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SUMMARY

Marine bacteria and archaea play key roles in global
biogeochemistry. To improve our understanding of
this complex microbiome, we employed single-cell
genomics and a randomized, hypothesis-agnostic
cell selection strategy to recover 12,715 partial ge-
nomes from the tropical and subtropical euphotic
ocean. A substantial fraction of known prokaryo-
plankton coding potential was recovered from a sin-
gle, 0.4 mL ocean sample, which indicates that
genomic information disperses effectively across
the globe. Yet, we found each genome to be unique,
implying limited clonality within prokaryoplankton
populations. Light harvesting and secondary metab-
olite biosynthetic pathways were numerous across
lineages, highlighting the value of single-cell geno-
mics to advance the identification of ecological roles
and biotechnology potential of uncultured microbial
groups. This genome collection enabled functional
annotation and genus-level taxonomic assignments
for >80% of individual metagenome reads from the
tropical and subtropical surface ocean, thus offering
a model to improve reference genome databases for
complex microbiomes.
INTRODUCTION

Unicellular, microbial life has been playing a central role in global

biogeochemical processes, ecosystem functioning, and the

health of multicellular organisms since its emergence >3.5 Gy

ago (Falkowski et al., 2008). Traditional, pure culture-based

microbiology techniques cannot represent the staggering de-

gree of microbial diversity that fills every imaginable life-sustain-

ing niche in the biosphere (Locey and Lennon, 2016; Rappé

and Giovannoni, 2003). Thus, studies of natural microbiomes

increasingly rely on cultivation-independent tools, in particular
C

the comparative sequence analyses of DNA, RNA, and protein

that are bulk-extracted from the environment (Handelsman,

2004; Sunagawa et al., 2015). The taxonomic and functional

annotation of suchmetagenomic, metatranscriptomic andmeta-

proteomic data (collectively referred to as ‘‘meta-omics’’) de-

pends heavily on the availability of suitable reference genomes.

Unfortunately, recent studies found that existing reference ge-

nomes represent only 5% and 0.4% of gene clusters in human

gut (Li et al., 2014) and marine (Sunagawa et al., 2015) metage-

nomes, respectively. The fraction of individual metagenomic

reads that can be recruited on reference genomes ranges from

<10% in the ocean to <1% in soils when using aR95% average

nucleotide identity (ANI) threshold (Nayfach et al., 2016), where

ANI in the range of 94%–96% is commonly used as an opera-

tional delineator of microbial species (Ciufo et al., 2018; Konstan-

tinidis and Tiedje, 2005; Konstantinidis et al., 2006). The paucity

of adequate reference genomes remains amajor limiting factor in

our ability to fully interpret the majority of meta-omics data from

most microbiomes.

Novel analytical approaches are being continuously devel-

oped to enhance the interpretation of meta-omics data.

Improved computational tools for de novo assembly and binning

of metagenomic reads into discernable units have revealed the

coding potential of many deep lineages of Bacteria and Archaea

from increasingly complex microbiomes (Anantharaman et al.,

2016; Tyson et al., 2004). However, the representation and accu-

racy of metagenome bins deteriorates at family and lower taxo-

nomic levels, resulting in frequent chimerism (Sczyrba et al.,

2017), likely due to a combination of technical constraints and

a high degree of cell-to-cell genomic diversity within the environ-

ment. For example, no medium-to-high quality bins could be

produced for Candidatus Pelagibacter (SAR11), the most abun-

dant lineage of marine planktonic bacteria, from global sets of

shotgun metagenomes (Delmont et al., 2018; Tully et al., 2018).

Furthermore, genomic bins from metagenomes often lack

rRNA operons, impairing their taxonomic positioning in the

context of rRNA-based phylogeny (Anantharaman et al., 2016;

Delmont et al., 2018; Tyson et al., 2004).

