adjacent normal tissue from the same patients 
with PDAC were used to generate DNA methylation profiles using 
RRBS. We identified 14,716 DMRs between the cfDNA of cases and 
controls (9,931 hypermethylated in cases, 4,785 in controls, based on 
negative-binomial generalized linear model (GLM) of fragment counts 
at a significance level of Benjamini–Hochberg FDR (BHFDR) of 0.1) 
(Fig. 2b, c, Supplementary Table 1).

In comparison, 45,173 differentially methylated CpGs (DMCs) were 
found between tumour and normal tissue in RRBS data (Supplementary 
Table 2). Permutation testing to estimate the significance of overlaps 
between cfMeDIP–seq cell-free DMRs and RRBS tissue DMCs revealed 
significant enrichment for DMR and DMC pairs that are concordantly 
hypermethylated (P = 3.39 × 10−47) and concordantly hypomethylated 
(P = 1.43 × 10−22) in the case of cfDNA and tumour tissue. This sig-
nificant enrichment was not observed in the discordant methylation 
pattern between cfDNA and tumour DNA (Fig. 2d). Furthermore, 
signals in overlapping plasma cfDNA and tissue DNA methylation 
were correlated (Extended Data Fig. 5a). These findings suggest that 
cfMeDIP–seq of plasma cfDNA can detect tumour-derived DNA  
methylation events in ctDNA.

As non-tumour-derived cfDNA is mostly released from blood cells, 
we performed similar permutation-based enrichment testing between 
case-versus-control cfMeDIP–seq DMRs and the 95,388 RRBS DMCs 
between PDAC tumour tissue (n = 24) and normal peripheral blood 
mononuclear cells (PBMCs) (n = 5) (Supplementary Table 3). Again, 
we observed significant enrichment for concordant hypermethyl-
ated (P < 1 × 10−745) and hypomethylated (P = 6.12 × 10−82) sites 

DNA methylation (log2 fold change)
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Fig. 2 | The cfMeDIP–seq method can identify thousands of DMRs 
in circulating cfDNA obtained from patients with pancreatic 
adenocarcinoma. a, Experimental design. b, Volcano plot of DMRs 
from patients with pancreatic cancer (cases, n = 24) versus healthy 
donors (controls, n = 24) using cfMeDIP–seq. Red dots indicate windows 
significant at BHFDR < 0.1 (negative binomial GLM, two-sided P values). 
c, Heat map of the 14,716 DMRs identified in the plasma cfDNA from 
cases and controls (Euclidean distance, Ward clustering). Dendrogram 
shows separation by status (case or control). d, e, Overlap between case-

versus-control plasma-derived DMRs and RRBS tumour-DMR-matched 
normal tissue (d) and PBMCs (e). Box plots represent the expected null 
distribution of overlaps from 1,000 permutations (two-sided, P values 
computed using standard normal distribution). The extremes of the 
boxes define the upper and lower quartiles and the centre lines define the 
median. Whiskers indicate 1.5× interquartile range (IQR). Diamonds 
represent observed overlap (red if significantly enriched, green if 
significantly depleted and blue if not significant). Horizontal lines indicate 
thresholds for statistical significance.

5 8 0  |  N A t U r e  |  V O L  5 6 3  |  2 2  N O V e M B e r  2 0 1 8
© 2018 Springer Nature Limited. All rights reserved.



Letter reSeArCH

in cfMeDIP–seq DMRs and tumour compared with PBMC DMCs, 
whereas discordant calls were underrepresented (Fig. 2e). In addition, 
signals in overlapping DMRs and DMCs were correlated (Extended 
Data Fig. 5b), and altogether indicated that DMRs identified using 
cfMeDIP–seq, between cases and controls, were probably derived from 
ctDNA (Extended Data Fig. 5c).

On the basis of the enrichment of tumour-derived DMRs and the 
known methylation-specific variable binding of transcription factors16, 
we hypothesized that cfMeDIP–seq methylomes could identify active 
transcriptional networks in tumours or other tissues using plasma 
cfDNA. Upon motif enrichment analysis on cfMeDIP–seq DMRs and 
taking methylation preferences of candidate transcription factors into 

account16, we identified 42 transcription factors as binding in healthy 
controls and 52 as binding in cases of pancreatic cancer (Supplementary 
Tables 4, 5). As expected, the former included haematopoietic- 
lineage-specific transcription factors such as PU.1, NFE2 and GATA1, 
whereas the latter included the pancreas-associated transcription factors  
PTF1a, Onecut1 (HNF6) and NR5A2 (Extended Data Fig. 6a, c). 
Compared to random sets of transcription factors, those inferred as 
active in healthy controls are overexpressed in blood according to data 
from the Genotype-Tissue Expression (GTEx) project, whereas those 
inferred as active in cases of pancreatic cancer were found to be over-
expressed in pancreatic tissues (according to GTEx data) and PDAC 
tissue (according to data from The Cancer Genome Atlas (TCGA; 
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Fig. 3 | Methylome analysis of plasma cfDNA enables tumour 
classification. a, cfMeDIP–seq carried out on a discovery cohort 
consisting of 189 samples from seven different tumour types: PDAC, 
AML, BLCA, BRCA, CRC, LUC and RCC, including early- and late-stage 
tumours, and healthy controls (normal). For each cancer type, DMRs 
between the cancer type and normal controls were identified. Overlap is 
shown between plasma-derived DMRs for each cancer type and primary-
tumour DMRs (tumour tissue versus adjacent normal tissue) for the 
corresponding cancer type using TCGA data. Box plots represent the 
expected null distribution of overlaps from 1,000 permutations  
(two-sided, P values computed using standard normal distribution). The 
extremes of boxes define the upper and lower quartiles and the centre lines 
define the medians. Whiskers indicate 1.5× IQR. Diamonds represent 
observed overlap (red if significantly enriched, green if significantly 
depleted and blue if not significant). Horizontal lines indicate thresholds 
for statistical significance. b, Evaluation of classification accuracy on the 

discovery cohort. The discovery cohort (n = 189) was partitioned into 
100 independent training and test sets in an 80%–20% manner, consisting 
of 8 classes (cancer types and healthy controls). Training sets were used 
for DMR selection and model training, yielding 100 sets of 8 one-class 
versus-other-classes binomial GLMnet classifiers. The y axis depicts 
distributions of AUROC for each held-out test set for each class. Dots 
represent performance in individual test sets. The extremes of boxes define 
the upper and lower quartiles and the centre lines define the medians. 
Whiskers indicate 1.5× IQR. c, ROC curves constructed using averaged 
class probabilities for independent validation set samples (n = 199, 55 
LUC, 35 AML, 47 PDAC and 62 healthy controls) from the 100 models 
for each one-class-versus-other-classes comparison trained using the 
discovery cohort. d, ROC curves for the PDAC and LUC validation set 
divided into early and late stage, showing that the ability to discriminate 
PDAC or LUC samples is similar when considering early- and late-stage 
samples of that class separately.
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Extended Data Fig. 6b, d, e)). Collectively, these findings indicate that 
cfMeDIP–seq might permit non-invasive characterization of active 
transcription-factor networks in cancer.

