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Abstract We study a stochastic model of transcription kinetics in order to charac-
terize the distributions of transcriptional delay and of elongation rates. Transcrip-
tional delay is the time which elapses between the binding of RNA polymerase to a
promoter sequence and its dissociation from the DNA template strand with conse-
quent release of the transcript. Transcription elongation is the process by which the
RNA polymerase slides along the template strand. The model considers a DNA
template strand with one promoter site and n nucleotide sites, and five types of re-
action processes, which we think are key ones in transcription. The chemical mas-
ter equation is a set of ordinary differential equations in 3n variables, where n is
the number of bases in the template. This model is too huge to be handled if n is
large. We manage to get a reduced Markov model which has only 2n independent
variables and can well approximate the original dynamics. We obtain a number
of analytical and numerical results for this model, including delay and transcript
elongation rate distributions. Recent studies of single-RNA polymerase transcrip-
tion by using optical-trapping techniques raise an issue of whether the elongation
rates measured in a population are heterogeneous or not. Our model implies that
in the cases studied, different RNA polymerase molecules move at different char-
acteristic rates along the template strand. We also discuss the implications of this
work for the mathematical modeling of genetic regulatory circuits.

Keywords Transcription · Elongation · Delay · Stochastic kinetics · Master
equation

1. Introduction

The law of mass-action, which treats concentrations as continuous variables, is not
suitable for systems consisting of small numbers of molecules in which individual
reaction events dominate the behavior. Rather, stochastic kinetics methods are
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necessary for the proper description of small systems. It is well known that tran-
scription, the first phase of gene expression, involves only very small numbers of
reacting molecules in cells. The aim of this paper was to study a transcription model
system by using two stochastic kinetics methods, namely the chemical master equa-
tion and stochastic simulations, both of which are based on the same microphysical
premise, namely that of a well-mixed system (Gillespie, 1992). Although cells are
not by any means well-mixed compartments, studying such models is a sensible
first step toward understanding stochasticity and its effects in biochemical reac-
tions. Analysis of the chemical master equation, when it is feasible, leads to an-
alytic expressions for the statistical distributions of random variables of interest,
while stochastic simulations help us develop intuition by showing us how instances
of a process unfold.

Transcription is the process that occurs as DNA is used as a template to create
RNA. A single gene may contain hundreds or thousands of base pairs. A simi-
lar number of nucleoside triphosphate molecules (NTPs) will have to be added
to the transcript through the action of RNA polymerase (RNAP) molecules and
transcription regulatory factors. The process consists of three main stages: initia-
tion, elongation, and termination. Each of the three stages is composed of many
reaction processes. The model presented in this paper considers only five basic
reaction processes: RNAP binding to promoters, an active transcription complex
head forming, the transcription complex stepping forward by one nucleotide on
the DNA template strand, a complementary NTP binding to the complex, and the
complex dissociating. The first two processes are involved in initiation, the next
two repeat in elongation, and the last one occurs in termination.

In reality, the transcription process is much more complex than the model
presented here (von Hippel, 1998). Moreover, transcription differs in detail in
prokaryotes and eukaryotes. It is not difficult to add more kinds of processes into
the model, making it more complex. However, if too much more detail is added to
the model, the master equation analysis will become inaccessible. The model an-
alyzed here describes the key reactions involved in all transcription processes, yet
is sufficiently simple that we can derive analytic expressions for statistical quanti-
ties from the master equation analysis. We use this simple model as our starting
point, intending to obtain some insights into transcription in view of the intrinsi-
cally stochastic nature of chemical reactions. Specifically, we have two main pur-
poses in this work. One is to get the distribution of transcriptional delay, and the
other is the distribution of transcription elongation rate.

In gene expression, some biological processes are obviously time consuming,
such as the transcript birth and modification, mature mRNA transport to the cyto-
plasm, and mRNA translation to a functional protein molecule (Ota et al., 2003).
These delays often play important roles in biochemical dynamics and so must be
incorporated in mathematical models which include a genetic regulatory compo-
nent (Bliss et al., 1982; Buchholtz and Schneider, 1987; Busenberg and Mahaffy,
1988; Mahaffy et al., 1992; Smolen et al., 1998). Recent modeling studies by Lewis
and Monk show that time delays in eukaryotes play a key role in the production of
the oscillations of some expressed proteins, called delay-driven oscillations (Lewis,
2003; Monk, 2003). Besides delays, another important factor in gene expression is
stochastic fluctuation because these systems involve small numbers of molecules.
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Most of the studies which have considered transcriptional and translational delays
have been based on differential equations and have thus neglected the stochastic
aspect of genetic regulation. Lewis (2003) gives some stochastic kinetics descrip-
tions, but the time delay is still assumed to be constant in the modeling. Monk
(2003) considers distributed delays, but not stochastic kinetics. Smolen et al. (1999,
2001) considered both stochastic kinetics and distributed delays (separately), but
their simulation methods were not directly based on the underlying microscopic
physics. Similar comments could apply to a number of other studies. The funda-
mental problem, which we begin to address in this paper is that we do not know
the true distributions of the delays in gene transcription and translation. We focus
here on transcription. The modeling issues in treating translation are very similar,
and there is no reason to think that the approach taken in this paper would not
extend naturally to protein synthesis.

Transcriptional delay and transcription elongation are two closely related terms
in transcription kinetics. Transcription elongation is the process by which the
RNAP slides along the template strand, adding bases to the transcript as it goes.
As with the time delay, the transcription elongation rate is also a random vari-
able. A full understanding of gene expression requires knowledge of the statisti-
cal character of the elongation rate in different situations. Modern techniques can
allow us to monitor transcription processes by individual RNAP molecules, and
much statistical information about elongation rates has been obtained. In some
single-molecule experiments that measure elongation rates of single Escherichia
coli (E. coli) RNAP molecules in vitro, each RNAP is observed to move at a sin-
gle characteristic rate over a distance of 1000 bp of template DNA, but the elonga-
tion rates measured in a population are heterogeneous (Davenport et al., 2000;
Tolić-Nørrelykke et al., 2004). However, it is sometimes difficult to distinguish
experimentally between population heterogeneity and reaction stochasticity. Ac-
cordingly, the above interpretation has been controversial (Adelman et al., 2002).
In the second part of this work, we aim to discover, by studying the distribution
of elongation rates, how much of the observed fluctuations in elongation rates are
due to intrinsic noise. This provides a basis for discussing the apparently paradox-
ical experimental results.

In Section 2, we give our transcription model. In Section 3, a nonlinear master
equation for the stochastic kinetics of the model is derived, and several analytic
results are obtained. In Section 4, we explore the distributions of time delay and
transcription elongation rate in various cases. In the final section, Section 5, we
summarize the main features of the model, and comment on the implications of
our findings.

2. A single-gene transcription model

It is known that transcription takes place in three stages: initiation, elongation
and termination. In each stage, there are many reaction processes. We pro-
pose the following simple single-gene transcription mechanism involving only five
kinds of reactions which we think are basic ones in most transcriptions both
in prokaryotes and in eukaryotes (Stryer, 1988; von Hippel and Pasman, 2002).
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Fig. 1 Illustration of the transcription mechanism proposed in this paper. The ellipse denotes an
RNAP molecule, and the black squares denote NTPs. See text for details.

Figure 1 schematically illustrates these five kinds of key reactions for this mech-
anism. The strand of the double stranded DNA that the RNAP binds to as it
moves along is called the template strand. The promoter is numbered 1, and
nucleotides that are after the promoter where transcription actually starts are num-
bered 1′, 2, 3, 4, . . . , n, respectively. Here, n is the number of nucleotides in the
gene.

Firstly, initiation begins as RNAP recognizes and binds to the promoter. This
is the first step of initiation, which is illustrated in Fig. 1 as initiation a. Next,
the two strands of DNA in that binding region begin to unwind so that the
RNAP can get closer to the individual nucleotides. An unwound segment of
DNA forms and stays unwound throughout the transcription process. Mean-
while, two nucleoside triphosphate molecules (NTPs) that can pair with the nu-
cleotides in the 1′ and 2 positions of the template strand bind to the RNAP.
These processes are involved in the second step of initiation called initiation b.
After the active head is formed, the elongation process begins, which is divided
into two steps. Elongation a: A phosphodiester bond forms between these two
ribonucleotides, generating some chemical energy; using the energy, the RNAP
steps forward to the position 2. Elongation b: One NTP paired with the nu-
cleotide in the position 3 binds to the RNAP. Later on, a second phosphodiester
bond forms (elongation a), driving RNAP a second forward step to the position
3 (elongation b). The two elongation steps repeat until the last nucleotide in the
n position is reached. During transcription, the RNAP molecule, the unwound
DNA segment, and the nascent RNA molecule compose an important complex
called the transcription complex. In the elongation phase more NTPs are added
as the transcription complex slides along the DNA template strand to form a
transcript chain. Finally, termination comes as the formation of phosphodiester
bonds ceases, the transcription complex dissociates, and the melted region of DNA
rewinds. Just as the template strand of DNA being transcribed has promoter re-
gions indicating where transcription should start, it also has stop signals to end the
process.

