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Despite years of effort and technological developments, thou-
sands of protein domains still have unknown three-dimen-
sional structures1. Mutations within a protein or RNA can 

have non-independent effects on fitness (called genetic interactions 
or epistasis)2–5 and double mutants have been used to probe the 
energetic couplings between positions in a protein to understand 
determinants of protein folding and stability6,7. Early work revealed 
that at least some strongly interacting mutations within a protein 
are in direct structural contact6–10 (Fig. 1a). Deep mutational scan-
ning (DMS) of proteins11–14 and RNAs15–18 has further revealed that 
some—but by no means all—epistatic interactions occur between 
structurally proximal mutations.

Support for the idea that non-independence between mutations 
provides structural information comes from the analysis of amino 
acid and nucleotide sequence evolution. Here, correlated pairs of 
amino acids or nucleotides in multiple sequence alignments identify 
co-evolving positions within proteins and RNAs19–21. These patterns 
of co-evolution have been used to identify energetically coupled 
positions and independently evolving ‘sectors’ within proteins22,23. 
Moreover, when very large numbers of homologous proteins and 
RNAs are available in sequence databases, the application of global 
statistical models can reveal direct structural contacts from patterns 
of co-evolution24–26, allowing the prediction of macromolecular 
structures and interactions1,27–35.

The question then becomes whether epistatic interactions quan-
tified from DMS experiments can be used to determine macromo-
lecular structures. If successful, structure determination by DMS 
would offer a number of advantages over established techniques. 
First, it requires no specialized equipment or expertise beyond the 
ability to mutate a molecule, select functional variants, and quantify 
enrichments by sequencing. Appropriate in vitro and in vivo selec-
tion assays already exist for many molecules of interest and generic 
assays based on folding, stability and physical interactions have also 
been developed11,36–39. Second, it could be applied to molecules for 
which structures are difficult to determine by physical techniques 
such as intrinsically disordered and membrane proteins. Third, 
unlike evolutionary coupling analysis there is no requirement for 
large numbers of homologous sequences1,28,40 and so it could be 

applied to fast-evolving, recently evolved and de  novo designed 
proteins and RNAs. Finally, and perhaps most importantly, it would 
provide a general strategy to determine the physiologically relevant 
structures of molecules while they are performing particular func-
tions that can be selected for, including in vivo in cells. A potentially 
cheap and straightforward approach for studying macromolecular 
structures in  vivo would be an exciting new frontier for cell and 
molecular biology.

Here we show that DMS of proteins can provide sufficient infor-
mation to determine their three-dimensional backbone structures. 
Our statistical approach quantifies how often mutations between 
positions interact epistatically and how these epistatic interaction 
patterns correlate. These metrics accurately identify individual 
tertiary structure contacts as well as secondary structure elements 
within a protein. The same approach also identifies contacts between 
protein-interaction partners. DMS data alone suffice to determine 
backbone structures with accuracies of 1.9 Å Cα root mean square 
deviation (r.m.s.d.) compared to known reference structures. 
Moreover, we show that deep learning can further improve pre-
diction performance, allowing the use of sparser and lower quality 
DMS datasets for structure determination. Our approach therefore 
provides an experimental strategy for structure determination that 
can reveal functional and in vivo structures.

Results
Epistasis is enriched in, but not exclusive to, structural contacts. 
We first investigated the relationship between epistasis and struc-
ture for more than half a million mutant variants (55 × 19 = 1,045 
single mutants plus nearly 55 × 54/2 × 19 × 19 = 536,085 double 
mutants) of the protein G B1 (GB1) domain13. For these variants, 
protein fitness was quantified using binding to an immunoglobulin 
G (IgG) fragment as a selection assay, resulting in a two-orders-of-
magnitude measurement range with a median relative error of fit-
ness estimates of 2.8% (Table 1 and Supplementary Fig. 1a).

We used a running median surface approach as a null model 
for the independence of the effects of double mutations (Fig. 1b) 
to account for nonspecific dependencies between mutants intro-
duced by the fitness assay or nonspecific epistatic behavior from  
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thermodynamic stability effects2,11. Double mutants were classi-
fied as positive or negative epistatic if they have more extreme fit-
ness than the 95th or 5th percentile fitness surfaces, respectively. 
Restricting the classification of epistasis to variants not impeded by 
measurement errors resulted in 80% and 55% of double mutants 
being suitable for positive or negative epistasis classification, respec-
tively, with substantial variability across the position matrix (Table 1 
and Supplementary Fig. 1b–f).

Consistent with previous observations12–14, both positive and 
negative epistatic double mutants are enriched for proximal vari-
ants, for example, more than twofold at a distance of 8 Å (Fig. 1c, 
only considering position pairs separated by more than 5 amino 
acids in the linear sequence; closer positions are trivially also close 
in three-dimensional space and their proximity contributes little to 
successful structure prediction30). However, about 75% of epistatic 
interactions are between positions that are not in direct contact in 
the protein (as judged by an 8 Å distance cut-off), suggesting that 
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Fig. 1 | Extracting epistatic mutational effects from DMS of a protein domain. a, The premise of our study was that if genetic interactions (or epistasis) 
are mostly caused by structural interactions, then comprehensively quantifying epistatic interactions should suffice to predict the structure of a molecule. 
The structure of GB1 is shown (Protein Data Bank (PDB) entry 1PGA)61 with residues a, b and c colored. b, Classifying epistatic variants based on 
deviations from expected fitness (quantile fitness surface approach). Variants with the 5% most extreme fitness values given fitness of their respective 
single mutants were classified as positive (red, ε+) or negative (yellow, ε−) epistatic. A random sample of 104 variants in the GB1 domain13 is shown. c, 
Distance distribution of epistatic variants separated by more than 5 amino acids in the linear sequence (minimal side-chain heavy atom distance). Positive 
and negative epistasis subsets refer to the sets of variants suitable for epistasis analysis (see Supplementary Fig. 1c). All variants, n = 400,647; positive 
epistatic variants ε+, n = 14,127; positive epistasis subset, n = 315,862; negative epistatic variants ε−, n = 9,837; negative epistasis subset, n = 208,442.

indirect effects often underlie specific epistatic interactions within 
a molecule22,23. The challenge for structure determination therefore 
becomes how to infer direct structural contacts from the mixture of 
direct and indirect effects that underlie epistasis.