Given that we could detect tumour-specific DMRs in the plasma 
of PDAC cases relative to controls, we then investigated whether 
cfMeDIP–seq could non-invasively classify multiple cancer types from 
healthy controls. Consequently, we performed cfMeDIP–seq in a dis-
covery cohort of 189 plasma samples from seven different tumour types 
(PDAC, CRC, breast cancer (BRCA), lung cancer (LUC), renal cancer 
(RCC), bladder cancer (BLCA) and acute myeloid leukaemia (AML)) 
and healthy controls (Extended Data Figs. 7a–l, 8a).

We first identified plasma cell-free DMRs for each tumour type rel-
ative to healthy controls. We then asked whether these cancer-type- 
specific DMRs identified on the plasma cfDNA were enriched for the 
expected tumour DMRs for each cancer type using tumour tissue meth-
ylation data from TCGA (n = 4,032) (Fig. 3a). We observed a marked 
enrichment of sites that were hypermethylated in the primary tumour 
tissue (TCGA) within the regions we identified as hypermethylated 
in the plasma cfDNA for each cancer type, coupled with significantly  
correlated signals between cfMeDIP–seq plasma methylation and 
TCGA 450k tumour data (Extended Data Fig. 8b–h). These results 
indicate the ability to recover ctDNA-associated methylation profiles 
across a range of cancer types.

Finally, we carried out a set of machine-learning analyses on our 
discovery cohort to rigorously evaluate the utility of cfMeDIP profiles 
in cancer detection and classification. We initially reduced our data-
set to 505,027 windows mapping to CpG islands, shores, shelves and 
FANTOM5 enhancers for computational efficiency. Unbiased perfor-
mance estimates, while accounting for training-set biases, were then 
derived from the reduced dataset. We split the discovery cohort into 
balanced training (80%) and test (20%) sets. Using only training-set 
samples, we selected the top 300 DMRs by limma-trend test statistic 
for each class compared with other classes. We then trained a series 
of one-versus-other-classes regularized binomial GLMs using these 
features on the training-set data. The training procedure consisted of 

three rounds of 10-fold cross-validation across a grid of values for alpha 
and lambda with optimisation for Cohen’s kappa. The use of multiple 
rounds of 10-fold cross-validation was motivated by a desire to leverage 
additional randomization for more generalizable model tuning.

The performance of these classifiers was then evaluated using 
receiver operating characteristic (ROC) statistics derived from 
the test-set samples that were not used for either DMR selection or 
model training. The whole process was repeated 100 times to prevent  
training-set biases17, culminating in a collection of 800 models, with 
100 models for each one-versus-all-others comparison (hereafter 
termed E100). High values of the area under the receiver operator  
characteristic curve (AUROC) were observed for test-set samples 
across classes (Fig. 3b, Extended Data Fig. 9a).

Subsequently, we assessed performance across batches by applying 
the ensemble to a 199-sample validation cohort (35 AML, 47 PDAC, 55 
LUC and 62 healthy controls). Averaging the class probabilities output 
by E100 for each sample yielded high AUROCs for AML versus others 
(0.980), PDAC versus others (0.918), LUC versus others (0.971) and 
normal versus others (0.969) (Fig. 3c). Notably, performance was similar  
between early- and late-stage samples, suggesting applicability to the 
detection of early-stage cancers (Fig. 3d, Extended Data Fig. 9b).

We then investigated whether the DMRs (non-zero coeffi-
cients) selected during the training of E100 were tumour-specific. 
Visualization using t-distributed stochastic neighbour embedding 
(t-SNE) plots showed clear separation by tumour type in the plasma 
cohort (Fig. 4a). This was notably reproduced in the 450k dataset of 
4,032 TCGA cancers and normal blood samples, and 400 cancer cell 
lines from the Catalogue Of Somatic Mutations In Cancer (COSMIC) 
and PBMCs (Fig. 4b, c). This suggests that our plasma cfDNA methyla-
tion classifiers are mainly driven by tumour-specific DNA methylation 
patterns rather than by fluctuations in blood cells or cell composition 
in the tumour microenvironment.

However, these results do not rule out that some plasma cell-free 
DMRs could originate from changes in the proportions of circulating 
immune cells18,19. To further test our inference, we identified 38,352 
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Fig. 4 | Plasma-derived DMRs are informative of cancer type. a, The 
plasma-derived DMRs identified as informative of cancer type in the 
discovery cohort of 189 plasma samples were used to generate 3D and 2D 
t-SNE plots for the entire cohort of plasma samples (n = 388). b, c, The 

DNA methylation beta value for probes within the plasma-derived DMRs 
was used to generate 3D and 2D t-SNE plots for TCGA cancer tissue 
(n = 4,032) (b) and COSMIC cancer cell lines (n = 400 cell lines) (c).
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cfMeDIP windows that were lowly methylated across a range of  
leukocyte types in WGBS data from the International Human 
Epigenome Consortium (IHEC), of which 27,088 overlapped with the 
TCGA 450k data (Extended Data Fig. 10a). Out of these 27,088 regions, 
we separated those that were identified as hypermethylated through the 
comparisons of plasma cfDNA of each cancer type to healthy controls. 
We then checked the methylation status of these regions in the tumour 
tissue compared to PBMCs, using TCGA data for each cancer type. For 
PDAC, we used in-house methylation data generated for the matched 
patients (cfDNA and tissue DNA). We found these regions to be hyper-
methylated in tumour tissue (Extended Data Fig. 10b), reinforcing the 
hypothesis that these plasma cell-free DMRs are a direct measurement 
of tumour-derived DNA (that is, ctDNA).

In summary, we developed a robust, sensitive and bisulfite-free  
methodology for immunoprecipitation-based profiling of methylation  
patterns in cfDNA. Our approach awaits further validation in  
completely independent datasets, but our findings underscore the poten-
tial utility of cfDNA methylation profiles as a basis for non-invasive,  
cost-effective, sensitive and accurate early tumour detection for cancer 
interception, and for multi-cancer classification.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0703-0.

Received: 5 December 2016; Accepted: 25 September 2018;  
Published online 14 November 2018.