In the above description of the mechanism, we note that there exist three states
for each site i, i = 1, 2, 3, . . . , n. We denote site i by Ui (unoccupied site) if there is
no RNAP on it, by Oi (occupied site) when an RNAP has moved to it, and by Ai

(activated site) if the RNAP at the site has bound an NTP (or two for i = 1) and
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is ready to perform its catalytic ratchet action. Based on the mechanism, we write
down the corresponding chemical processes:
Initiation

a. A RNAP molecule, denoted by P, binds to the promoters, forming a
closed-promoter complex; the first occupied site forms.

P + U1
k0→ O1 (1)

b. The two strands of DNA unwind in the region binding to the RNAP, form-
ing an open-promoter complex; at the same time, two NTPs bind to the
RNAP. The first activated site forms.

O1
k1→ A1 (2)

Elongation

a. A phosphodiester bond forms, and the generated energy drives the RNAP
to step forward; an activated site becomes an unoccupied one while the
closest downstream site makes a transition from the unoccupied to the
occupied state.

Ai + Ui+1
k2→ Oi+1 + Ui for i = 1, 2, . . . , n − 1 (3)

b. An NTP binds to the RNAP; the occupied site in step 3 becomes active.

Oi
k3→ Ai for i = 2, 3, . . . , n (4)

Termination
The transcription complex dissociates: A mature transcript is produced and the

RNAP releases the DNA. The last activated site becomes unoccupied.

An
k4→ P + R + Un (5)

Here, R is an RNA transcript.
In steps (2) and (4), we omitted the NTPs. If there is a large pool of NTPs main-

tained at constant concentrations by homeostatic mechanisms, then step (4) will
certainly reduce to a quasi-first-order reaction, as shown. Since cell-cycle check-
points inhibit DNA synthesis when the cell is in a biochemically unfavorable state
(Elledge, 1996), NTP homeostasis is in fact a sensible hypothesis for our model.
The argument is a bit trickier for step (2), which requires the binding of a pair of
NTPs and thus arguably the breaking up of this step into several component bio-
chemical processes. However, our model is sufficient to gain an understanding of
the factors which affect transcription so that we were reluctant to add much detail



1686 Bulletin of Mathematical Biology (2006) 68: 1681–1713

to our description of initiation. We also note that in vitro studies of transcription
kinetics are sometimes carried out in flow cells where the NTP concentrations are
rigorously constant (Davenport et al., 2000). In other cases, a large excess of NTPs
is used, which has the same effect. The use of the pool chemical approximation for
the NTPs is thus reasonable for in vivo kinetics, and essentially exact for most in
vitro studies.

It should be noted that the values of the probability rate constants for the two
repeated elongation events are the same for all of the sites involved in elongation.
Implicitly, this involves two further assumptions, neither of which is strictly true
in vivo, but both of which can be made at least approximately true in vitro: First,
that site-to-site motion is sequence independent, and second, that the NTPs are all
equally abundant.

Finally, our model assumes that polymerases occupy just one site (one
nucleotide) on the DNA template. This is perhaps the most questionable assump-
tion of our model. The justification for this approximation is that initiation rates
are such that RNAPs typically do not crowd together during transcription (Miller
and Beatty, 1969; Miller et al., 1970). Accordingly, it will be a relatively rare event
for two RNAPs to come sufficiently close together for this model simplification
to matter. Both this and the other assumptions outlined above were motivated by
a desire to start from a simple, analytically tractable model which retains at least
the key features of transcription. In later work, we can add various complicating
factors and see their effects, using the current model as a base. For now however
it seemed unwise to create an overly complex model which could not be properly
understood.

Reasonable ranges for the reaction probability rate constants (ki ) can all be
estimated from experimental data. Strong promoters cause frequent binding of
RNAP, as often as every 2 s in E. coli, while genes with weak promoters are tran-
scribed about once in 10 min (Stryer, 1988). In our stochastic model, this rate corre-
sponds to the number of available polymerases multiplied by k0, a quantity which
we call k̃0 in the formal development below. A reasonable range for k̃0 would there-
fore be from 0.0017 to 0.5 s−1. The transition from the closed promoter complex
to the open promoter complex is usually slower than the binding of RNAP to the
promoters, and it is a rate-limiting step in the initiation (McClure, 1980). Thus,
in our model, k1 << k̃0. The rate of transcription elongation varies dramatically
among RNAPs, ranging from 5 to 400 nt/s (nucleotides per second) (Uptain et al.,
1997). Eukaryotic RNAPs are estimated to elongate at 20–30 nt/s in vivo, and the
elongation rate in E. coli is higher, about 50 nt/s. Thus, k2 and k3 should both be
between 5 and 800 s−1.

The magnitude relationship between the initiation and elongation rates strongly
implies that in reality the RNAP molecules, until they move to the end of the
strand, are typically separated from each other by a considerable distance. This
has been clearly shown in the electron micrographs of transcription (Miller and
Beatty, 1969; Miller et al., 1970). Also, by observing those electron micrographs,
we can see that the RNAP molecules are almost distributed evenly on the template
strand. This indicates that the termination rate should not be lower than the initi-
ation rate; otherwise, RNAPs would accumulate at the end of the strand. We thus
get k1 ≤ k4.
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3. Stochastic kinetics of the transcription model

3.1. Chemical master equation

Consider a reaction system of m molecular species that chemically interact through
r reaction channels. The state of this system can be specified by the numbers of
each of the m species, i.e. by the vector x = (x1, x2, . . . , xm), where xi is the number
of molecules of type i. The state vector x is a discrete random variable. There exists
for each reaction channel u, a function au called the propensity function such that
audt gives the probability of the corresponding reaction u occurring in time dt .
The propensity function has the form of au = kuhu(x), where hu(x) is the number
of combinations of reactant molecules which could participate in reaction u, and
ku is the reaction probability rate constant for reaction u.

The chemical master equation describes the time evolution of the probability
distribution. Let P(x; t) be the probability that the system is in state x at any time
t. The rate of change of P(x; t) is given by (Oppenheim et al., 1977)

∂ P(x; t)
∂t

=
r∑

u=1

[−P(x; t)kuhu(x) + P(x − vu; t)kuhu(x − vu)]. (6)

In this equation, vu is the state-change vector, whose ith component is the change
of xi produced by one reaction event of type u.

To get the master equation of our transcription model, we firstly should know
what species can determine the state of the system and how many reaction chan-
nels are concerned in the model.

Since we treat a model involving a single gene in a solution containing RNAP
molecules, the total number of RNAP molecules N0

p is conserved, and is equal
to N0

p = Np + ∑
i [χ(i, A) + χ(i, O)], where Np is the number of free polymerase

molecules, and χ(i, σ ) is an indicator function which takes the value 1 if site i is in
state σ and 0 otherwise. We can therefore calculate Np at any time from the total
number of RNAP molecules and the state of the DNA strand. Thus, the model
can consist of just the states of the DNA sites provided we also assume a large and
effectively constant pool of NTPs. For a DNA template strand with n + 1 sites
(one promoter site and n nucleotide sites, see Fig. 1), there are three possible
states (U, O or A) for each site (except 1′), so there are 3n states. The state
vector in this model is (χ(1, U), χ(1, O), χ(1, A), . . . , χ(n, U), χ(n, O), χ(n, A)).
Note that since the three states are mutually exclusive, only one of χ(i, U), χ(i,
O) or χ(i, A) has unit value at any given time, the other two being null. As for
the number of the reaction channels involved in the model, according to the
elementary reactions proposed in the previous section, we have 2n + 1 of them.

Suppose that we wanted to write down the chemical master equation for the
full system. This will describe the evolution in time of the probability distribution
P (χ(1, U),χ(1, O),χ(1, A), . . . ,χ(n, U),χ(n, O),χ(n, A)) for all possible combi-
nations of the χ(i, σ ), i.e. for all allowed states of the model. The problem in solv-
ing the chemical master equation is evident: There are 3n states. Even for small
values of n, this is a colossal number. Direct study of the chemical master equation
is therefore not practical.
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As a result of some of the simplifications used in our model, the functions hu(x)
which appear in the master equation (6) have particularly simple forms. Consider
for instance h0 (1, 0, 0, χ(2, U), χ(2, O), χ(2, A), . . . ,χ(n, U),χ(n, O), χ(n, A))
(associated with reaction (1), numbering the hu like the rate constants). Since we
treat the case where there is just one copy of the gene, the number of different com-
binations of the “reactants” P and U1 corresponding to this state is just h0 = Np.
For any state in which χ(1, U) = 0, h0 = 0. The hu for reactions (2)–(5) are even
simpler. When the template strand is in the appropriate state to permit reaction,
hu = 1.