Likelihood of epistatic interactions and correlated interaction 
profiles predict tertiary structure contacts. To discriminate direct 
structural contacts from a list of thousands of epistatic double 
mutants, we used two measures.

The first, which we refer to as the enrichment score, quantifies 
how often double mutants between each pair of positions interact 
with positive or negative epistasis (Fig. 2a). Calculating the fraction 
of epistatic interactions separately for either positive or negative 
interactions enriches for structural contacts, but for different regions 
of the domain (Fig. 2b and Supplementary Fig. 2). Combining the 
positive and negative epistatic fractions, while taking into account 
quantification errors, further enriches for direct contacts (precision 

Table 1 | Dataset properties

Dataset Mutated 
amino acid 
positions

Double 
mutants 
(%)a

Quantifiable double  
mutants (%)b

Median number 
of input reads 
per double 
mutantc

Measurement 
range (log units)d

Median 
relative errore

Positive  
epistasis

Negative  
epistasis

GB1 domain13 55 97 80 55 248 6 2.8%

Human YAP WW domain43 33 10 8.3 0.8 73 0.8 8.6%

PAB1 RRM2 domain12 25 11 8.3 3.9 209 3.1 3.7%

FOS–JUN interaction11 2 × 32 43 37 31 124 8.6 3.6%
aThe median percentage of all possible double mutants (361 per position pair) that passed read quality thresholds per position pair. bMedian percentage of all possible double mutants (361 per position 
pair) that passed read quality thresholds and are deemed suitable for epistasis quantification per position pair. cSummed number of reads across all input replicates for double mutants that passed read 
quality thresholds. dMeasurement range of selection assay: log-transformed fitness range between peak of lethal mutants and the wild-type variant. eMedian error of fitness estimates of double-mutant 
variants relative to measurement range of selection assay.
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(PRC) for top L/2 contacts PRCL/2 = 61%, PRCL = 60%, with L = 55 
amino acids as the length of the mutated sequence, Fig. 2g), with 
these contacts evenly distributed across the domain (Fig. 2b,f).

The second score, which we refer to as the correlation score, 
quantifies the similarities of epistasis interaction profiles—how a 
position interacts with all other positions in the protein—between 
each pair of positions. The assumption that underlies this score is 
that positions close in space in a structure should interact similarly 
with all other positions (Fig. 2c). We used partial correlations—thus 
correcting correlations for transitive signals—to better distinguish 
direct from indirect contacts and again calculated scores separately 
for positive and negative interactions before merging them while 
taking into account quantification errors (Fig. 2d). The final cor-
relation scores show a more binary all-or-none relationship with 
distance than the enrichment scores or when using simple corre-
lations to quantify similarity (Fig. 2e), thus better prioritizing the 
top direct structural contacts across the whole domain (Fig. 2f,g, 
PRCL/2 = 79%, PRCL = 60%).

Finally, combining the enrichment and correlation scores into 
a combined score by simply summing normalized scores further 
improves contact predictions, especially when considering lower 
ranked predictions (PRCL/2 = 82%, PRCL = 73%; Fig. 2g).

Identification of secondary structure elements. We hypothesized 
that the periodic geometrical arrangement of amino acid residues in 
secondary structures (3.6 residues per α-helical turn and alternating 
side-chain directions in β-strands) might result in periodic epistasis 
patterns in DMS data28,41 (Fig. 3a). We used a two-dimensional ker-
nel smoothing approach to detect α-helical and β-strand periodici-
ties (Fig. 3b) and found significant periodicities for one α-helix and 
four β-strands that coincide very well with secondary structure ele-
ments in the reference structure (Fig. 3c and Supplementary Fig. 3a).  
Moreover, stretches of off-diagonal, long-distance interactions show 
the expected alternating patterns for either parallel or anti-paral-
lel β-sheets, with the top predictions corresponding to the known 
anti-parallel interactions of β1−β2 and β3−β4 as well as the par-
allel interaction of β1−β4 (Fig. 3d and Supplementary Fig. 3b,c). 
Furthermore, updating β-strand predictions according to inferred 
β-sheet pairings led to improved β-strand prediction, enforcing 
a split between β1 and β2 and correcting the length of β3 and β4 
(Fig. 3c,d). Overall, these secondary structure element predictions 
achieve precision and recall values of about 90% when derived from 
correlation scores (or combined scores; Supplementary Fig. 3d). 
Predictions from enrichment scores are less precise, thus suggest-
ing that eliminating transitive, indirect interactions is important for 
secondary structure prediction.

Tertiary structure prediction. We next tested whether the DMS 
data alone could be used to determine the structure of the protein 
domain. We performed structural simulations by simulated anneal-
ing using the XPLOR-NIH modeling suite42, with the top L scor-
ing position pairs as distance constraints as well as dihedral angle 
constraints for predicted secondary structure elements and restric-
tive distance constraints for predicted β-sheet positions that form 
hydrogen bonds (Fig. 3e).