 1. Diaz, L. A., Jr & Bardelli, A. Liquid biopsies: genotyping circulating tumor DNA.  
J. Clin. Oncol. 32, 579–586 (2014).

 2. Aravanis, A. M., Lee, M. & Klausner, R. D. Next-generation sequencing of 
circulating tumor DNA for early cancer detection. Cell 168, 571–574 (2017).

 3. Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor 
DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).

 4. Cohen, J. D. et al. Detection and localization of surgically resectable cancers 
with a multi-analyte blood test. Science 359, 926–930 (2018).

 5. Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor 
DNA. Sci. Transl. Med. 9, eaan2415 (2017).

 6. Hoadley, K. A. et al. Multiplatform analysis of 12 cancer types reveals molecular 
classification within and across tissues of origin. Cell 158, 929–944 (2014).

 7. Lehmann-Werman, R. et al. Identification of tissue-specific cell death using 
methylation patterns of circulating DNA. Proc. Natl Acad. Sci. USA 113, 
E1826–E1834 (2016).

 8. Visvanathan, K. et al. Monitoring of serum DNA methylation as an early 
independent marker of response and survival in metastatic breast cancer: 
TBCRC 005 prospective biomarker study. J. Clin. Oncol. 35, 751–758 (2017).

 9. Potter, N. T. et al. Validation of a real-time PCR-based qualitative assay for the 
detection of methylated SEPT9 DNA in human plasma. Clin. Chem. 60, 
1183–1191 (2014).

 10. Chan, K. C. et al. Noninvasive detection of cancer-associated genome-wide 
hypomethylation and copy number aberrations by plasma DNA bisulfite 
sequencing. Proc. Natl Acad. Sci. USA 110, 18761–18768 (2013).

 11. Sun, K. et al. Plasma DNA tissue mapping by genome-wide methylation 
sequencing for noninvasive prenatal, cancer, and transplantation assessments. 
Proc. Natl Acad. Sci. USA 112, E5503–E5512 (2015).

 12. Grunau, C., Clark, S. J. & Rosenthal, A. Bisulfite genomic sequencing: 
systematic investigation of critical experimental parameters. Nucleic Acids 
Res. 29, E65 (2001).

 13. Taiwo, O. et al. Methylome analysis using MeDIP-seq with low DNA 
concentrations. Nat. Protoc. 7, 617–636 (2012).

 14. Newman, A. M. et al. Integrated digital error suppression for  
improved detection of circulating tumor DNA. Nat. Biotechnol. 34, 547–555 
(2016).

 15. Sharma, S., Kelly, T. K. & Jones, P. A. Epigenetics in cancer. Carcinogenesis 31, 
27–36 (2010).

 16. Yin, Y. et al. Impact of cytosine methylation on DNA binding specificities of 
human transcription factors. Science 356, eaaj2239 (2017).

 17. Michiels, S., Koscielny, S. & Hill, C. Prediction of cancer outcome with 
microarrays: a multiple random validation strategy. Lancet 365, 488–492 
(2005).

 18. Pedersen, K. S. et al. Leukocyte DNA methylation signature differentiates 
pancreatic cancer patients from healthy controls. PLoS ONE 6, e18223 
(2011).

 19. Teschendorff, A. E. et al. An epigenetic signature in peripheral blood predicts 
active ovarian cancer. PLoS ONE 4, e8274 (2009).

Acknowledgements This study was conducted with support from the 
University of Toronto McLaughlin Centre (MC-2015-02), the Canadian 
Institutes of Health Research (CIHR FDN 148430 and CIHR New Investigator 
Salary award 201512MSH-360794-228629), Ontario Institute for Cancer 
Research (OICR) with funds from the province of Ontario, Canada Research 
Chair (950-231346), and the Princess Margaret Cancer Foundation to 
D.D.D.C. as well as Canadian Cancer Society (CCSRI 701717) to R.J.H., CCSRI 
704716 to R.J.H. and D.D.D.C. and CCSRI 703827 to M.M.H. Recruitment 
of healthy individuals was supported by Cancer Care Ontario Chair of 
Population Health and CCSRI 020214 awarded to R.J.H. Collection of lung 
cancer samples was supported by the Alan B. Brown chair in molecular 
genomics and the Lusi Wong Lung Cancer Early Detection Program to G.L. 
We acknowledge the Princess Margaret Genomics Centre for carrying out the 
next-generation sequencing and the Bioinformatics and HPC Core, Princess 
Margaret Cancer Centre for their expertise in generating the next-generation 
sequencing data.

Reviewer information Nature thanks E. Collisson, A. Teschendorff and the 
other anonymous reviewer(s) for their contribution to the peer review of this 
work.

Author contributions S.Y.S. and D.D.D.C. designed and developed the cfMeDIP–
seq protocol. R.J.H. and G.F. conceived and designed the study related to the 
pancreatic cancer component. S.Y.S., R.S., A.C. and D.D.D.C. conceived and 
designed the study related to the other cancer types. S.Y.S., S.V.B., T.J.P. and 
D.D.D.C. designed the experiments. S.Y.S., D.C., M.H.A.R., P.C.Z., Z.C., T.L., O.K., 
D.R., I.E., Z.C., S.C., G.M.O., J.L., M.M. and Z.Z. performed the experiments. 
T.d.S.M., Y.W. and C.O. performed the mouse experiments. R.S., A.C., G.F., 
T.T.W., A.G., T.J.P., M.M.H. and D.D.D.C. analysed the data with scientific input 
from R.J.H. G.F., A.B., D.C., A.S., T.M., A.A., N.L., M.H.A.R., J.D.M., P.L.B., N.F., G.L., 
M.D.M., S.G., T.J.P. and R.J.H. collected the clinical data related to the samples, 
determined the sample selection criteria and matching scheme, and provided 
the clinical samples. S.Y.S., R.S., A.C. and D.D.D.C. wrote the paper with feedback 
from all authors.