It is possible to calculate the transcriptional delay distribution from the chemical
master equation for the case in which a single polymerase is active on the DNA
template or, equivalently, cases where the polymerases are sufficiently widely
spaced that they do not interfere with each other. Let τi be the time required for
the RNAP to move from site i to site i + 1, i.e., the time it takes, given that site i
is in state O at time t, for site i + 1 to reach state O. Each τi is a random variable
with a distribution which we want to compute. The overall delay distribution is the
distribution of the variable

τ =
n∑

i=1

τi . (7)

Our first target is the single-jump probability density ρi (τi ), a quantity such that
ρi (τ i )dτ i is the probability that the jump occurs between time τi and τi + dτi . We
start out in state O at site i and treat {i + 1, O}, or equivalently {i, U}, as an ab-
sorbing state for the purpose of this calculation. We will thus obtain conditional
probabilities p(i) (χ(i, O), χ(i, A), χ(i, U)) conditioned on the arrival of the single-
polymerase molecule at site i at time zero. The governing equations for these con-
ditional probabilities are obtained directly as special cases of the master equation
(6) and are thus exact for the purpose of determining single-jump properties like
ρi (τi ). These equations are

dp(1)(1, 0, 0)/dt = −k1 p(1)(1, 0, 0),
dp(1)(0, 1, 0)/dt = k1 p(1)(1, 0, 0) − k2 p(1)(0, 1, 0),
dp(1)(0, 0, 1)/dt = k2 p(1)(0, 1, 0),

(8)

for the first site;

dp(i)(1, 0, 0)/dt = −k3 p(i)(1, 0, 0),
dp(i)(0, 1, 0)/dt = k3 p(i)(1, 0, 0) − k2 p(i)(0, 1, 0),
dp(i)(0, 0, 1)/dt = k2 p(i)(0, 1, 0),

(9)

for the next n − 2 sites (i = 2 to n−1); and

dp(n)(1, 0, 0)/dt = −k3 p(n)(1, 0, 0),
dp(n)(0, 1, 0)/dt = k3 p(n)(1, 0, 0) − k4 p(n)(0, 1, 0),
dp(n)(0, 0, 1)/dt = k4 p(n)(0, 1, 0),

(10)
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for the last site. The appropriate initial conditions for solving Eqs. (8)–(10) are
p(i)(1, 0, 0) = 1 and p(i)(0, 1, 0) = p(i)(0, 0, 1) = 0 for i = 1, 2, . . . , n. The linear
differential Eqs. (8)–(10) are easily solved to yield, at t = τ i ,

p(1)(0, 0, 1) = [k1(1 − e−k2τ1 ) − k2(1 − e−k1τ1 )]/(k1 − k2);
p(i)(0, 0, 1) = [k3(1 − e−k2τi ) − k2(1 − e−k3τi )]/(k3 − k2),

i = 2, 3, . . . , n − 1;
p(n)(0, 0, 1) = [k3(1 − e−k4τn ) − k4(1 − e−k3τn )]/(k3 − k4).

(11)

These quantities are the cumulative probability distributions for the τ i . Thus,

ρ1(τ1) = dp(1)(0, 0, 1)/dτ1 = k1k2(e−k2τ1 − e−k1τ1 )/(k1 − k2);
ρi (τi ) = dp(i)(0, 0, 1)/dτi = k2k3(e−k2τi − e−k3τi )/(k3 − k2),
ρn(τn) = dp(n)(0, 0, 1)/dτn = k3k4(e−k4τn − e−k3τn )/(k3 − k4).

i = 2, 3, . . . , n − 1;

(12)

These equations were derived under the conditions k1 �= k2, k2 �= k3, and k3 �= k4.
Now we want the distribution of the total delay defined by Eq. (7). Suppose that

ρ(τ1, τ2, . . . , τn) is the joint distribution of the variables τi . In this case, because the
jumps are independently distributed, ρ(τ1, τ2, . . . , τn) = ∏n

i=1ρi (τi ). In terms of the
probability addition law, the probability that a cumulated random variable has a
particular value τ is the sum of the probabilities over all sequences of jumps such
that τ1 + τ2 + . . . + τn = τ . Therefore, we get (Feller, 1968)

ρ(τ ) =
∫

· · ·∑
τi =τ

∫
ρ(τ1, τ2, . . . , τn)dτ1dτ2 . . . dτn. (13)

This is a multi-dimensional convolution. In order to get the integration, we can fol-
low Schnitzer and Block’s (1995) method of working with the Laplace transforms,
ρ̃(s) = ∫ ∞

0 e−sτ ρ(τ )dτ , ρ̃i (s) = ∫ ∞
0 e−sτi ρi (τi )dτi for i = 1, 2, . . . , n. The convolu-

tions become multiplications in the Laplace transform domain (Butkov, 1968):

ρ̃(s) =
n∏

i=1

ρ̃i (s). (14)

Using Eqs. (12), we can get the Laplace transforms of ρi (τi ) for i = 1, 2, . . . , n,
which have the following simple forms,

ρ̃1(s) = k1k2/(s + k1)(s + k2);
ρ̃i (s) = k2k3/(s + k2)(s + k3), i = 2, 3, . . . , n − 1;
ρ̃n(s) = k3k4/(s + k3)(s + k4).

(15)

Substituting them into Eq. (14), we get the Laplace transforms of ρ(τ ),
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ρ̃(s) = k1(k2k3)n−1k4

(s + k1)(s + k2)n−1(s + k3)n−1(s + k4)
. (16)

Taking the inverse Laplace transform of Eq. (16), we should have obtained ρ(τ ).
However, it seems difficult to do this in general. We have obtained the inverse
Laplace transform for n = 2, 3, and 4, finding that they have the following general
form:

ρ(τ ) =
4∑

i=1

ai e−ki τ +
n−2∑

i=1

(bi e−k2τ + ci e−k3τ )τ i , (17)

where ai , bi , and ci are constants determined by the number of sites as well as
the four probability rate constants. We believe that the general form of the delay
distribution is given by Eq. (17) even though we have not been able to prove this
for n > 4. Note that there are 2n undetermined constants in Eq. (17) so that for
larger values of n, it is not even feasible to recover these constants by fitting to
experimental or simulation results.

Although we can not get the analytic form of the distribution except in some
special cases, the mean value and standard deviation of the distribution can be
easily obtained. Since the mth moment of ρ(τ ) is,

〈τm〉 =
∫ ∞

0
τmρ(τ )dτ = (−1)m dmρ̃(s)

dsm

∣∣∣∣
s=0

, (18)

the mean value 〈τ 〉 and standard deviation �τ =
√

〈τ 2〉 − 〈τ 〉2 are, respectively,

〈τ 〉 = α0 + α1(n − 1) (19)

and

�τ =
√

β0 + β1(n − 1), (20)

where α0 = 1/k1 + 1/k4, α1 = 1/k2 + 1/k3, β0 = 1/k2
1 + 1/k2

4 , and β1 = 1/k2
2 +

1/k2
3 .

Besides the mean values and standard deviations, the first few moments of the
delay may be useful as well. The expressions for the higher moments are too un-
wieldy to be given here, but are easily computed from Eq. (18) using a symbolic
algebra manipulator like Maple. With the first four moments, it should be possible
to fit experimental data to recover the four rate constants. One attempt has already
been made to measure transcriptional delays based on published DNA microar-
ray data (Ota et al., 2003, based on the data of Spellman et al., 1998 and of Lee
et al., 2002). There are two related problems with this technique, both related to
the very great effort required to collect gene expression profiles: First, the sampling
rate is too low to obtain more than rough estimates of the mean and standard de-
viation. Moreover, it is doubtful that sufficient data of this kind could be collected
to measure very long delays (e.g. 16 h in the extreme case of the human dystrophin
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gene; Tennyson et al., 1995). In principle, transcriptional delay distributions could
be measured using similar experiments to those used to measure elongation rates
(see, e.g., Adelman et al., 2002; Tolić-Nørrelykke et al., 2004). In fact, as we men-
tion in Section 4.3, the delay and elongation rate distributions are related. It is
however not clear whether the data from such experiments would be of sufficient
quality to estimate four moments of the distribution. The best alternative would be
to specifically design experiments to measure transcriptional delays. For instance,
it should be possible to measure these delays under experimental conditions where
the polymerase binds rapidly to the promoter sequence (e.g. large excess of poly-
merase), measuring the lag between mixing of the reagents and the appearance of
RNA transcripts. Because these lags are relatively long (minutes to hours), routine
kinetics techniques would be adequate. The main difficulty would be in devising
means of detecting the complete transcript. One possibility would be to use a fluo-
rescent probe designed to bind to the terminal section of the transcript.

As an alternative to analysis, the chemical master equation can also be solved
numerically using Gillespie’s stochastic simulation algorithm (Gillespie, 1976,
1977). This is a Monte Carlo method which generates trajectories consistent with
the probability distribution specified by Eq. (6). A large ensemble of stochastic tra-
jectories computed using this algorithm thus solves the chemical master equation,
while individual trajectories allow us to see possible realizations of the underlying
stochastic process.

3.2. Site-oriented Markov model

We derive here a nonlinear master equation for the model described in Section 2
assuming that the sites on the DNA template are statistically independent. In ap-
propriate limits, this model should be equivalent to the chemical master equation,
but involves only 2n independent variables.

Statistical independence of the sites is a strong condition. Even if there is just one
polymerase molecule, the sequential occupation of the sites in this model means
that the probabilities of occupation of various sites will not be statistically indepen-
dent. We however expect the sites to be approximately statistically independent in
at least one case, namely k2 
k3: In this case, the rate-limiting process is (4), a
reaction which does not involve interaction between sites.

Because the site states U, O, and A are mutually exclusive, the probability of a
strand state (χ(1, U),χ(1, O),χ(1, A), . . . ,χ(n, U),χ(n, O),χ(n, A)) is zero unless
exactly one of the set

{
χ(i, U), χ(i, O), χ(i, A)

}
is unity for each i ∈ (1, 2, . . . , n).