Comparing the structural models against the experimentally 
determined crystal structure of GB1 revealed that the combined 
scores provided the best predictions, with the top 5% of models (25 
out of 500, evaluated on internal energy terms and constraint satis-
faction) having an average Cα r.m.s.d. of 1.9 Å and an average tem-
plate modeling score of 0.71 (Fig. 3f,g and Supplementary Fig. 3f), 
which is very close to the optimum achievable with our simulation 
protocol (using contacts, secondary structure elements and β-sheet 
interactions from the reference structure, Cα r.m.s.d. = 1.4 Å and 
template modeling score = 0.8). Consistent with the slightly lower 
precision of tertiary contact and secondary structure predictions, 

models generated with constraints from enrichment or correlation 
scores have—on average—a lower accuracy (Cα r.m.s.d. = 3.4 Å and 
Cα r.m.s.d. = 2.6 Å, respectively), although correlation score models 
performed consistently better.

Together, this shows that DMS alone is sufficient to accurately 
determine the backbone structure of a protein domain.

Deep mutagenesis identifies protein interaction contacts and 
structures. Epistatic interactions can also occur between different 
proteins, for example between physical interaction partners3. We 
tested whether epistasis between two proteins quantified using our 
metrics could predict their structural interactions. We used a data-
set11 in which we had made all possible amino acid mutations at 32 
positions in the products of the FOS and JUN proto-oncogenes and 
quantified the physical interaction of all single and (trans-)double 
mutants using a deep sequencing-based protein complementa-
tion assay (Fig. 4a and Table 1). Notably, enrichment scores show a 
binary all-or-none relationship with distance similar to the correla-
tion scores in GB1 (Fig. 4b), with distant position pairs across the 
interaction surface contained in a low enrichment score peak and 
proximal interactions enriched for high enrichment scores. Indeed, 
the top 11 enrichment score pairs are all proximal interactions, and 
the precision of contact prediction is PRCL/2 = 75% and PRCL = 66% 
(12-fold and 10.5-fold increase over expectation). Moreover, top 
enrichment score pairs are evenly distributed across the interaction 
surface (Fig. 4a,c).

Correlating the epistatic interaction profiles between columns 
of the epistatic enrichment matrices compares the epistatic inter-
actions that two positions in FOS have with all positions in JUN. 
Therefore, the similarity of column-wise epistatic profiles identi-
fies the cis relationships between positions in FOS, while row-wise 
interaction profiles identify cis relationships between positions in 
JUN (Supplementary Fig. 4a). The cis-interaction maps from cor-
relation scores for both FOS and JUN are highly enriched in local 
interactions and applying our secondary structure prediction algo-
rithms reveals strong α-helix propensities across the full lengths of 
both FOS and JUN, consistent with the coiled-coil structure of the 
complex (Fig. 4c and Supplementary Fig. 4b).

This shows that DMS of protein-interaction partners can accu-
rately predict direct contacts across the interaction surface as well 
as reveal the underlying structural conformations of the interaction 
partners themselves.

Generality and data requirements for successful protein struc-
ture prediction. To test the generality of our approach, we analyzed 
two additional DMS of individual protein domains, the PAB1 RRM2 
domain12 and the human YAP65 WW domain43 (Fig. 5a,b). These 
datasets contain only incomplete sets of double mutants (approxi-
mately 10%), were sequenced less deeply and have up to six times 
smaller measurement ranges, resulting in up to three times higher 
relative measurement errors and fewer double mutants that were 
suitable for quantification of epistasis (especially negative epistasis) 
(Table 1 and Supplementary Fig. 5a). Nonetheless, tertiary contacts 
can be predicted with good precision (combined score PRCL/2 = 57% 
(threefold higher than random expectation) and PRCL/2 = 59% (3.9-
fold increase over expectation) for the RRM2 and WW domain, 
respectively; Fig. 5c,d and Supplementary Fig. 5b). Secondary struc-
ture predictions were inaccurate and underpowered (0% precision), 
but β-sheet pairing was inferred correctly (100% precision and 
recall for RRM2 domain), albeit off by one and two positions for the 
two anti-parallel sheet interactions in the WW domain (Fig. 5c,d).

We used the top L/2 predicted combined score contacts to model 
the structure of the secondary structure-rich central part of the 
WW domain (positions 6–29, 24 amino acids, see Methods). The 
top 5% of structural models have an average accuracy of 3.3 Å Cα 
r.m.s.d. compared to the reference structure (Fig. 5a), which is on 
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par with simulations using a set of true contacts (Cα r.m.s.d. = 3.6 Å; 
Supplementary Fig. 5c). We could not make structural predictions 
for the RRM2 domain because it was mutagenized in three indepen-
dent segments.

To estimate the minimal requirements for DMS datasets to be 
useful for structure prediction, we investigated how robust our pre-
diction strategy is to changes in data quality by artificially downs-
ampling the GB1 domain dataset.

First, we considered the sequencing read coverage and found 
that even using only 10% of the 600 million sequencing reads in the 
full GB1 dataset hardly affects the precision of predicted tertiary 
contacts (PRCL = 64%, a drop by 9% compared to the full dataset; 
Fig. 5e). Only when using just 2.5% of sequencing reads (15 mil-
lion) does the precision of the top L contacts drop below 50% 
(PRCL = 45%).