Competing interests D.D.D.C., S.Y.S., A.C., S.V.B., R.S. and R.J.H. are listed as 
inventors/contributors on patents filed related to this work.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41586-
018-0703-0.
Supplementary information is available for this paper at https://doi.org/ 
10.1038/s41586-018-0703-0.
Reprints and permissions information is available at http://www.nature.com/
reprints.
Correspondence and requests for materials should be addressed to R.J.H. or 
D.D.D.C.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

2 2  N O V e M B e r  2 0 1 8  |  V O L  5 6 3  |  N A t U r e  |  5 8 3
© 2018 Springer Nature Limited. All rights reserved.

https://doi.org/10.1038/s41586-018-0703-0
https://doi.org/10.1038/s41586-018-0703-0
https://doi.org/10.1038/s41586-018-0703-0
https://doi.org/10.1038/s41586-018-0703-0
https://doi.org/10.1038/s41586-018-0703-0
http://www.nature.com/reprints
http://www.nature.com/reprints


LetterreSeArCH

MEthodS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized. Plasma samples were blinded during the 
sample preparation and sequencing. Data analysis was performed unblinded on 
the discovery cohort and blinded on the validation cohort.
Bioinformatic simulation of tumour-specific features and probability of detec-
tion by sequencing depth. We created 145,000 simulated genomes with 1, 10, 
100, 1,000 and 10,000 independent loci with 0.001–10% cancer-specific DMRs in 
tenfold increments. Diploid genomes (14,500, the expected copy number in 100 ng 
cfDNA) were then sampled from these mixtures and further sampled 10–10,000× 
in tenfold increments at each locus. The process was repeated 100 times for each 
combination of parameters. Probability curves were plotted for successful detection 
of >1 and >5 DMRs (Fig. 1a, Extended Data Fig. 1a).
cfMeDIP–seq. A schematic representation of the cfMeDIP–seq protocol is shown 
in Extended Data Fig. 1b. Before cfMeDIP, the samples were subjected to library 
preparation using Kapa HyperPrep Kit (Kapa Biosystems), following the manufac-
turer’s protocol with minor modifications. In brief, after end-repair and A-tailing, 
samples were ligated to 0.181 µM of NEBNext adaptor (NEBNext Multiplex Oligos 
for Illumina kit, New England BioLabs) by incubating at 20 °C for 20 min and puri-
fied with AMPure XP beads (Beckman Coulter). The eluted library was digested 
using the USER enzyme (New England BioLabs) followed by purification with 
Qiagen MinElute PCR Purification Kit (MinElute columns) before MeDIP.

The prepared libraries were combined with the filler λ DNA (to ensure the 
total amount of DNA (cfDNA + filler) was 100 ng) and subjected to MeDIP with 
Diagenode MagMeDIP kit (C02010021) using a previously published protocol13 
with some modifications. The filler DNA consists of a mixture of unmethylated 
and in vitro methylated λ amplicons of different CpG densities (Supplementary 
Table 6), similar in size to adaptor-ligated cfDNA libraries. Its addition ensures 
a constant ratio of antibody to input DNA and helps to maintain similar immu-
noprecipitation efficiency across samples regardless of available cfDNA, while 
minimizing non-specific binding by the antibody and DNA loss due to binding 
to plasticware. For MeDIP, the prepared library/filler DNA mixture was com-
bined with 0.3 ng of control methylated and 0.3 ng of the control unmethylated 
Arabidopsis thaliana DNA provided in the kit, and the buffers. The mixture was 
heated to 95 °C for 10 min, then immediately placed into an ice water bath for 10 
min. Each sample was partitioned into two 0.2 ml PCR tubes: one for the 10% 
input control (7.9 µl) and the other for the sample to be subjected to immunopre-
cipitation (79 µl). The included 5-mC monoclonal antibody 33D3 (C15200081) 
from the MagMeDIP kit was diluted 1:15 before generating the diluted antibody 
mix and was added to the sample. Washed magnetic beads (following the man-
ufacturer’s instructions) were also added before incubation at 4 °C for 17 h. The 
samples were purified using the Diagenode iPure Kit v2 (C03010015) and eluted 
in 50 µl of buffer C. The success of the reaction (QC1) was validated by qPCR to 
detect recovery of the spiked-in methylated and unmethylated A. thaliana DNA. 
The percentage recovery of unmethylated spiked-in DNA should be <1% (rela-
tive to input control, adjusted for input control being 10% of the overall sample) 
and the percentage specificity of the reaction should be >99% (as calculated by 
(1 – [recovery of spiked-in unmethylated control DNA over recovery of spiked-in 
methylated control DNA]) × 100), before proceeding to the next step. The optimal 
number of cycles to amplify each library was determined by qPCR, after which 
the samples were amplified using Kapa HiFi Hotstart Mastermix and NEBNext 
multiplex oligos, added to a final concentration of 0.3 µM. The final libraries were 
amplified as follows: activation at 95 °C for 3 min, followed by predetermined cycles 
of 98 °C for 20 s, 65 °C for 15 s and 72 °C for 30 s and a final extension of 72 °C for 1 
min. The amplified libraries were purified using MinElute columns, then gel size 
selected with 3% Nusieve GTG agarose gel to remove any adaptor dimers. All the 
final libraries were submitted for BioAnalyzer analysis before sequencing at the 
Princess Margaret Genomics Centre on an Illumina HiSeq 2500, SBS V4 chemistry, 
single read 50 bp, multiplexed as seven samples per lane. After sequencing, the 
sequenced reads were aligned to λ and hg19 using Bowtie20 with the default set-
tings. On the basis of virtually no alignment to the λ genome, the filler DNA does 
not interfere with the generation of sequencing data (Supplementary Tables 7, 8).

The generated SAM files from hg19 alignment were converted to BAM for-
mat, ensuring the removal of duplicate reads, and the reads were then sorted 
and indexed using SAMtools21 before subsequent analysis with the R package 
MEDIPS22. The CpG enrichment score, as a quality control measure for the immu-
noprecipitation reaction, was calculated as part of the MEDIPS package.
Validation of cfMeDIP–seq against MeDIP–seq. DNA from human colorectal 
cancer cell (CRC) line HCT116 (American Type Culture Collection (ATCC), STR 
tested for authentication, mycoplasma free) was extracted using PureLink Genomic 
DNA Mini Kit (Thermo Fisher Scientific). HCT116 was chosen because of the 
availability of public DNA methylation data. Genomic DNA was sheared to mimic 
cfDNA using a Covaris sonicator, and larger size fragments were excluded using 
AMPure XP beads (Beckman Coulter) to mimic the fragment size of cell-free 