Let pi,σ be the probability that site i is in state σ , the element of the set {U, O,
A} such that χ(i, σ ) = 1. If the sites are assumed to be independent, we should
be able to write P (χ(1, U),χ(1, O),χ(1, A), . . . ,χ(n, U),χ(n, O),χ(n, A)) =∏n

i=1 pi,σ . Under the independent-site assumption, it should thus be possi-
ble to use the 3n variables pi,σ instead of the 3n strand state probabilities
P (χ(1, U),χ(1, O),χ(1, A), . . . ,χ(n, U),χ(n, O),χ(n, A)). Furthermore, since the
three states are mutually exclusive, we have

∑
σ pi,σ = 1. We therefore only need

two independent variables per site. This makes the problem formulated in these
variables tractable, even if n is large.
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We can write down evolution equations for the pi,σ from basic statistical ar-
guments. Let us start with the equation for p1,O. The rate of transitions to state
O1 from state U1 given that there are exactly Np polymerase molecules and that
site 1 is unoccupied (χ(1, U) = 1) is k0Npχ(1, U) = k0Np. This last expression
is a conditional state-to-state transition rate. The net rate of transitions to this
state will therefore be given by the sum over all possible values of Np of the prod-
ucts of the conditional rates k0Np by the joint probabilities that there are exactly
Np molecules of polymerase and that site 1 is unoccupied at time t, denoted by
P(Np, {1, U}). The rate at which site 1 makes transitions from O to A is easier to
write down, depending only on the state of site 1 at time t. This gives us the rate
equation

dp1,O

dt
=

∑

NP

k0 Np P (Np, {1, U}) − k1 p1,O. (21)

For i > 1, we reach state Oi from states Ai −1 and Ui (Eq. 3) at a rate k2χ(i−1,
A)χ(i, U). The conditional rate thus reduces to k2 which, multiplied by the prob-
ability of the precursor state, gives us the rate of change of pi,O. Thus, the rate
equations for these variables are

dpi,O

dt
= k2 P ({i − 1, A}, {i, U}) − k3 pi,O. (22)

Arguing similarly, the full set of rate equations is as follows:

dp1,O/dt = ∑
Np

k0 Np P(Np, {1, U}) − k1 p1,O;

dp1,A/dt = k1 p1,O − k2 P({1, A}, {2, U});
dpi,O/dt = k2 P({i − 1, A}, {i, U}) − k3 pi,O, i = 2, 3, . . . , n
dpi,A/dt = k3 pi,O − k2 P({i, A}, {i + 1, U}), i = 2, 3, . . . , n − 1;
dpn,A/dt = k3 pn,O − k4 pn,A;

pi,U = 1 − pi,O − pi,A, i = 1, 2, . . . , n.

(23)

While these equations are rigorous, they do not constitute a closed set since they
involve the joint probabilities P (Np, {1, U}) and P ({i, A}, {i + 1, U}). If we as-
sume a large equilibrated pool of RNAP so that Np is essentially fixed, then we
have

dp1,O/dt =
∑

Np

k0 Np P(Np, {1, U}) − k1 p1,O

≈ k0

∑

Np

NpδNp,Neq
p

p1,U − k1 p1,O (24)

= k0 Neq
p p1,U − k1 p1,O

= k̃0 p1,U − k1 p1,O,
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where δNp,Neq
p

is a Kronecker delta symbol, and k̃0 = k0 Neq
p . Moreover, the joint

probability P({i, A}, {i + 1, U}) is easy to evaluate according to the independent-
site assumption: P({i, A}, {i + 1, U}) = pi,A pi+1,U. We are now ready to write
down the governing equations for our model, namely the following set of 2n ODEs
with n added conservation relations:

dp1,O/dt = k̃0 p1,U − k1 p1,O;

dp1,A/dt = k1 p1,O − k2 p1,A p2,U;

dpi,O/dt = k2 pi−1,A pi,U − k3 pi,O, i = 2, 3, . . . , n; (25)

dpi,A/dt = k3 pi,O − k2 pi,A pi+1,U, i = 2, 3, . . . , n − 1;

dpn,A/dt = k3 pn,O − k4 pn,A;

pi,U = 1 − pi,O − pi,A, i = 1, 2, . . . , n.

We refer to Eqs. (25) as the site-oriented Markov model. Models of this type are
also sometimes known as nonlinear master equations in the chemical literature
(see, e.g., Davis and Skodje, 2001). The transformation from the chemical master
equation for the 3n possible states to the site-oriented equations involving 2n dif-
ferential equations has a cost: The chemical master equation (6) is linear, while the
site-oriented model is not. The nonlinear terms in Eqs. (25) appear as a result of
the factoring of joint probabilities as described above and are only correct insofar
as the sites can be treated as being statistically independent. However, the tremen-
dous reduction in the number of variables which we need to consider makes this
transformation worthwhile whenever it is at least approximately valid.

Having obtained the site-oriented Markov model, we extract from it the single-
jump probability density. We only show the equations for the general case (i =
2, 3, . . . , n − 1). If we again consider a polymerase occupying site i at t = 0, and
treat site i + 1 as an absorbing state, then pi +1,U = pi ,O + pi ,A, since site i + 1 is
empty as long as site i is occupied. The counterparts of Eqs. (9) based on Eqs. (25)
are then

ldpi,O/dt = −k3 pi,O,

dpi,A/dt = k3 pi,O − k2 pi,A (pi,O + pi,A) ,

pi+1,O = 1 − (pi,O + pi,A) . (26)

(Note that we could also have written the last member of Eqs. (9) as a probability
conservation equation as we did here.) The solution, derived using the symbolic
algebra system Maple, can be written in the following form:

pi+1,O(τi ) = 1 − exp(−γ e−k3τi )
e−γ + γ Ei(1, γ e−k3τi ) − γ Ei(1, γ )

, (27)
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where γ = k2/k3 and Ei(u, z) is an exponential integral (Abramowitz and Stegun,
1965). Differentiating this expression with respect to τ i , we get, after some rear-
rangement,

ρ̂i (τi ) = k2 (1 − pi+1,O(τi ))
(
1 − pi+1,O(τi ) − e−k3τi

)
, (28)

where the circumflex indicates that this is an approximation derived from
Eqs. (25). Unfortunately, it does not seem to be possible to obtain an analytic
expression for the distribution of the total delay τ from Eq. (28) as we did for
the exact chemical master equation. Nevertheless, a comparison of Eqs. (12) and
(28) is instructive as it will help bring out some of the consequences of the trans-
formation to the nonlinear site-oriented Markov model (25).

In accord with our earlier physical argument, if k2 >> k3, then after a short
transient, a quasi-steady-state is reached in which dp(i)(0, 1, 0)/dt in Eqs. (9) and
dpi,A/dt in Eqs. (26) are approximately zero. Accordingly, the rate of transitions
to the absorbing state is controlled by the first equation in each set, which are the
same within a change of notation, and we find that both distributions are then
nearly indistinguishable. If on the other hand k2 << k3, then pi,O + pi,A ≈ 1 during
the rise in pi,A. Thus, the portion of the delay distribution up to the maximum is
about the same in the two models. The tails do differ significantly however since
they are governed by different kinetics. The greatest differences between the two
distributions occur when k2 ≈ k3. Figure 2 shows the two distributions in such
a case. Note that the maximum occurs at slightly smaller values of τ i and is of
smaller amplitude in the site-oriented model. Moreover, ρ̂i has a longer tail than
ρi . Thus, we may expect some differences in results derived from the chemical
master equation and from the site-oriented Markov model, particularly in this pa-
rameter regime. We will see later however that the differences in the distribution
of the total delay (Eq. (7)) are less than might be expected from the differences in
the single-jump delay distributions seen in Fig. 2.
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Fig. 2 Single-jump probability densities determined both from the exact master equation and
from the approximate site-oriented Markov model for k2 = 6 s−1 and k3 = 5 s−1.
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It is possible to obtain the distribution of the total delay for a single polymerase
(or well-spaced polymerases) by integration of the site-oriented Markov model.
With initial conditions

p1,O(0) = 1, p1,U(0) = p1,A(0) = 0, and
pi,U(0) = 1, pi,O(0) = pi,A(0) = 0, for i = 2, 3, . . . , n,

(29)

Eqs. (25) describe an ensemble such that each sample is followed from the mo-
ment of binding of an RNAP to the promoter site of the template strand. The
transcriptional delay is the time that it takes for the RNAP to leave the DNA
template strand. The term k4 pn,A in Eqs. (25) gives the rate at which the prob-
ability of completing the transcription process increases. Thus, the cumulative
probability that transcription is complete at time t, Pcomplete,cum(t), is given by
Pcomplete,cum (t) = ∫ t

0 k4 pn,A(τ )dτ. Let ρ(τ ) be the transcriptional delay probability
density. Of course, it is also the case that Pcomplete,cum (t) = ∫ t

0 ρ(τ )dτ. Comparing
these two equations implies that ρ(τ ) = k4 pn,A(τ ). This gives us a direct way to cal-
culate the transcriptional delay probability distribution from a solution of Eqs. (25)
with initial conditions given by Eqs. (29). In what follows, we refer to the calcula-
tion of the delay distribution from numerical solutions of the site-oriented Markov
model as the integration method.