Second, we simulated a ‘doped’ mutagenesis dataset, by only con-
sidering amino acid mutations that can be reached by one muta-
tion in the nucleotide sequence—thus reducing the coverage of 
double mutants to approximately 10% (similar to the RRM2 and 
WW domain datasets). The doped dataset exhibits a decrease in 
precision of predicted tertiary contacts of about 20% (PRCL = 51%;  
Fig. 5e). Moreover, the doped dataset shows an increased sensitivity 
to lower sequencing read coverage.

Third, we tested the effect of small signal-to-noise ratios (that is, 
the measurement range of the selection assay relative to the median 
error of fitness estimates, which results in unquantifiability of nega-
tive epistasis, see Supplementary Figs. 1d–f and 5a), by using only 
positive epistasis information to calculate interaction scores. This 
also results in a drop of precision of about 20% (PRCL = 55%). By 
contrast, only using negative epistasis information resulted in a 
drop to 33% precision, as low as a doped dataset with low sequenc-
ing coverage.

Finally, we evaluated how differences in prediction performance 
of tertiary contacts affect structural modeling. Changes in accuracy 
of the top structural models scale with changes in contact predic-
tion performance (Fig. 5f). Downsampling of sequencing reads in 
the complete dataset from 100% to 2.5% leads to a decrease in aver-
age accuracy from 2.5 Å to 4 Å Cα r.m.s.d., which is roughly also the 
accuracy of top structural models from the doped dataset and the 
dataset using only positive epistasis information.

Together, these results support the generality of our approach for 
extracting structural information from DMS data, including from 
sparser and lower quality datasets.

Deep learning improves contact prediction. Evolutionary cou-
pling-based structural predictions have been successfully improved 
by machine-learning approaches that transform the two-dimen-
sional interaction score maps after learning the stereotypical pat-
terns between evolutionary coupling-predicted contact maps and 
experimentally determined contact maps44,45.

We tested whether machine learning could also improve DMS-
derived contact predictions. We applied a convolutional neural net-
work called DeepContact44, which transforms a two-dimensional 
interaction score map based on the structural patterns it has pre-
viously learned on evolutionary coupling-derived contact predic-
tions for representative families of the SCOPe database46 (Fig. 6a 
and Methods).

We first transformed the combined score interaction map of the 
GB1 domain using the DeepContact network. These transforma-
tions take as sole input our DMS-derived predictions and include no 
evolutionary coupling or otherwise-derived structural predictors for 
GB1. The scores on the transformed map are much less noisy, with 
high scores exclusively focused in areas of structural contacts, espe-
cially those of secondary structure element interactions, and areas 
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devoid of structural contacts showing homogenously low scores  
(Fig. 6b). The precision of top predicted contacts improves from 82% 
to 96% for L/2 and from 73% to 87% for L predicted contacts (Fig. 6c).

Predictions derived from the two other GB1 interaction scores 
(enrichment and correlation scores) as well as the interaction score 
maps for the other datasets (downsampled GB1, FOS–JUN, RRM2 
and WW data) show similar improvements both in terms of cleaner 
interaction score maps that better resemble the reference contact 
maps as well as increases in contact prediction performance of up 
to 30% (Fig. 6c and Supplementary Fig. 6). By contrast, randomized 
interaction score maps show no changes in prediction performance 
over random expectation after transformation with DeepContact.

Finally, we tested whether DeepContact-transformed contact 
predictions could also improve structural modeling. On downs-
ampled GB1 datasets, DeepContact-transformed predictions 
increased the accuracy of structural models by up to 2.6 Å (Fig. 6d).  
For the complete datasets with only 25% or 10% of sequencing 
reads, the top structural models have better accuracy than those 
from the complete dataset with full sequencing read coverage but 
untransformed scores. In addition, structural models based on 
DeepContact-transformed scores from the doped dataset with full 
or 25% sequencing coverage and those from the dataset using only 
positive epistasis information reach average accuracies of 3.2 Å  

Cα r.m.s.d. Only for the two datasets with 2.5% sequencing read cov-
erage do structural simulations based on DeepContact-transformed 
scores not improve model accuracy.

This shows that machine learning can substantially improve con-
tact map prediction from DMS data, thus allowing the use of even 
sparser and lower quality data for accurate structure prediction.

Discussion
We have shown here that simply quantifying the activity of a large 
number of single- and double-mutant variants of a macromolecule 
can provide enough information to reliably determine its three-
dimensional fold.

Our analyses and previous work6–9,11–18 have shown that many 
epistatic interactions occur between positions that are not in direct 
structural contact. Indeed, in the GB1 domain, the interactions are 
strikingly modular, with two mutually exclusive clusters of positive 
and negative epistatic interactions arising potentially from differen-
tial energetic couplings to protein stability and binding (Fig. 2b,d 
and Supplementary Fig. 2c), reminiscent of the concept of semi-
independent energetically coupled protein sectors that have been 
identified from patterns of sequence co-evolution22,23.

Nonetheless, aggregating epistatic interactions on position pairs, 
merging of positive and negative epistasis information and partial 
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correlation analysis of epistasis interaction profiles can successfully 
discriminate direct from indirect structural contacts. Thus, mostly 
indirect epistatic couplings can be transformed to accurately pre-
dict secondary structure elements and tertiary contacts to reveal the 
protein fold.

We have shown that our approach works robustly across mul-
tiple protein domains and a protein interaction. Moreover, we have 
demonstrated that the application of a convolutional neural net-
work previously trained on patterns of co-evolution in proteins of 
known structure both improves structure prediction and allows the 
use of much lower quality DMS datasets. We note that our approach 
is likely to be only one of several that could work47.