DNA. cfMeDIP–seq was carried out on 1, 5, 10 and 100 ng of sheared DNA as 
input, with 100 ng representing the gold-standard MeDIP–seq protocol, with two 
biological replicates per input. The fold enrichment of a methylated human DNA 
region (HIST1H2BA) over unmethylated human DNA region (GAPDH promoter), 
using primers provided in the MagMeDIP kit, was determined before sequencing 
libraries to saturation (Extended Data Fig. 2a–c, Supplementary Table 7).
Dilution series of sheared cell line DNA. As with the CRC DNA, the same 
extraction and shearing protocol was used with multiple myeloma cell line MM.1S 
(source: American Type Culture Collection (ATCC), STR tested for authentica-
tion, mycoplasma free). A dilution series of CRC into multiple myeloma DNA was 
carried out following the scheme in Extended Data Fig. 3a. This dilution series 
was used for cfMeDIP–seq (Supplementary Table 9) and for ultra-deep targeted 
sequencing for CRC point-mutation detection, using a starting input of 60 ng 
of DNA. For the mutation detection, DNA libraries were prepared using Kapa 
HyperPrep Kit (Kapa Biosystems) and Illumina compatible molecular barcoded 
adapters with 2-bp in-line barcodes (unique molecular identifiers (UMIs)) to 
ensure optimal analytical sensitivity for mutation detection14. A customized bioti-
nylated DNA capture probe panel (xGen Lockdown Custom Probes Mini Pool, 
Integrated DNA Technologies) targeting exons from five genes (13 kb) was used23. 
In brief, the barcoded libraries were pooled, and hybrid capture was performed 
according to the manufacturer’s instructions (IDT xGEN Lockdown protocol ver-
sion 4). The amplified post-capture libraries were sequenced to >100,000× read 
coverage using Illumina HiSeq 2500 instrument, SBS V4 chemistry, paired-end 
125 bp, as four samples per lane. Average target coverage of unprocessed reads was 
186,312× (range: 154,419× – 216,434×) (Supplementary Table 9).

After sequencing, reads were de-multiplexed using sample-specific indices 
into separate paired-end FASTQ files. A two-base-pair molecular barcode and a  
one-base-pair invariant spacer sequence were removed from each read. A thymine 
base was encoded in the third position for adaptor ligation and a spacer filter was 
enforced to remove reads that were incompliant with this design. The extracted 
barcodes from paired-end reads were grouped and written into the header of each 
sequence for downstream in silico molecular identification24. FASTQ files were 
mapped to the human reference genome hg19 using BWA25, processed using the 
Genome Analysis ToolKit (GATK) IndelRealigner26, and sorted and indexed using 
SAMtools21.

Barcodes were used in combination with endogenous sequence features 
(genome coordinates, mapping alignments, read orientation, and read number in 
pair) to confer sequences from individual molecules. Consensus sequences were 
formed from two or more reads supporting the same molecule with 70% agreement 
amongst bases above Phred quality scores27 (Q) of 30. Reads derived from the same 
strand of a unique fragment were collapsed to form SSCSs, suppressing polymerase 
and sequencer errors. These condensed reads were subsequently combined with 
their complementary strand into DCSs. This enables an additional layer of error 
suppression as double-strand consolidated sequences can correct for asymmetric 
damage accrued during the first cycle of PCR or induced by oxidation28.

We selected variants on the basis of annotated SNPs from the Cancer Cell Line 
Encyclopedia29 overlapping our target panel. SNVs were called with MuTect30 
using the following parameters:–enable_extended_output–tumor_f_pretest 
0.000001f–downsampling_type NONE–force_output–force_alleles–gap_events_
threshold 1000–fraction_contamination 0.00f–coverage_file30. We force called 
every base for each variant to assess limit of detection and background noise at 
each stage of barcode-mediated error correction. Analysis of the UMI-processed 
error-suppressed reads revealed unique molecule (that is, SSCS) and DCS average 
target coverage of 6,276× (4,284×–8,068×) and 1,043× (654×–1,602×), respec-
tively (Supplementary Table 9).
Specimen processing of patient-derived xenograft cfDNA. All mouse work 
was carried out in compliance with animal use protocol and ethical regulations 
approved by the Animal Care Committee at University Health Network (UHN). 
Human colorectal tumour tissue obtained with patient consent and UHN Research 
Ethics Board approval from the UHN Biobank was digested to single cells using 
collagenase A. Single cells were subcutaneously injected into 4–6-week-old NOD/
SCID male mice. Mice were euthanized by CO2 inhalation before blood was  
collected by cardiac puncture and stored in EDTA tubes. From the collected blood 
samples, plasma was isolated and stored at −80 °C. cfDNA was extracted from  
0.3–0.7 ml of plasma using the QIAamp Circulating Nucleic Acid Kit (Qiagen). Two 
biological samples with 10 ng of starting cfDNA were subjected to the cfMeDIP–
seq protocol as previously mentioned, sequenced and analysed (Supplementary 
Table 10).
Donor recruitment and sample acquisition. All patients provided written 
informed consent, and all samples were obtained upon approval of the institu-
tional ethics committees and Research Ethics Boards from UHN and Mount Sinai 
Hospital, in compliance with all relevant ethical regulations. Pancreatic adeno-
carcinoma cases were obtained from the Ontario Pancreatic Cancer Study and 
the UHN Biobank. Colorectal and breast cancer plasma samples were obtained 
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from the UHN Biobank. Lung cancer plasma samples were obtained from the 
UHN Thoracic Biobank. AML samples were obtained from the UHN Leukaemia 
Biobank. Bladder and renal cancer plasma samples were obtained from the UHN 
Genitourinary Biobank from consenting urologic oncology patients, procured 
before nephrectomy and cystectomy respectively. Healthy controls were recruited 
through the Family Medicine Centre at Mount Sinai Hospital in Toronto, Canada.
Specimen processing and methylation analysis of purified tumour and  
normal cells from PDAC samples. For primary PDAC samples, specimens were 
processed immediately following resection and representative sections were used 
to confirm the diagnosis. Laser capture microdissection (LCM) of freshly liquid 
nitrogen-frozen tissue samples was performed on a Leica LMD 7000 instrument. 
Laser capture microdissection was performed on the same day as sections were 
cut to minimize nucleic acid degradation. Qiagen Cell Lysis Buffer was used to 
extract genomic DNA.