In the next section, we will test the limits of various treatments described earlier.
We will then go on to study the stochastic kinetics of the transcription model in
some specified cases using these tools.

4. Results and discussion

4.1. Validation of modeling methods

We begin by focusing on the single-RNAP case in order to establish the validity of
the site-oriented Markov model. Figure 3 shows the delay distributions calculated
from Eq. (17) and by integration of the site-oriented Markov model for n = 4, the
largest value for which we have the parameters of the analytic distribution. By an
argument analogous to that presented in the last section, if k1 is much smaller than
the other rate constants, particularly for small values of n, then the kinetics of the
formation of the open-promoter complex is rate-limiting and the distributions will
tend to be similar. For a value of k1 which is a little larger than the high end of
the estimates presented in Section 2 and using the smallest reasonable values of
k2, k3, and k4, there are noticeable, but not dramatic, differences between the two
distributions (solid line and filled symbols in Fig. 3). Note in fact that the values of
k2 and k3 used to generate these curves are identical to those used for the single-
jump delay distributions shown in Fig. 2, the latter clearly differing more from each
other than the overall delay distribution in Fig. 3. If we choose slightly larger values
of k2, k3, and k4, the two distributions become nearly indistinguishable (dashed
curve and open symbols).

In order to validate the site-oriented Markov model for larger systems, we must
resort to stochastic simulation. As shown in Fig. 4, results of stochastic simula-
tion and of the integration method are perfectly overlapped. This confirms that in
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Fig. 3 Delay probability densities computed from Eq. (17) (curves) and by the integration
method from the site-oriented Markov model (symbols). For all four sets of results, n = 4 and
k1 = 1 s−1. Solid curve and filled symbols: k2 = 6 s−1, k3 = 5 s−1 and k4 = 2 s−1. Dashed curve and
open symbols: k2 = 20 s−1, k3 = 19 s−1 and k4 = 21 s−1.

our studies of delay distributions the chemical master equation can generally be
replaced by the site-oriented model without losing any important detail.

Since most of our theoretical development is based on a single polymerase mov-
ing along the template, we also examine the effect of allowing multiple RNAPs
to function simultaneously. We use a DNA template strand with n = 100 as an
example, corresponding to a very small protein containing about 30 amino acids.
The probability rate constants are set as follows: k̃0 = 5 s−1, k1 = 1 s−1, k2 = k3 =
k4 = 100 s−1. Note that the parameter k̃0 is only required in the multiple-RNAP
cases where it controls how often RNAPs bind to the promoter site, i.e. the spac-
ing between the RNAPs. The average initiation rate is thus (1/k̃0 + 1/k1)−1 =
0.83 RNAPs/s, the average elongation rate is (1/k2 + 1/k3)−1 = 50 nt/s, and the
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Fig. 4 Comparison of the delay probability distributions obtained by the stochastic simulation
algorithm (open circles) and from the site-oriented Markov model using the integration method
(solid line) for n = 100, k1 = 1 s−1, k2 = k3 = k4 = 100 s−1.
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Fig. 5 Probability density of the transcriptional delay obtained by stochastic simulation. (a)
n = 100, k̃0 = 5 s−1, k1 = 1 s−1, k2 = k3 = k4 = 100 s−1; (b) n = 100, k̃0 = 10 s−1, k1 = 100 s−1, k2 =
k3 = k4 = 100 s−1. Filled circles come from the multiple-RNAP case with initial conditions of
χ(i,U) = 1, i = 1, 2, . . . , n, and open circles from the single-RNAP case with initial conditions
of χ(1,O) = 1, χ(i,U) = 1, i = 2, 3, . . . , n. Note that k̃0 is only used in the multiple-RNAP simula-
tions.

average termination rate is (1/k3 + 1/k4)−1 = 50 RNAPs/s. Note that we use a
value of k̃0 which is larger than the maximum estimated above. Most of our results
are not very sensitive to this parameter because process (2) is rate-limiting for ini-
tiation. We get the probability distribution of the transcriptional delay by stochas-
tic simulation using 506 samples with initial conditions χ(i,U) = 1, i = 1, 2, . . . , n.
The result is shown with filled circles in Fig. 5a for the multiple-RNAP case. As
mentioned earlier, the transcriptional delay is measured from time of binding to
completion of the process. Note that this means that the value of k̃0 only affects the
delay distribution through its effect on the spacing between the polymerases. For
the corresponding single-RNAP case, we can use the initial conditions of χ(1,O) =
1, χ(i,U) = 1, i = 2, 3, . . . , n, in the stochastic simulation algorithm. The obtained
probability density from 500 samples is shown with open circles in Fig. 5a. We can
see that the distributions for single-RNAP and multiple-RNAP cases agree well
with each other. This confirms that the delay distribution in the multiple-RNAP
case can be replaced by that of the corresponding single-RNAP case. On the con-
trary, in another comparison where the values of the probability rate constants
are the same as in the first case except that k̃0 = 10 s−1 and k1 = 100 s−1, i.e., the
initiation rate is much faster than that in the first case, the two distributions don’t
agree any more (see Fig. 5b), indicating the independent-site assumption is void.
However, even in this case with parameters which are well outside physically rea-
sonable ranges, the two distributions are not dramatically different. Thus, the ana-
lytic treatment based on the independent-site assumption should give results which
are at least qualitatively correct over a wide range of parameters and reaction
conditions.

After the above comparisons, we focus below on using the integration method
to get the delay probability distributions from the site-oriented Markov model.
Furthermore, since the average length of an mRNA molecule is about 1200 bases
in E. coli (Stryer, 1988), we focus on DNA template strands of 1000–2000 bases.
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4.2. Time delay distribution

In this part, we explore the delay distributions, focusing mainly on the single-
RNAP distributions. However, as illustrated above, these distributions could be
viewed as those for the corresponding multiple-RNAP cases if the independent-
site assumption is valid. We vary, respectively, the number of sites n, the initiation
probability rate constant k1, the elongation probability rate constants, k2 and k3,
and the termination probability rate constant k4. In total, we looked at 13 cases,
which are listed in Table 1. The mean values, standard deviations, and variation
coefficients (the ratio of standard deviation to the mean value) reported in Table 1
were calculated both by the integration method, and using Eqs. (19) and (20). Note
that the means and standard deviations computed by the two methods agree re-
markably closely, the agreement being much better than the single-jump distribu-
tions in Fig. 2 would lead us to believe. This again supports the use of results from
the site-oriented Markov model (25) to study this system.

We first vary n from 100 to 2000 (cases 1–4 in Table 1). As seen in Fig. 6, the
mean of the delay distribution obviously increases with increasing n, as predicted
by Eq. (19). The half width of the delay distribution increases more slowly with n,
which is again in accord with the theoretical result (20). Consequently, the rela-
tive sharpness of the peak increases significantly from n = 100–2000. This can be
seen by the change of the variation coefficients from 0.332 to 0.028. This means
that the relative fluctuations of the transcriptional delay get increasingly weaker
as the template strand length increases. It is worth stressing that the magnitude of
relative fluctuations of delay indicated by the variation coefficient is an important
indicator in stochastic kinetic studies of transcription: If it is small, the spread in
transcript completion times is small compared to a typical completion time itself,
and so the polymerase behaves in a highly regular, clock-like fashion. The varia-
tion coefficient can be calculated from Eqs. (19) and (20). We plot this coefficient

Table 1. Thirteen cases presented in Section 4.2 studying the transcriptional delay distribution,
together with the corresponding mean values (MV), standard deviations (SD), and variation
coefficients (VC) of the delay, which are calculated by the integration method

Case n k1 (s−1) k2 (s−1) k3 (s−1) k4 (s−1) MV (s) SD (s) VC

1 100 1 100 100 100 3.00 (2.99) 1.00 (1.01) 0.33
2 500 1 100 100 100 11.03 (10.99) 1.03 (1.05) 0.094
3 1000 1 100 100 100 21.06 (20.99) 1.07 (1.10) 0.051
4 2000 1 100 100 100 41.12 (40.99) 1.15 (1.18) 0.028
5 1000 0.5 100 100 100 22.03 (21.99) 2.03 (2.05) 0.092
6 1000 0.1 100 100 100 29.47 (29.99) 9.09 (10.01) 0.31
7 1000 1 100 100 50 21.08 (21.00) 1.07 (1.10) 0.051
8 1000 1 100 100 10 21.16 (21.08) 1.08 (1.10) 0.051
9 1000 1 100 100 1 22.06 (21.98) 1.47 (1.48) 0.066

10 1000 1 100 150 100 17.73 (17.66) 1.05 (1.07) 0.059
11 1000 1 150 100 100 17.70 (17.66) 1.05 (1.07) 0.059
12 1000 1 150 150 100 14.37 (14.33) 1.03 (1.04) 0.072
13 1000 1 200 200 100 11.02 (11.00) 1.02 (1.02) 0.092

Note. The MVs and SDs in parentheses are calculated by Eqs. (19) and (20), respectively.
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Fig. 6 Delay probability distributions for four cases with k1 = 1 s−1, k2 = k3 = k4 = 100 s−1 with
different number of sites. The labels (i) in the figure indicate the number of sites in each case.

in Fig. 7. Note the steep drop in this quantity as n increases toward the range of
typical gene sizes.