We expect that development of the computational approach (con-
sideration of the underlying physico-chemistry, better scoring meth-
ods and extracting side-chain information) as well as integration with 
other structural predictors44,48,49 and homology-driven structure mod-
eling50,51 is likely to further improve accuracy and lower the data-quality  
requirements for structure determination by deep mutagenesis.

Whether it will it be possible to determine the structures of 
larger molecules by deep mutagenesis remains to be investigated. It 
is currently unclear how the requirements for variant coverage scale 
with protein length or the complexity of folds. However, the fact 
that sparse double-mutant datasets can suffice for structure predic-
tion, and the rapid development of DNA synthesis and sequencing 
technologies suggest that similar approaches may work for larger 
structures. Currently, DMS libraries for larger proteins could be cre-
ated via fragment-based ligation52 or programmed mutagenesis53,54 
and sequenced by linking variants to short barcodes36,37 to overcome 
the current size limitations of short-read sequencers.

A limitation of the current approach is that, similar to methods 
based on evolutionary couplings of residues24,30, it identifies tertiary 
contacts but does not provide atom-level structural information. 
However, our finding that epistatic interactions contain information 
on the periodic arrangement of side-chain orientations in second-
ary structure elements and that tertiary contacts are better described 
by side-chain than backbone atom distances (Supplementary Fig. 7) 
suggests that genetic interactions are mostly mediated by structural 
interactions of amino acid side chains and that it might be pos-
sible to extract additional information about their orientations to 
improve structural modeling.

Determining structures by DMS offers several practical advan-
tages. The approach does not require the expensive scientific infra-
structure that most physical techniques require and uses methods 
familiar to molecular biologists. Selection assays based on known 
functions or interaction partners already exist for many pro-
teins13,16,17,43,52,55–59 and the development of generic assays for sta-
bility and activity36–39 should allow it to be applied to molecules of 
unknown function. The approach also potentially brings the power 
of high-throughput genomics to structural biology. For example, 
using the existing infrastructure of genomics institutes, a large-
scale project to systematically determine the structures of all pro-
tein domains of unknown structure is a plausible endeavor. Finally, 
and perhaps most interestingly, DMS allows the structures of mac-
romolecules to be studied in vivo in the cell60. Ultimately, it is the 
structures of macromolecules as they perform a particular func-
tion in vivo that are of most interest. Deep mutagenesis, selection  
and sequencing provide a generic approach for in  vivo  
structural biology.
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In summary, DMS provides an experimental strategy for struc-
ture determination and opens up the possibility of low-cost and high-
throughput determination of in  vivo macromolecular structures, 
both by individual laboratories and by large-scale genomics projects.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41588-019-0431-x.
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Methods
Datasets and preprocessing. The GB1 domain. The DMS data for GB1 were 
obtained from the supplementary information of a previous study13. The data 
consist of summed read counts of three replicate experiments assaying the binding 
affinity of GB1 variants to IgG.

Read frequencies of each single- or double-mutant variant in the input library 
and output library (after the binding affinity assay) were calculated as variant 
read counts relative to wild-type variant read counts. The fitness of a variant was 
calculated as the natural logarithm of the ratio of output to input read frequency, 

that is, 





= ∕

∕
f logi

n n
n n
i

i

out
WT
out

in
WT
in  where n is the read counts, superscripts denote the input 

(in) or output (out) sequencing library and subscripts denoting variant i or wild-
type (WT) variant.

The standard error of fitness estimates was calculated from read counts under 

Poissonian assumptions63, that is, σ = + + +i n n n n
1 1 1 1

i i
in out

WT
in

WT
out . We note that this is a 

lower bound estimate of the actual error, owing to the lack of replicate information.
Each measurement assay has a lower measurement limit due to unspecific 

background effects (Supplementary Fig. 1a). In the case of the IgG-binding 
assay for GB1, this is presumably mainly due to unspecific carryover on beads13. 
The fitness values derived from the measurement are therefore a convolution 
of the actual binding affinities to IgG and nonspecific carryover, that is, 

= +f f fexp( ) exp( ) exp( )i i
measured binding carryover  and fitness values of variants close 

to the lower measurement limit of the assay are dominated by unspecific carryover 
effects. The lower measurement limit of the assay was estimated by two approaches 
that yielded similar estimates. The first used a kernel density estimate of the single-
mutant fitness distribution (R function density with parameter bw set to 0.15), 
where the position of the lower mode of the data corresponded to fcarryover = −5.85. 
The second examined the fitness distribution of double mutants with expected 
fitness lower than −8 log-transformed units, that is, double mutants resulting 
from two lethal or nearly lethal single-mutant variants, for which the fitness values 
are thus expected to be dominated by background effects. The median of this 
background fitness distribution yielded an estimate of fcarryover = −6.14. The mean of 
the two estimates, that is, fcarryover = −6 (approximately 0.25% on a linear scale) was 
used for downstream analyses.

In addition, 7% of double-mutant variants were discarded because of a too low 
sequencing coverage in input or output libraries (Supplementary Fig. 1b). That 
is, variants with 10 or less input read counts were discarded because of too high 
errors in fitness estimates. Moreover, variants with less than 200 input reads and no 
output reads were discarded, because it is not possible to determine their fitness. 
Above 200 input reads, variants without output reads are certain to be dominated 
by nonspecific carryover effects. These variants were retained and their fitness was 
calculated by setting their output read count to 0.5.