Quantified 10 ng of genomic DNA for each sample was analysed using RRBS fol-
lowing a previously published protocol31 with minor modifications. DNA libraries  
ligated to Illumina TruSeq methylated adapters were subjected to bisulfite con-
version using the Zymo EZ DNA methylation kit following the manufacturer’s 
protocol, followed by gel size selection for fragments of 160–300 bp in size. After 
determining the optimal number of cycles to amplify each purified library, samples 
were amplified using Kapa HiFi Uracil+ Mastermix (Kapa Biosystems) and puri-
fied with AMPure beads (Beckman Coulter). The final libraries were submitted for 
BioAnalyzer analysis before sequencing at the Princess Margaret Genomics Centre 
on an Illumina HiSeq 2000, using sequencing by synthesis (SBS) V3 chemistry, 
single read 50 bp and multiplexed as four samples per lane. After sequencing, the 
raw data for each sample was trimmed with Trim Galore! using the RRBS settings 
before aligning to hg19 using Bismark32 with Bowtie233 (Supplementary Table 11). 
The generated SAM files were then converted to BAM format, sorted and indexed 
using SAMtools.
Specimen processing for patient cfDNA. Plasma samples collected using EDTA 
and acid citrate dextrose tubes were obtained from the UHN BioBanks and Mount 
Sinai Hospital and were kept frozen until use. cfDNA was extracted from 0.5–3.5 
ml of plasma using the QIAamp Circulating Nucleic Acid Kit (Qiagen) and quan-
tified through Qubit before use. The sex, age and pathology stage of the patients 
from which the samples were collected are available in Supplementary Table 12, 
and extracted DNA quantities are available in Extended Data Fig. 8a.
Calculation and visualization of differentially methylated regions from cfDNA 
of patients with pancreatic cancer and healthy donors. DMRs between cfDNA 
samples from 24 patients with pancreatic cancer (PDAC) and 24 healthy donors 
(controls) were calculated using MEDIPS and DESeq2 R packages22,34. For each 
sample, we computed counts per 300 bp non-overlapping windows, filtered out 
windows with less than 10 counts across all samples and fit a negative binomial 
model to call DMRs at FDR < 0.1 (Wald test). z-scores of DMR RPKM values with 
Euclidean distance and Ward clustering were used for visualization.
Enrichment analyses for plasma-derived DMRs in tumour-specific methyla-
tion signals in PDAC. Five normal PBMC samples profiled by RRBS were down-
loaded from the Gene Expression Omnibus (accession number GSE89473) for 
comparison with the 24 pancreatic cancer tissue RRBS samples. The R package 
MethylKit was used to parse files and autosomal CpGs detected in at least 18 out 
of the 24 PDACs and 4 out of the 5 PBMCs were retained for further analysis. 
We obtained DMCs at FDR < 0.01, delta beta > 0.25. A null distribution was 
then generated from 1,000 resamples, preserving the relationship between the 
number of CpGs in windows that were seen in the original intersections between 
RRBS features and cfMeDIP DMRs. Then we computed the frequency of overlap 
between DMRs hypermethylated in both, hypermethylated in one but not the 
other, hypomethylated in one but not the other, and finally, hypomethylated in 
both comparisons. The distributions were then standardized based on z-scores 
and used to compute Bonferroni-adjusted P values to determine enrichment. 
The same procedure was employed for subsequent enrichment tests in the  
manuscript.
Enrichment analyses for cfMeDIP DMRs in TCGA 450K DMCs relative to 
normal tissues and PBMCs. 189 cfDNA samples were obtained across seven 
cancer types (AML, bladder (BLCA), breast (BRCA), colorectal (CRC), lung 
(LUC), pancreatic (PDAC) and renal cancer (RCC)) and healthy donors (normal) 
(Supplementary Table 12). After processing of cfMeDIP–seq data from these sam-
ples, DMRs were calculated using DESeq2 between each cancer type and healthy 
donors as described above. DMCs were also calculated between TCGA 450K meth-
ylation array samples from each corresponding cancer type (n = 3,979) (obtained 
from SAGE synapse) and PBMCs (n = 53, obtained from the Gene Expression 
Omnibus) samples using limma (FDR < 0.01, absolute delta beta 0.25). Statistical 
tests for enrichment were performed as described above for PDAC RRBS samples. 
The same procedure was carried out for DMCs calculated between TCGA 450K 
methylation array samples from a cancer type and normal samples from the same 
tissue, for BLCA, BRCA, CRC, LUC and RCC.

Examination of transcription factors associated with differentially meth-
ylated motifs in cfMeDIP–seq DMRs. RNA-seq data obtained as median 
RPKMs from the GTEx consortium across 53 human tissues—as described 
in the supplementary R Markdowns in Zenodo (ID 10.5281/zenodo.1205756) 
(Supplementary Table 13)—and median expression per tissue was visualized 
in heat maps. To look for enrichment of transcription factor expression and 
DMR-associated transcription factor motifs, we selected 1,000 random sets of 
transcription factors. As part of the analysis, we considered the known sensitivity 
to the methylation status of each transcription factor16, yielding 42 transcription 
factors that are enriched in healthy donors and 52 that are enriched in pancreatic 
adenocarcinoma cases.

We computed ssGSEA (single-sample gene set enrichment analysis) scores 
for the expression of these transcription factors per sample, for pancreatic cancer 
(TCGA), blood (GTEx) and normal pancreas (GTEx) and compared distributions 
to those from random sets of transcription factors using Wilcoxon’s Rank Sum Test. 
Violin plots were constructed as described in the supplementary R Markdown 
10.5281/zenodo.1205735 (Supplementary Table 13).
Machine learning analyses for evaluation of classification accuracy. Model training  
and evaluation on the discovery cohort. In order to evaluate the performance 
of cfMeDIP data in tumour classification without high computational cost, we 
reduced the initial set of possible candidate features to windows encompassing 
CpG islands, shores, shelves and FANTOM5 enhancers (‘regulatory features’), 
yielding a matrix of 189 samples and 505,027 features.

We then used the caret R package35 to partition the discovery cohort data into 
100 class-balanced independent training and test sets in an 80–20% manner. Then, 
we selected the top 300 DMRs by moderated t-statistic (150 hypermethylated,  
150 hypomethylated) on the training data partition using limma-trend36 for each 
class versus other classes. A binomial GLMnet was then trained using these DMRs 
(up to 300 DMRs × 7 other classes = 2,100 features) using three iterations of 10-fold 
cross-validation to optimize values of the mixing parameter (alpha, values =  
0, 0.2, 0.5, 0.8 and 1) and the penalty (lambda, values = 0–0.05 in increments of 
0.01) using Cohen’s Kappa as the performance metric. For each training set, this 
yielded a collection of eight one-class-versus-other-classes binomial classifiers.

We then estimated classification performance on the held-out test set using the 
AUROC (area under the receiver operating characteristic curve). These estimates 
represent unbiased measures of classification, as the held-out test set samples were 
not used for either DMR pre-selection or GLMnet training and tuning. The 100 
independent training and test sets also permitted the minimization of optimistic 
estimates owing to training-set bias.
Model evaluation on the validation cohort. For each validation cohort cfMeDIP 
sample, we estimated class probabilities for the AML, PDAC, LUC and normal  
one-versus-all binomial classifiers trained on the 100 different training sets within 
the discovery cohort. The probabilities from the 100 models were averaged to 
produce a single score that was then used for AUROC estimation. We also eval-
uated if disease stage (applicable to only LUC and PDAC) affected performance 
by estimating AUROC when either early- (stages I and II) or late-stage samples 
(stages III and IV) of a particular class were left out for the one-versus-all classifiers 
trained to identify the class in question.
Validation in cell lines. 450K profiles for 1,028 cell lines previously characterized37 
were obtained as IDAT files. The data were then uniformly processed using the 
ssNoob method in the minfi package38. We reduced this dataset to tissue types for 
which cfMeDIP data were available (n = 400).