Next, we modify the initiation rate by varying k1, which involves cases 3, 5 and
6 in Table 1. As shown in Fig. 8, the initiation rate mainly influences the standard
deviation of the distribution, i.e., the lower the initiation rate, the larger the stan-
dard deviation. This means that the fluctuations of delay get increasingly larger
with the decrease of the initiation rate. Increasing k1 on the other hand only sharp-
ens the distribution up to a limit. For the parameters of Fig. 8, we can calculate
from Eq. (20) that �τ → 0.63 s as k1 → ∞, a value which may be compared to the
standard deviation of 1.10 s calculated for k1 = 1 s−1. Even for templates of moder-
ate length and at relatively large values of k1, the formation of the open-promoter
complex is thus responsible for a significant part of the stochastic fluctuations in
the transcription time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  500  1000  1500  2000

V
ar

ia
tio

n 
co

ef
fic

ie
nt

n

Fig. 7 The variation coefficient against the number of sites, n, calculated from Eqs. (19) and (20)
with the parameters of Fig. 6.
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The initiation rate controls the rate of input of RNAP to the template strand,
while the termination rate controls the rate of exit of RNAP from the strand.
We now study how the termination rate affects the delay distribution. We de-
crease k4 from 100 s−1 to 1 s−1, giving four cases numbered 3 and 7–9 in Table 1.
The corresponding delay probability distributions are shown in Fig. 9. It is inter-
esting that the distribution does not change much as k4 changes from 100 to 10 s−1,
while the distribution for case 9 in which k4 = 1 s−1 is quite different from those for
the other cases. Note that the curves in Fig. 9 are for the single-RNAP case. This
sudden change is associated with an even more dramatic alteration of the distri-
bution obtained from the multiple-RNAP simulations (symbols in Fig. 9). To see
why, Fig. 10 illustrates three transcription snapshots, respectively, corresponding

Fig. 9 Delay probability distributions for n = 1000, k1 = 1 s−1, k2 = k3 = 100 s−1 and different
termination probability rate constants k4. The solid and dashed curves were computed using the
integration method. The points connected by dotted curves were obtained by collecting statistics
from stochastic simulations of multiple-RNAP simulations with k̃0 = 5 s−1.
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Fig. 10 Snapshots of the DNA template strand during transcription. (a), (b), and (c) correspond
to the three cases k4 = 100 s−1, 10 s−1, and 1 s−1, respectively. The other parameters are set as
n = 1000, k̃0 = 5 s−1, k1 = 1 s−1, k2 = k3 = 100 s−1. The site is occupied by an RNAP if there is a
black point on that site; otherwise it is empty.

to k4 = 100, 10, and 1 s−1. For the lowest-termination rate case, we can see that
some RNAP molecules accumulate at the end of the strand. This phenomenon
is seldom observed at the higher values of k4. We should note that for the case
of k4 = 1 s−1, the independent-site assumption does not work any more because
RNAPs often accumulate at the end of the strand. Thus, we should use stochastic
simulation to get the correct delay distribution for these multiple-RNAP cases,
as was done in Fig. 9. For k4 = 1 s−1, the multiple-RNAP distribution spreads
much more than the single-RNAP distribution obtained from the site-oriented
Markov model. The mean delay and standard deviation are, respectively, about
25.66 and 4.1 s, compared with 22.06 and 1.47 s for the distribution obtained from
the site-oriented Markov model. Even at k4 = 10 s−1, the stochastic simulation and
site-oriented Markov model treatments start to diverge.

This sudden change is analogous to phase transition in road traffic (Nagatani,
2002), if viewing RNAPs as vehicles. It is a rather simple case which concerns only
single direction, one-dimensional road traffic. To see the phase transition more
clearly, we choose an order parameter and observe its change against k4. The or-
der parameter here is defined as the average number of the last 10 template sites
occupied by RNAP after a transient of 50 s. For the parameters of Fig. 9 except n =
100, we show in Fig. 11 the plot of the order parameter versus k4. We see three dif-
ferent regimes. For k4 > 2 s−1, the order parameter is nearly zero and its fluctuation
strength is low, indicating that RNAPs seldom accumulate at the end of the strand.
We call this mode 1. For 2 s−1 > k4 > 0.2 s−1, the order parameter suddenly changes
from ∼0 to ∼10 and the fluctuations in the order parameter become very large, in-
dicating that RNAPs now and then accumulate at the end of the strand. We call
this mode 2. Finally for k4 < 0.2 s−1, the order parameter is fixed around 10 and the
fluctuation strength abruptly drops, indicating that RNAPs finally occupy almost
all the sites on the strand, leading to a real traffic jam. We call this mode 3. Traffic
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Fig. 11 Plot of the order parameter against k4. The other parameters are n = 100, k̃0 = 5 s−1,
k1 = 1 s−1, k2 = k3 = 100 s−1. The order parameter is defined as the average number of the last 10
template sites occupied by RNAP 50 s after the initiation of transcription. For each value of k4,
100 samples are used to get the order parameter and standard deviation, the latter shown as error
bars. Note the logarithmic scale for the abscissa.

mode 2 is just the sudden phase transition between traffic modes 1 and 3. Note
the large increase in the size of the fluctuations in the order parameter in mode
2, a property which is commonly observed near phase transitions (Stanley, 1971).
Accordingly, we conclude that there exist two critical termination rates. Beyond
the higher one, the delay distribution does not change much on varying the ter-
mination rate (mode 1). However, below it, RNAP molecules tend to accumulate
at the end of the strand (mode 2), resulting in a broadening of the delay distribu-
tion and in an increase in the mean delay. As the termination rate continues to
decrease to the second critical value, RNAPs will finally occupy almost all the sites
(mode 3). Interestingly, it seems that RNAPs seldom, if ever, accumulate at the
end of the template strand in experimental observations (Miller and Beatty, 1969;
Miller et al., 1970). Thus, this phase transition probably would not be observable
under normal conditions. It might however be possible to observe it in vitro using
antibodies of differing binding affinities for the sequence in the termination region
of the template, thus slowing the effective termination rate.

Finally, we study the influence of elongation rate. There are two parameters, k2

and k3, associated to the elongation rate. According to the exact theory developed
in Section 3.1, the delay distribution is symmetric with respect to interchange of
these two constants. In Fig. 12, we verify that the site-oriented Markov model ap-
proximately reproduces this symmetry using cases 10: k2 = 100 s−1, k3 = 150 s−1;
and 11: k2 = 150 s−1, k3 = 100 s−1. The delay distributions are almost the same, fur-
ther validating the use of the site-oriented model in this parameter range. Now, we
increase both k2 and k3 from 100 to 200 s−1 (cases 3, 12, 13). As expected, the mean
value of delay distribution decreases obviously with increasing elongation rate.
The standard deviation doesn’t change much, however. In addition, the variation
coefficient, which measures the magnitude of the relative fluctuations, increases a
little with increased elongation rate.
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Fig. 12 Delay probability distributions for five cases with n = 1000, k1 = 1 s−1, k4 = 100 s−1 with
different probability elongation rate constants k2 and k3 given for each curve as an ordered pair.

In summary, the magnitude of relative fluctuations of transcriptional delay ob-
viously decreases as either n or k1 increases, and increases a little with increasing
k2 and k3, but is not much affected by k4 as long as RNAPs do not accumulate at
the end of the strand.

4.3. Transcript elongation rate

Two kinds of transcription elongation rates are measured in experimental studies:
long-term and short-term average rates. The long-term average rate is defined as
the ratio of the length of a mature transcript to its elongation time. The short-term
average rate is calculated in this way: The length of a small part of the transcript is
divided by the time it takes for the elongation of that part. The short-term average
rate is also called instantaneous rate. In fact, the two kinds of average rates can
have the same definition in our modeling: the ratio of the length of a transcript
to its elongation time. The transcript could be either long or short. Modifying the
length of a transcript is easily realized in our model by varying the number of sites,
n. In what follows, we denote the elongation rate by ω, and define the average rate
by ω = n/τ .

Given the relationship between the elongation rate and the transcriptional de-
lay, according to standard statistical theory, we can obtain the probability den-
sity for the elongation rate, ρ̄(ω), from the delay probability density, ρ(τ ), by
(DeGroot, 1975)

ρ̄(ω) = ρ (τ (ω))
∣∣∣∣

dτ

dω

∣∣∣∣ = ρ(n/ω)
n
ω2

. (30)

Thus we can use all the machinery developed to compute delay probability densi-
ties for the elongation rate distributions. In what follows, when there is no possi-
bility of ambiguity, we denote the distribution of elongation rates simply by ρ(ω).
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For the single-RNAP case studied above, we can convert the full transcription
model to a transcription elongation model by setting k1 = k3 and k4 = k2, reducing
the model to the two steps involved in elongation, namely activation and translo-
cation. In this part, we use the converted elongation model to study the elongation
process only, focusing especially on the probability distribution of elongation rate,
ρ(ω). Since k1 is now equal to k3, the former cannot be small enough to guarantee
the validity of the independent-site assumption. Thus, the elongation rate proba-
bility distributions from the site-oriented Markov model and stochastic simulation
are not in agreement any more, as illustrated in Fig. 13b and d. However, they
are not completely different. In particular, the shapes of the distributions, includ-
ing the standard deviations, are quite similar, and there is only a small shift in
the mean value. Therefore, we still use the site-oriented Markov model below to
obtain analytic insight into the elongation rate distribution.