Downsampling of the GB1 data. Downsampling of the full GB1 dataset was 
performed in three different ways. First, to downsample the sequencing read 
coverage, the read count of each variant was drawn from a binomial distribution 
with the number of sequencing reads in the full datasets as trials and the target 
downsampling rate (25%, 10% or 2.5%) as chance of success. Second, in the doped 
datasets, only amino acid changes created by one nucleotide mutation from the 
wild-type sequence (ENA entry M12825) were retained. For the read downsampled 
and doped datasets (and combinations of both), the analysis workflow for the full 
dataset was repeated.

For the downsampled datasets in which only positive or negative epistatic 
information was taken into account, enrichment and correlation scores were 
calculated from epistatic enrichment matrices and partial correlation matrices of 
only positive or negative epistasis information. Instead of merging positive and 
negative matrices and then calculating z-scores, z-scores were calculated with 
the individual errors from only positive or negative epistasis information. The 
combined scores (for which results are reported) for each set were then calculated 
as for the full dataset by summing standardized enrichment and correlation scores.

The human YAP65 WW domain. Data for the human YAP65 WW domain were 
obtained from Sequence Read Archive (SRA) entry SRP01575143. Paired-end 
reads were merged with USearch64 and merged reads for which any base had a 
Phred base quality score below 20 were discarded. Read counts from the two 
technical sequencing replicates were merged and read counts for the same amino 
acid variants with at most one synonymous mutation in one other codon were 
summed. The dataset consists of an input library and three output libraries after 
consecutive rounds of selection in a phage display assay. Fitness was estimated 
as the slope of log-transformed frequency (variant counts divided by wild-type 
counts) changes over the rounds of selection experiment43. For each variant at 

each selection step a Poissonian error of σ = +i x n n,
1 1

i
x x

WT
 was calculated, where x 

denotes the selection step. Slopes were calculated as weighted straight-line least-
square fits65. Comparison of library-wide changes in variant frequencies between 
selection rounds suggested differential selection pressures across the rounds. We 
thus applied a non-equidistant spacing of 0.6, 1.17 and 1.22 between selection 

rounds when calculating slopes. Only variants that have more than 10 reads in 
the input library and at least one read after the first selection were retained for 
further analysis (45% of constructed double mutants). The lower fitness limit was 
calculated as the weighted mean fitness of all variants that contained STOP codons 
(−0.78 in log units).

PAB1 RRM2 domain. PAB1 RRM2 domain data were obtained from 
Supplementary Table 5 of a previous study12. Reported variant read enrichment 
scores were log-transformed to obtain fitness values. Output reads per variant were 
deduced from the number of input reads times the read enrichment score and used 
to calculate a Poissonian error of the fitness estimate. Single-mutant count data are 
not provided and we thus estimated the error of single-mutant fitness estimates to 
be 0.01. The lower bound of the fitness assay was estimated as the weighted mean 
fitness of all double-mutant variants that contained STOP codons (−3.1 log units). 
In the dataset, three 25-amino acid segments were mutated independently, and we 
restricted analysis to the middle segment (position 26–50) containing a significant 
number of non-local contacts.

FOS–JUN interaction. Raw count tables were provided by G. Diss11. The dataset 
consists of input and output sequencing libraries after selection for physical 
interactions between the two proteins in a protein complementation assay in three 
biological replicates. Per sequencing library, read counts from all synonymous 
variants were summed up. Only variants that had more than 10 reads in each of 
the three input libraries were used for further analysis (43% of double mutants). 
Per input–output replicate, fitness of each variant was calculated as the log-
transformed change in frequency compared to the wild-type variant (as for GB1). 
A Poissonian error for the fitness estimate of each variant was derived. The lower 
measurement bound of the fitness assay was estimated as the weighted mean 
fitness of all double STOP mutant variants (−8.6 log units). A Bayesian estimator 
of fitness values was implemented to overcome variant dropout due to a large 
dynamic range in the fitness assay (see Supplementary Note).

Epistasis classification. Epistasis was calculated from a non-parametric null 
model—running quantile surfaces—to account for nonlinearities close to the 
lower limit of the measurement range of the fitness assay, nonspecific epistatic 
behavior resulting from, for example, thermodynamic stability thresholds as well as 
differential uncertainty of fitness measurements across the fitness landscape, due to 
lower read counts in the output for low fitness variants (Fig. 1b).

First, double-mutant fitness values were corrected by subtracting the average 
local fitness computed using a two-dimensional local polynomial regression  
(using the R function loess with span = 0.2). This was necessary to avoid boundary 
effects of quantile-based fits in boundary regions with non-zero slopes. The 5th 
and 95th percentile surfaces were then fitted to these residual double-mutant 
fitness values, by computing for each double-mutant variant the 5th and 95th 
percentile of the fitness distribution made up of the 1% closest neighbors in single-
mutant fitness space. Double-mutant variants with fitness values below the 5th 
or above the 95th percentile were categorized as negative or positive epistatic, 
respectively (Fig. 1b).

The evaluation of positive or negative epistasis was, however, restricted to 
specific subsets of the data for which measurement errors do not impede epistasis 
classification (see Supplementary Note and Supplementary Fig. 1c). As a result of 
these restrictions as well as differences in initial coverage, the number of double-
mutant variants that can be used to assess positive and negative epistasis varies 
substantially across position pairs and datasets (see Table 1 and Supplementary 
Figs. 1d–f, 4c, 5a).