Data availability
R markdowns (either knit or raw) and scripts used to generate the findings in this 
study have been deposited on Zenodo (DOIs in Supplementary Table 13). All the 
cell line datasets generated and/or analysed during the current study are available 
in the Gene Expression Omnibus repository under accession code GSE79838. 
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Extended Data Fig. 1 | Simulation of the probability of detecting ctDNA 
as a function of the number of DMRs, sequencing depth and percentage 
of ctDNA in plasma cfDNA, and a proposed method to enrich ctDNA.  
a, Bioinformatic simulation of scenarios with different proportions of 
ctDNA present in the sample (0.001% to 10%, columns), and a range of 
tumour-specific DMRs—from 1, 10, 100, 1,000 or 10,000—determined 
through the comparison of ctDNA to normal cfDNA (rows), with 

reads sampled at varying sequencing depths at each locus (10×, 100×, 
1,000× and 10,000×) (x axis). The probability of detecting at least five 
epimutations per DMR increases as the number of available features 
increases, even at shallow coverage per locus (left y axis). Each panel 
depicts probability of detection against coverage per candidate DMR for 
one simulation scenario. b, Schematic representation of the cfMeDIP–seq 
protocol.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Sequencing saturation analysis and quality 
controls of MeDIP–seq and cfMeDIP–seq carried out on varying 
starting inputs of HCT116 DNA sheared to mimic cfDNA. a, Results 
of the saturation analysis from the Bioconductor package MEDIPS 
analysing cfMeDIP–seq data from each replicate, for each starting input 
amount and including an input control. b, The protocol was tested in two 
biological replicates of four starting DNA inputs (100, 10, 5 and 1 ng) of 
HCT116 DNA sheared to mimic cfDNA. The specificity of the reaction 
was calculated using methylated and unmethylated spiked-in A. thaliana 
DNA. The fold-enrichment ratio was calculated using genomic regions 
of the fragmented HCT116 DNA (human methylated HIST1H2BA and 
unmethylated GAPDH). The horizontal dotted line indicates a fold-
enrichment ratio threshold of 25, dots represent biological replicates, with 
lines representing the mean. c, CpG enrichment scores of the sequenced 
samples (two biological replicates each of four starting DNA inputs 
(100, 10, 5 and 1 ng) and one input control) show a robust enrichment of 
CpGs within the genomic regions from the immunoprecipitated samples 

compared to the input control. The CpG enrichment score was obtained 
by dividing the relative frequency of CpGs of the regions by the relative 
frequency of CpGs of the human genome. The horizontal dotted line 
indicates a CpG enrichment score of 1, dots represent biological replicates, 
with lines representing the mean. d, Genome-wide Pearson correlations 
of normalized read counts per 300-bp window between cfMeDIP–seq 
signal for 1 to 100 ng of input HCT116 DNA sheared to mimic cfDNA 
(2 biological replicates per concentration). e, Genome Browser snapshot 
of HCT116 cfMeDIP–seq signal across a window (chr8:145,095,942–
145,116,942) selected out of four examined loci, at different starting 
DNA inputs (1 to 100 ng, in biological replicates), compared with 
RRBS (ENCODE: ENCSR000DFS) and WGBS (Gene Expression 
Omnibus: GSM1465024) data (aligned to hg19). For cfMeDIP–seq, the 
y axis indicates RPKMs; for RRBS, yellow and blue blocks represent 
hypermethylated and hypomethylated CpGs, respectively. In the WGBS 
track, peak heights indicate methylation level.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Sequencing saturation analysis and quality 
controls of cfMeDIP–seq from serial dilution. a, Schematic 
representation of the CRC DNA (HCT116) dilution series into multiple 
myeloma DNA (MM.1S). For both CRC and multiple myeloma DNA, 
the genomic DNA was sheared to mimic cfDNA fragmentation. The 
entire dilution series was used to carry out cfMeDIP–seq (n = 1) and 
ultra-deep sequencing for mutation detection (n = 1). b, The specificity 
of the reaction for each dilution in the series (n = 1) was calculated 
using methylated and unmethylated spiked-in A. thaliana DNA. c, CpG 
enrichment representing the ratio of relative frequency of CpGs in regions 
to relative frequency of CpGs in the human genome for each dilution in 
the series (n = 1), determined by cfMeDIP–seq. The horizontal dashed line 
represents a CpG enrichment of 1. d, Saturation analysis of cfMeDIP–seq 

sequenced reads from each dilution point in the series (n = 1). e, Across a 
serial dilution series (n = 7 dilution points, two technical replicates, each 
replicate was used per protocol) of HCT116 DNA spiked into MM.1S 
multiple myeloma DNA, near-perfect correlations are observed between 
observed and expected numbers of DMRs. f, g, Ultra-deep sequencing 
for mutation detection of three CRC-specific point mutations within 
BRAF (p.P301P), KRAS (p.G13D) and PIK3CA (p.H1047R) in the same 
dilution series (of CRC into multiple myeloma DNA) (n = 1). UMIs were 
incorporated into the sequencing adapters and used to create SSCSs (f) 
and DCSs (g) for the detection of allele frequency for each mutation at 
each locus. For each mutation, the reference allele is found at the top. The 
dashed red line indicates the limit of detection.
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Extended Data Fig. 4 | Quality control of cfMeDIP–seq from circulating 
cfDNA from patients with PDAC (cases) and healthy donors (controls). 
a, b, Specificity of reaction calculated using methylated and unmethylated 
spiked-in A. thaliana DNA for each case sample (a) and each control 
sample (b). The fold-enrichment ratio was not calculated owing to the 
very limited amount of DNA available after final libraries were generated. 
c, d, CpG enrichment of the sequenced cases (c) and controls (d). The 

horizontal dashed line represents a CpG enrichment of 1. e, Principal 
component (PC) analysis of cfDNA methylation from 24 plasma cfDNA 
samples from healthy donors and 24 plasma cfDNA samples from patients 
with PDAC, using the 1 million most variable windows by median absolute 
deviation (300 bp) genome-wide. Left, PC2 against PC1; right, PC3 against 
PC1. f, Percentage of variance explained by each principal component.
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Extended Data Fig. 5 | Methylome analysis of plasma cfDNA 
distinguishes patients with early-stage PDAC from healthy controls.  
a, The difference in plasma cfDNA methylation plotted against the 
difference in tumour DNA methylation for each overlapping window 
(n = 547,887). The difference in plasma cfDNA methylation between 
patients with PDAC and healthy controls is log10-fold, as measured by 
cfMeDIP–seq. Tumour DNA methylation difference is delta beta from 
primary PDAC tumour to normal tissue, as measured by RRBS. The 
blue line is a trend line, with the correlation determined by Pearson’s 
correlation. b, Scatter plot showing the DNA methylation difference 
for each overlapping window. The x axis shows the DNA methylation 
difference for the primary PDAC tumour compared with normal PBMCs 
from the RRBS data. The y axis shows the DNA methylation difference 
for the plasma cfDNA methylation from patients with PDAC compared 