While we have been unable to derive equations analogous to Eqs. (19) and (20)
for the elongation rate, we can obtain useful approximate equations from these
relationships. We think of 〈τ 〉 as the measurement of a mean with uncertainty �τ .
Using the usual rules for computing uncertainties of functionally related quanti-
ties, we obtain
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Fig. 13 Several stochastic simulation samples of transcript elongation for (a) n = 1000 and (c)
40, with probability rate constants k1 = k2 = k3 = k4 = 20 s−1. The corresponding probability dis-
tributions of elongation rate are shown in (b) and (d), respectively. Solid lines were obtained
from solutions of the site-oriented Markov model, and open circles by the stochastic simulation
algorithm.
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ω = n
〈τ 〉

(
1 ± �τ

〈τ 〉
)

. (31)

Since k1 = k3 and k4 = k2, Eqs. (19) and (20) reduce to 〈τ 〉 = α1n and �τ = √
β1n.

Thus,

〈ω〉 = n/ 〈τ 〉 = 1/α1 = (1/k2 + 1/k3)−1, (32)

and

�ω = n�τ
/〈τ 〉2 = β

1/2
1

α2
1

n−1/2 =
k2k3

√
k2

2 + k2
3

(k2 + k3)2 n−1/2. (33)

(The estimate (32) can be shown to be accurate to the extent that the difference
between 〈1/τ 〉 and 1/ 〈τ 〉 is negligible.)

We studied seven cases this time, which are listed in Table 2, together with the
corresponding mean values, standard deviations, and variation coefficients calcu-
lated by the integration method. For comparison, the mean rates and standard
deviations calculated by Eqs. (32) and (33) are also given in Table 2. We first
present cases 14 and 15, which have n = 1000 and 40, respectively. Comparing the
rate probability distributions of the two cases, which are shown with solid lines in
Fig. 13b and d, respectively, we can tell that the magnitude of the rate fluctuations
decreases obviously with increasing template strand length. To compare the two
cases further, we give Fig. 13a and c, respectively, showing several stochastic simu-
lation samples of transcript elongation. The fluctuations of each sample for case 15
are relatively stronger than those of each sample for case 14. For the case 14 with
n = 1000, each of those RNAP molecules almost move at a constant rate from
beginning to end of the transcription. Additionally, according to the rate distribu-
tion, the mean value of their elongation rates is 9.88 nt/s and the standard deviation
of the rate distribution is only 0.23 nt/s, indicating their transcripts experience al-
most the same characteristic elongation rate. This is consistent with Eq. (33), which
predicts that the standard deviation of the distribution of elongation rates should
decrease as n increases, as observed in the Figure.

Table 2. Seven cases presented in Section 4.3 studying the transcription elongation rate distri-
bution, together with the corresponding MVs, SDs, and VCs, which are calculated by the inte-
gration method

Case n k1 (s−1) k2 (s−1) k3 (s−1) k4 (s−1) MV (nt/s) SD (nt/s) VC

14 1000 20 20 20 20 9.88 (10.00) 0.23 (0.22) 0.023
15 40 20 20 20 20 9.60 (10.00) 1.16 (1.12) 0.12
16 40 60 20 60 20 14.22 (15.00) 1.95 (1.88) 0.14
17 40 20 60 20 60 14.82 (15.00) 1.89 (1.88) 0.13
18 40 40 40 40 40 19.20 (20.00) 2.31 (2.24) 0.12
19 40 200 20 200 20 17.26 (18.18) 2.71 (2.63) 0.16
20 40 20 200 20 200 18.40 (18.18) 2.70 (2.63) 0.15

Note. The MVs and SDs in parentheses are calculated by Eqs. (32) and (33), respectively.
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Briefly, in our single-molecule simulation experiments, every RNAP should
move at an almost constant rate as long as they follow the same kinetics, i.e. have
the same set of probability rate constants. Tolić-Nørrelykke et al. (2004) reported
in their single-molecule experiments of E. coli transcription that those characteris-
tic rates measured in a population of highly purified RNAP molecules are different
for different molecules. They used a ∼2650-bp DNA template in the experiments.
If the polymerases followed the same kinetics, the elongation rates for different
polymerases should have been almost the same according to our model. Thus, the
explanation of the experimental phenomenon is that each of the RNAP molecules
follows different kinetics, indicating that the elongation rates are heterogeneous.

Interestingly, another study reports a quite paradoxical result, i.e., that the elon-
gation kinetics of E. coli RNAP molecules is remarkably homogeneous (Adelman
et al., 2002). We should note that the instantaneous rate was used in the latter
study, i.e., a sample rate value is extracted from a 3 s averaging window of the
elongation. The average elongation rate obtained was about 12.0 nt/s. So, the av-
erage number of nucleotides transcribed in those 3 s averaging windows is about
36. To model this situation, we use a DNA template strand with n = 40. We study
6 cases (cases 15–20), which have different values of the elongation probability rate
constants. Their probability distributions of elongation rate are shown in Fig. 14.
See cases 15–18 first. It is obvious that the standard deviation of the rate distri-
bution increases with the increment of the mean rate. Note that the site-oriented
Markov model artifactually predicts a slightly different dependence of the mean
rate on k2 and k3 (cases 16 and 17). The availability of theoretical expressions
such as Eq. (32) is revealed to be an important feature of our model, to avoid
the over-interpretation of results derived from the site-oriented Markov model.
To further study this issue, we also present two extreme cases 19 and 20, where
k2 is either much smaller or larger than k3. We can see a significant difference
in the mean rates, while the predicted standard deviations and variation coeffi-
cients are quite similar. Thus, even in cases where the site-oriented model makes
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qualitatively incorrect predictions for the rates, it still predicts measures of disper-
sion rather accurately.

Adelman et al. (2002) also studied the statistics of elongation kinetics, and found
substantial heterogeneity, which they ascribed to differences in the kinetics of
pausing. We note that their Fig. 2 also suggests substantial differences in the shape
of the distribution for different polymerases at high transcription rates, again sup-
porting the interpretation that different polymerases have different kinetic param-
eters. Adelman et al. (2002) also show some typical time courses for transcription
(Figs. 1B and 2A of their paper) for a DNA template with n ≈ 2000. In Fig. 13a, we
show three simulation samples for a template with n ≈ 1000. Obviously, the three
experimental elongation processes from the study of Adelman et al. (2002) differ
from one another much more than the three simulations. It is doubtful that adding
pausing to our model would result in the degree of apparent heterogeneity seen in
the results of Adelman et al. (2002), although clearly this question requires further
investigation. As seen in the analysis of the experimental results, pausing causes an
added mode in the probability density peaking near zero. We tentatively conclude,
in agreement with Tolić-Nørrelykke et al. (2004), that RNAPs display considerable
population heterogeneity in their kinetic constants.

The experimental elongation rate distributions reported by Adelman et al.
(2002) for individual polymerase molecules are much broader than ours. There
could be many reasons for this difference. One factor which we neglected in our
model and which would tend to substantially broaden the distribution of instan-
taneous rates is sequence dependence. Other factors such as extrinsic sources
of noise may also contribute. However, the three distributions given in Fig. 2 of
Adelman et al. (2002) do agree with our simulations and analytical results in one
important way: As the mean rate increases, so does the standard deviation. (See
Eqs. (32) and (33), and imagine increasing either k2 or k3.)

The above modeling indicates that in a population of RNAP molecules follow-
ing the same kinetics, the strength of intrinsic fluctuations of elongation rate is
so small that individual RNAP molecules behave in a highly regular fashion for
larger numbers of base pairs of template DNA, say over 1000. Experimental ob-
servations of heterogeneity in elongation rates must then be due to differences in
the probability rate constants between transcription complexes.

5. Conclusions

Using an independent-site assumption, we obtained a reduced site-oriented model
whose predictions in many cases agree closely with results from the chemical mas-
ter equation or equivalent stochastic simulations. This reduction was not without
consequences. In particular, it destroyed the symmetry between k2 and k3 in sev-
eral theoretical expressions. (See for instance the exact single-jump delay distribu-
tion (12) and the corresponding Eq. (28) derived from the site-oriented Markov
model.) The differences between the two sets of results are typically small, but not
altogether negligible. These differences arise from the assumption of statistical in-
dependence among the sites used to close the exact site-oriented master equation
(23). In principle, more sophisticated closures could be used which would alleviate
some of the minor inaccuracies in our treatment.
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Most previous modeling work on transcription was based on relatively detailed
physical modeling of the mechanics (Uptain et al., 1997; Jülicher and Bruinsma,
1998; Wang et al., 1998) or thermodynamics (Bai et al., 2004) of elongation. By
contrast, our model treats transcription as a set of chemical rate processes with
characteristic stochastic rate constants. This level of description is appropriate for
understanding the results of experiments such as the transcript elongation rate
measurements discussed above. Moreover, our model contains a relatively small
number of parameters which could in principle be estimated by fitting model pre-
dictions to experimental data.