Interaction scores. Several interaction scores were derived to estimate which 
position pairs are in close contact in the tertiary structure (Fig. 2a,c; see 
Supplementary Fig. 8 for an overview of the workflow). These scores are based 
on summarizing epistasis information on the position pair level and accounting 
for the varying uncertainty of the summarized estimates due to differential 
error of fitness estimates across the measurement range as well as varying 
numbers of double mutants amenable to epistasis classification (see Table 1 
and Supplementary Figs. 1d–f, 4c, 5a). To summarize epistasis information on 
the position pair level, the fraction of positive or negative epistatic variants per 
position pair was calculated (number of epistatic variants divided by the number 
of variants amenable for epistasis classification; Supplementary Fig. 8, step 5b). 
Because enrichments with positive and negative epistatic variants per position are 
anti-correlated (Supplementary Fig. 2a), positive and negative enrichments were 
treated separately and only aggregated to derive the final interaction scores. The 
uncertainty of interaction scores was calculated from a resampling procedure in 
which fitness values for the variants as well as the resulting epistatic fractions were 
drawn from appropriate probability distributions (see Supplementary Note for 
details and Supplementary Fig. 8, step 5).

Enrichment scores, which quantify how often positions interact epistatically, 
were derived by merging positive and negative epistatic fractions by weighted 

averaging, that is, =
σ σ

σ σ
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fractions across resampling runs. These merged epistatic fractions were further 
normalized by their uncertainty, that is, σ= ∕E exy xy xy with σ σ σ= +− − − ∕

+ −( )xy e e
2 2 1 2

xy xy
 to 

arrive at the final enrichment score (Supplementary Fig. 8, step 6).
Correlation scores are derived from the similarity of epistasis interaction 

profiles between position pairs. The rationale behind this score is that proximal 
positions in the protein should have similar distances and geometrical 
arrangements towards all other positions in the protein and should therefore 
also have similar profiles of epistatic interactions with all other positions. First, 
symmetric matrices (of size mutated amino acid positions × mutated amino 
acid positions) of positive and negative epistatic enrichments were constructed 
(Supplementary Fig. 8, step 5c). Missing values (position pairs without 
observed variants) were imputed by drawing a random value from the overall 
distribution of epistatic fractions. A pseudo-count equal to the first quartile 
of the epistatic fraction distribution was added to all matrix entries. Diagonal 
elements (epistatic fractions of a position with itself) were set to 1. The matrix 
values were transformed by the natural logarithm and for each pair of columns 
the Pearson correlation coefficient was calculated to arrive at the correlation 
matrix (Supplementary Fig. 8, step 5d). The correlation matrix was regularized 
using a shrinkage approach66 to minimize the mean-squared error between the 
estimated and true correlation matrix and to obtain a positive definite and well-
conditioned correlation matrix suitable for inversion (R package corpcor). Next, 
partial correlations of epistatic interaction profiles between each position pair 
were calculated by inverting the regularized correlation matrix and normalizing 
each off-diagonal entry of the inverted matrix by the geometric mean of the two 
respective diagonal entries, that is =+

−

− −axy
r

r r

xy

xx yy

1

1 1
, with −rxy

1 as the (x,y) entry of the 

inverted correlation matrix (Supplementary Fig. 8, step 5d). We note that this 
approach is similar to how mean-field approaches can help to discriminate direct 
from indirect evolutionary couplings in multiple-sequence alignments24,30,67. 
Equivalent to the enrichment score, positive and negative partial correlation 
estimates were merged by calculating weighted averages of their mean estimates 
across resampling runs, with weights as the inverse variances across resampling 

runs, that is =
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normalizing by the combined uncertainty σ= ∕A axy xy xy with σ σ σ= +− − − ∕
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(Supplementary Fig. 8, step 6).
Finally, a combined score was derived by summing the standardized 

enrichment and correlation scores, that is = +
σ σ

− −
Cxy
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A
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position pairs that are enriched for epistatic interactions and have similar epistasis 
profiles. We note that this is a naive approach to combining the information from 
these two complementary sources, and surely more sophisticated approaches that 
further improve proximity estimates can be developed in the future.

Protein distance metrics. The minimal distance between side-chain heavy atoms 
of two residues (in the case of glycine, Cα) was used as the distance metric. A 
direct contact was defined as a minimal side-chain heavy atom distance <8 Å. 
Only position pairs with linear sequence separation greater than 5 amino acid 
were considered when evaluating tertiary contact predictions. Evaluating contact 
predictions only on side-chain heavy atom distances instead of all heavy atoms 
increases true-positive rates over random expectation, thus suggesting that 
epistatic interactions are mostly mediated by structural interactions of amino acid 
side chains (Supplementary Fig. 7).

We used the following reference structures for comparison:
•	 GB1 domain: PDB entry 1PGA, X-ray diffraction structure61

•	 WW domain: PDB entry 1K9Q, solution NMR structure68

•	 RRM2 domain: PDB entry 1CVJ (chain A), X-ray diffraction69 structure 
of human PAB1; note that the central section of the analyzed yeast RRM2 
domain is one nucleotide longer than the corresponding homologous region 
in the human RRM domain. We therefore arbitrarily removed position 14 (in 
the loop region, as previously described12) when comparing the DMS-derived 
predictions to the human PAB1 structure.

•	 FOS–JUN interaction: PDB entry 1FOS (chains E and F), X-ray diffraction 
structure70

We found that precision or accuracy calculated against other reference 
structures differed only marginally, thus we have limited reporting to the 
aforementioned PDB entries.