with healthy donors from the cfMeDIP–seq data. Correlation determined 
by Pearson’s correlation. c, Genome Browser snapshot of RRBS and 
cfMeDIP–seq signal across a representative chromosomal region selected 
from four candidate regions (chr8:145,095,942–145,116,942) using 
reference genome hg19. RRBS tracks show the methylation signal for 
the laser capture microdissection tissues from PDAC tumour cases and 
the matching normal tissue, from the same patient, shown in the same 
order. Each coloured block represents DMCs, with yellow representing 
hypermethylated and blue representing hypomethylated. cfMeDIP–seq 
tracks show the methylation signal (RPKMs) detected in the cfDNA, 
with cases representing plasma from the same PDAC cases and controls 
corresponding to plasma from age- and sex-matched healthy controls. For 
the cfMeDIP–seq tracks, green and blue peaks indicate the methylation 
signal (RPKMs) detected in the cfDNA.
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Extended Data Fig. 6 | See next page for caption
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Extended Data Fig. 6 | Circulating cfDNA methylation profiles can 
identify transcription factor footprints and infer active transcriptional 
networks in the tissue of origin. a, Expression profile of all transcription 
factors (n = 42) that were characterized as binding in healthy controls 
across 53 human tissues from the GTEx project. Several transcription 
factors that are preferentially expressed in the haematopoietic system 
were identified (PU.1, NFE2 and GATA1). b, Expression profiles (ssGSEA 
scores; single-sample gene set enrichment analysis) of all transcription 
factors with hypomethylated motifs in controls (n = 42) are overexpressed 
compared with those of 1,000 random sets of 42 transcription factors 
across GTEx whole-blood data (P < 2.2 × 10−16, Wilcoxon’s Rank Sum 
test, two-sided). c, Expression profile of all transcription factors (n = 52) 
characterized as binding in patients with PDAC. Several pancreas-specific 
or pancreatic-cancer-associated transcription factors were identified. 

Moreover, hallmark transcription factors that drive molecular subtypes 
of pancreatic cancer were also identified. d, Expression profile (ssGSEA 
scores) of all transcription factors with hypomethylated motifs in cases 
(n = 52) are overexpressed compared with those of 1,000 random sets of 
52 transcription factors in the normal pancreas (GTEx data) (Wilcoxon 
Rank Sum test, two-sided test, P < 2.2 × 10−16). e, Expression profile of all 
transcription factors with hypomethylated motifs in PDAC cases (n = 52) 
are overexpressed compared those of 1,000 random sets of 52 transcription 
factors in PDAC tissue (TCGA data) (Wilcoxon Rank Sum test, two-
sided test, P < 2.2 × 10−16). For violin plots (b, d, e) the ends of the boxes 
represent the lower and upper quartiles and the middle line indicates the 
median. Whiskers represent 1.5× IQR, and outliers are excluded. Rotated 
kernel densities are also displayed.
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Extended Data Fig. 7 | Quality control of cfMeDIP–seq from circulating cfDNA from multiple cancer types. a, c, e, g, i, k, Specificity of the reaction; 
and b, d, f, h, j, CpG enrichment score for each sample per cancer type. The horizontal dashed lines represent a CpG enrichment of 1.
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Extended Data Fig. 8 | Comparison of plasma cfDNA DMRs with 
tumour DMCs. a, Yield of cfDNA extracted per ml of plasma from 
healthy donors (n = 24), bladder cancer (n = 20), renal cancer (n = 20), 
lung cancer (n = 25), breast cancer (n = 25), pancreatic cancer (n = 24), 
colorectal cancer (23) and AML (n = 28). Horizontal bars represent 
the mean, with dots representing individual samples. b–h, Scatter plots 
showing the DNA methylation difference for all overlapping windows 
in PDAC (n = 245,980 windows) (b), AML (n = 206,735 windows) (c), 

BLCA (n = 193,943 windows) (d), BRCA (n = 204,623 windows) (e), 
CRC (n = 210,645 windows) (f), LUC (n = 193,043 windows) (g) and 
RCC (n = 198,390 windows) (h). The x axis shows the DNA methylation 
difference between the primary tumour (TCGA data) and normal PBMCs. 
The y axis shows the DNA methylation difference between the plasma 
cfDNA methylation for each cancer type and healthy controls from the 
cfMeDIP–seq data. The blue line is a trend line, with the correlation 
determined by Pearson’s correlation.
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Extended Data Fig. 9 | Circulating plasma cfDNA methylation 
samples used to distinguish between multiple cancer types and healthy 
donors. a, b, Pathology stage (according to the AJCC/UICC 7th Edition) 

breakdown by tumour type for samples in the training set (a) and in the 
validation set (b). Non-small-cell lung carcinoma, LUC (NSCLC); small-
cell lung cancer, LUC (SCLC).
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Extended Data Fig. 10 | Characterization of hypermethylated regions 
from cfDNA that are not methylated in leukocytes. a, Violin plots for 
the DNA methylation (plotted as beta value) of 38,352 regions in normal 
blood cells selected on the basis of low DNA methylation levels using 
IHEC whole-genome bisulfite sequencing data. For violin plots, the ends 
of the boxes represent the lower and upper quartiles and the middle line 
represents the median. Whiskers represent 1.5× IQR, and outliers are 
excluded. Rotated kernel densities are also displayed. b, Volcano plots 
representing the regions with low DNA methylation levels in normal blood 

cells that overlap with hypermethylated regions in the plasma cfDNA for 
PDAC (n = 3,146 CpG sites) relative to normal tissue, and RCC (n = 2,767 
CpG sites), BLCA (n = 3,286 CpG sites), BRCA (n = 6,836 CpG sites), CRC 
(n = 8,360 CpG sites) and LUC (n = 5,239 CpG sites) relative to PBMCs. 
The x axis represents DNA methylation (plotted as delta beta value), 
obtained from tumour data from TCGA for cancers other than PDAC 
and RRBS for PDAC. The y axis represents −log10 q values (Benjamini 
Hochberg false discovery rate, BHFDR).
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