Our model omits many details of transcription. It does not explicitly consider
regulatory factors involved in the transcription process. Although our model
can account for short pauses (see Fig. 13c), no explicit mechanisms of blocking
events such as pausing, backtracking, and arrest are included in modeling of the
elongation process. The formation of an activated site is treated as a pseudo-first-
order process, when it in fact obviously involves the arrival of NTPs. Also, in
the elongation process, the probability rate constants for the two repeated events
are independent of the sequence. This is an idealization since, e.g., certain se-
quences promote pausing (Davenport et al., 2000). In addition, we view the RNAP
molecules moving on the DNA strand as points with no volume, i.e., they are con-
nected to the strand at just one nucleotide. The fact that, for realistic parameters,
the RNAPs are typically well separated makes this a reasonable starting point for
modeling. However, there is no doubt that allowing RNAPs to occupy multiple
nucleotide sites would make the effects of crowding on the template (e.g. the phase
transition in Fig. 11) appear sooner.

It would not be difficult to obtain a model comparable to our site-oriented
Markov model (25) which incorporated all of the factors mentioned above. For
instance, steric hindrance could easily be added by allowing each polymerase to
occupy more than one site. Using appropriate initiation rules, motion along the
template could be represented by keeping track of the front and rear ends of the
region occupied by the polymerase, as well as the location of the catalytic site:

Ai + Ui+δ+1 → Ui−η + Oi + Ci+1 + Oi+d+1. (34)

At the beginning of this step, the polymerase occupies sites i−η to i + δ, so all
sites in this range are marked as occupied (O), except for site i which is marked
active (A) to indicate that the polymerase’s active site is here and that the com-
plex is ready to step forward. After the step, the states of the end points and of
the former position of the active site have been updated to reflect the motion, and
the new position of the catalytic site is marked with state C, the latter being a new
feature of this extended model. While this model is no doubt a great deal more
realistic, the opportunities to derive analytic expressions for the delay and elonga-
tion rate statistics are correspondingly reduced. The same is true of other possible
model modifications. However, stochastic simulations carried out on modern high-
speed computers will always work. Our current model, which allows at least some
analysis, is thus an excellent base from which to determine the relative importance
of one or another complicating factor.
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We mentioned in the introduction that Lewis’s (2003) and Monk’s (2003) models
can show delay-driven oscillations in the quantities of some expressed proteins.
Both of these models involve time delays caused by transcription and transla-
tion. The above results show that the length of the DNA template strand strongly
controls the magnitude of relative fluctuations of the transcriptional delay. Con-
sidering the transcriptional delay only, it would be of interest to investigate
whether the oscillations can still be retained and how the delay fluctuations
affect the oscillatory dynamics in a stochastic framework, especially for short
template strands for which the relative magnitude of the delay fluctuations is
greater.

Our results also indicate that the initiation rate is a highly significant factor in
determining the magnitude of relative fluctuations in the transcriptional delay.
Here, the initiation rate is controlled by k1, i.e., the probability rate constant for
the transition from closed- to open- promoter complex. At low initiation rates,
the rate of RNA synthesis shows large fluctuations, the delay distribution sharp-
ening substantially at high initiation rates (Fig. 8). Cells might vary the rhythm of
gene expression by adjusting the initiation rate through feedback mechanisms. A
similar effect has also been seen in a recent stochastic simulation study of the mam-
malian circadian clock (Forger and Peskin, 2005). This detailed biochemical model
includes terms corresponding to transcription, translation, protein feedback, and
dimerization. It does not explicitly treat RNAP binding to promoters and sliding
along the DNA strand. It does however consider the activation time of genes, i.e.,
how long it takes for transcription to start, which corresponds to the inverse of the
initiation rate in our studies. Interestingly, irregular rhythms are obtained when
activation takes a long time, while regular and robust rhythms are obtained when
activation becomes quick.

In order to study the distribution of transcription elongation rate, we used a
transcription elongation model which was obtained directly from the full transcrip-
tion model. By analyzing the calculated rate distributions, we concluded that in a
population of RNAP molecules following the same kinetics, each of them almost
moves at a constant rate if the DNA template strand is sufficiently long. In a popu-
lation of highly purified RNAP molecules, with rare exceptions, individual RNAP
molecules were observed to move at a constant characteristic rate on a ∼2650-bp
DNA template (Tolić-Nørrelykke et al., 2004). This is consistent with our simula-
tion result. Additionally, Tolić-Nørrelykke et al. (2004) found that the character-
istic velocities are different for different molecules, displaying a broad, unimodal
distribution across the molecular population. Though our model does not delve
into the molecular details which would allow us to discuss why the RNAPs be-
have differently, it does provide the means to quantify how much of the widths of
the observed distributions are due to stochastic kinetics, and thus how much must
be due to population heterogeneity.

Some of the above results are obtained by analyzing the magnitude of relative
fluctuations of delay, which is measured by the variation coefficient of the de-
lay distribution. The magnitude of relative fluctuations is a significant indicator
in stochastic kinetics studies. In the early single molecule experiments, Svoboda
et al. (1994) studied the nanometer-sized steps taken by single molecules of the



1710 Bulletin of Mathematical Biology (2006) 68: 1681–1713

motor protein kinesin, by studying the magnitude of relative fluctuations in the
displacement of silica beads driven by them. Later, Schnitzer and Block (1995) ex-
tended the work of Svoboda and coworkers, and presented theoretical methods
for analyzing processive enzyme behavior. This is referred to as fluctuation anal-
ysis, and is the basis for our analysis of the chemical master equation. Note that
they referred to the magnitude of relative fluctuations as the randomness param-
eter, defined by r = (< τ 2 > − < τ >2)/< τ >2, which is the square of variation
coefficient of the distribution of τ . For a simple one-step elongation model, they
showed that the value of r decreases with increasing length of the DNA template
strand, which is consistent with the result obtained from our two-step elongation
model.

A transcription model, perhaps with some added controls, is adequate to study
the dynamics of functionally significant RNAs. However, most RNA transcripts
are in fact messenger RNAs which are further translated to protein. Accord-
ingly, a joint transcription-translation model would be of great interest. In outline,
translation is not all that different from transcription. Indeed, models of transla-
tion are in many ways analogous to those we studied here, and many of the issues
to be faced are the same (Drew, 2001; Heyd and Drew, 2003). We would there-
fore expect that the translation process itself would generate delay distributions
similar to those seen in this study. The overall transcriptional-translational delay
distribution would therefore be a convolution of two distributions, each with a
characteristic shape. In eukaryotes, these two processes occur independently in
separate compartments. A model for nuclear translocation of RNA from the nu-
cleus and of regulatory proteins back into the nucleus will thus be required to treat
this case. In prokaryotes, translation starts before transcription is complete. Ac-
cordingly, these two processes are not independent. There are of course other dif-
ferences, such as the splicing of exons and other transcript processing events which
occur exclusively in eukaryotes. It is not clear how these various factors affect the
distributions of protein synthesis delays after the receipt of initiation signals. In
modeling studies, we can not only compare the very different end results of the
evolution of the genetic apparatuses of prokaryotes and eukaryotes, but we may
also consider independently the various factors which affect the dynamics of tran-
scription and translation in these organisms. Accordingly, we may be able to say
something about the evolutionary pressures which act on these genetic systems,
particularly as these relate to the management of the inevitable fluctuations which
arise in the course of synthesizing RNA or proteins (McAdams and Arkin, 1999;
Smolen et al., 1999, 2000; Elowitz et al., 2002; Hasty and Collins, 2002).

Most models which include transcription-translation delays use a single-fixed de-
lay. As we have seen, for small peptides (many of which have regulatory roles) or at
low initiation rates, the delay distribution is relatively broader (Figs. 7 and 8), and
fixed delays may not be a very good approximation. It remains to be seen however
whether the use of fixed rather than distributed delays causes much more than mi-
nor quantitative differences in models. When the overall delay is sufficiently small,
it is known that even dramatic changes in the shape of the delay distribution have
very little effect on the qualitative behavior (Roussel, 1996; Roussel and Roussel,
2001). Related observations in the specific context of genetic regulatory models
have been made by Smolen et al. (2001) and by Monk (2003). However, genetic
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regulatory delays are not obviously small relative to the other time scales govern-
ing cellular function, such that we are on uncertain ground. Future investigations
of these issues should prove highly revealing.

Modeling studies which include distributed delays have often used gamma-
distributed delays, since these are reducible to a linear chain, i.e. to an ODE model
(Cooke and Grossman, 1982; MacDonald, 1989). We note briefly that Eq. (17) is
not a gamma distribution. Indeed, we have attempted to fit gamma distributions
to some of the data from our simulations. Clear deviations from a gamma distri-
bution were seen. Following our comments above, it of course remains to be seen
whether this makes any practical difference in simulations.

Finally, the heterogeneity in RNAP kinetics raises some difficult issues in the
modeling of operons in particular. The kinetic parameters of a single polymerase
could be treated as random variables. However, if a set of genes is transcribed seri-
ally by the same polymerase, their transcriptional delays will clearly be correlated.
It would be worthwhile to engage in some simple stochastic simulation studies of a
well-characterized operon in order to determine whether these correlations have
any effect on model dynamics.
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