Secondary structure prediction. Secondary structure elements were predicted 
using a two-dimensional kernel smoothing approach on the interaction score 
matrices (Fig. 3a–c). For a given amino acid position in the linear chain (on the 
diagonal of the interaction score matrix), the perpendicular dimension of the 
kernels define how interactions with adjacent positions (off-diagonal entries close 
to the diagonal) should be integrated given the interaction patterns expected from 
the stereotypical periodicities of secondary structures, that is, 3.6 amino acids in 
α-helices and 2 amino acids in β-strands. Moreover, the diagonal dimension of 
the kernels averages the stereotypical interaction patterns of secondary structures 

across several adjacent positions. Similarly, modified β-strand kernels were used 
to detect β-sheet interactions for all pairs of positions. Significance of secondary 
structure element predictions was assessed from a permutation test, for which 
kernel smoothing was performed on 104 randomly permutated interaction 
score maps. More details on secondary structure predictions are provided in the 
Supplementary Note.

Protein structure prediction. Protein structures were modeled ab initio  
with structural constraints derived from the DMS data using simulated  
annealing molecular dynamics (XPLOR-NIH modeling suite42,  
see Supplementary Note for details).

DeepContact learning. DeepContact software was obtained from GitHub (https://
github.com/largelymfs/deepcontact)44. We are grateful to Y. Liu and J. Peng for also 
making their basic DeepContact network architecture available on their GitHub 
repository and helping us with the implementation. The DeepContact architecture 
used here only takes one two-dimensional input of predicted contact scores and 
returns a two-dimensional map of transformed scores (denoted as ‘DeepContact 
CCMPred only’ in the previous study44 and described in the first paragraph of the 
results section therein). The DeepContact architecture that was used came with a 
pre-trained network model that had been trained by comparing tertiary contact 
predictions from correlated evolution (using CCMpred71) to experimentally 
determined structures of proteins in the 40% homology-filtered ASTRAL SCOPe 
2.06 dataset (see GitHub repository and the previous study44). Because CCMpred 
scores71 are distributed in the range of 0 to 1, DMS-derived interaction scores were 
pre-normalized to a range between 0 and 1 before providing them as an input 
to DeepContact. As negative control, we created, for each dataset, three random 
permutations of combined score matrices (while preserving matrix symmetry; 
in the case of the FOS–JUN dataset, non-symmetric enrichment score matrices 
were permutated), which were transformed by the DeepContact algorithm. These 
control datasets show no increased precision over random expectation (Fig. 6c).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
No primary data were generated in this study. Data sources are listed in the 
Methods at appropriate places. Processed interaction scores for all datasets are 
included in Supplementary Table 1. All intermediate steps of data processing 
can be recapitulated with the scripts provided at https://github.com/lehner-lab/
DMS2structure.

Code availability
Paired-end sequencing reads were merged with USearch v.10.0.240. Data were 
analyzed with custom scripts written and executed in the R programming language, 
v.3.4.3. Structural simulations were performed with Xplor-NIH modeling suite 
v.2.46. TM-Score72 (update 23 March 2016) was used to evaluate accuracy of 
structural models. PSIPRED v.3.3 was used to predict secondary structure elements 
from amino acid sequences. PyMOL v.1.8.6.073 was used to visualize protein 
structures. All custom scripts needed to repeat the analyses are available at https://
github.com/lehner-lab/DMS2structure.
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Data collection no software was used to collect data

Data analysis Paired-end sequencing reads were merged with USearch v10.0.240. Data was analysed with custom scripts written and executed in R 
programming language, version 3.4.3. Structural simulations were performed with Xplor-NIH modeling suite version 2.46. TM-Score 
(update 2016/03/23) was used to evaluate accuracy of structural models. PSIPRED v3.3 was used to predict secondary structure 
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analyses are available at https://github.com/lehner-lab/DMS2structure.
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Life sciences
Study design
All studies must disclose on these points even when the disclosure is negative.

Sample size All published deep mutational scanning datasets of proteins in which at least 25amino acid positions were assayed with more than 2% of 
amino acid double mutant coverage were analysed (n = 4).

Data exclusions Sequencing read mapping (only applies to WW domain data): Reads were discarded if they had any base call with lower than Phred quality 
score 20 after merging paired-end reads. 
Double mutants were excluded from further analyses if the expected errors of their fitness estimates were too high or if fitness was not 
determinable. GB1 - variants equal or less than 10 input read counts or those with less than 200 input read counts and 0 output read counts. 
WW - variants with equal or less than 10 input read counts or zero read counts in after the first selection round. RRM - variants with equal or 
less than 10 read counts. FOS-JUN - variants with equal or less than 10 input read counts. 
The following data exclusion rules were applied to epistasis classification in order to prevent classification being dominated by noise in fitness 
measurement: 
Positive epistasis classification: Double mutants were not considered for positive epistasis classification if the 95th percentile fitness surface at 
their location is equal to or above wild-type fitness; if not at least one single mutant fitness value is significantly smaller than wild-type fitness 
at two standard errors of fitness estimate; if the expected fitness (sum of single mutant fitness values) is not significantly lower than wild-type 
fitness at two standard errors. 
Negative epistasis classification: Double mutants were not considered for negative epistasis classification if the 5th percentile fitness surface 
at their location is equal to or below the 95th percentile of the background effect distribution; if at least one single mutant fitness value is not 
significantly higher than the lower measurement limit of the fitness assay at two standard errors; if the expected fitness is significantly higher 
than wild-type fitness at two standard errors.

Replication Workflow was developed on protein G B1 domain and replicated on WW and RRM domain datasets as well as FOS-JUN interaction dataset 
and downsampled versions of protein G B1 domain.

Randomization No samples were allocated into experimental groups.

Blinding No blinding was performed as there was no group allocation.
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