Single-cell genomics is an alternative approach for cultivation-

independent recovery of microbial genomes (Ishoey et al., 2008;
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Table 1. Overview of the GORG-Tropics Database

Metric

GORG-

Tropics

GORG-

BATS248a

Field samples 28 1

Sample volume analyzed, mL 3.1 0.4

SAGs sequenced 20,288 11,729

SAG assemblies R 20 kbp 12,715 6,236

SAG assemblies R 50% completion 4,741 2,533

SAG assemblies R 80% completion 1,040 637

SAGs with 16S rRNA recovery 5,536 2,442

Cumulative assembly, Mbp 8,122 4,094

Average genome recovery, % 38 39

Phyla of Bacteria and Archaea 20 12

Classes of Bacteria and Archaea 31 16

Orders of Bacteria and Archaea 43 23

Families of Bacteria and Archaea 55 33

Genera of Bacteria and Archaea 49 26
aGORG-BATS248 is a subset of GORG-Tropics and originates from a sin-

gle sample from the Sargasso Sea.
Kashtan et al., 2014; Stepanauskas, 2012; Woyke et al., 2017).

In contrast to metagenome assembly and binning, single-cell

genomics does not rely on the assumption of microbial popula-

tion clonality and instead produces genomic sequences of

individual cells. Earlier studies demonstrated that relatively

small single-cell genomics datasets, consisting of tens of partial

genomes, can substantially improve the recruitment of meta-

omics data from the ocean (Swan et al., 2013), soil (Choi et al.,

2017), and other environments (Garcia et al., 2018; Rinke

et al., 2013).

Here we evaluate the capacity of large-scale single-cell ge-

nomics to represent the genomic makeup of a complex, global

microbiome, the surface (epipelagic) ocean in tropical and sub-

tropical latitudes from 40�S to 40�N. Marine microorganisms

are of essential importance in geochemical cycling, nutrient

remineralization, and climate formation; they comprise one of

the largest microbiomes on Earth and have been extensively

explored by meta-omics approaches (Falkowski et al., 2008;

Giovannoni et al., 1990; Rusch et al., 2007; Sunagawa et al.,

2015; Venter et al., 2004). Using 28 epipelagic samples from

the tropical and subtropical Atlantic and Pacific oceans, for

which complementary metagenomics and targeted single-cell

genomics data have been reported previously (Berube et al.,

2018; Biller et al., 2018; Hewson et al., 2009; Malmstrom

et al., 2013), we generated and sequenced an untargeted li-

brary of single amplified genomes (SAGs) of planktonic bacteria

and archaea—prokaryoplankton. This dataset differs from

earlier single-cell genomics projects in both its large scale

and randomized, unbiased cell selection strategy, making it

suitable for quantitative data mining that is agnostic to the orig-

inal hypotheses of the study. Additionally, we employed an

improved flow cytometry technique to measure physical sizes

of the sequenced cells (Stepanauskas et al., 2017), thus adding

a new layer of information about the analyzed, uncultured

microorganisms.
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RESULTS

Prokaryoplankton Genomic Diversity
Of the 20,288 SAGs generated from the 28 environmental sam-

ples (Table S1), 12,715 SAGs (Table S2) produced >20 kbp

genome assemblies with no detectable contamination, resulting

in a cumulative assembly size of 8.1 Gbp (Table 1). We named

this dataset the Global Ocean Reference Genomes Tropics, or

GORG-Tropics, database. A subset of 6,236 GORG-Tropics

genomes, which we call GORG-BATS248, was obtained from

a single, 0.4 mL seawater sample aliquot from the Bermuda

Atlantic Time-series Study (BATS) station in the Sargasso Sea

to assess the coding potential of prokaryoplankton on local

versus global scales. On average, we estimate that 38% of

each cell’s genome was recovered. The GORG-Tropics data-

base is over an order of magnitude larger than previously re-

ported microbial single-cell genomics datasets (Berube et al.,

2018; Kashtan et al., 2014; Pachiadaki et al., 2017; Rinke et al.,

2013; Swan et al., 2013). By processing each genome individu-

ally, the risk of errors in de novo genome assembly and the

computational cost were minimized relative to metagenome as-

sembly and binning. This study required small sample volumes

(0.1 to 0.4 mL) and little processing in the field, which could facil-

itate the automation of sample collection in the future.

In order to assess the genome-level diversity of marine prokar-

yoplankton, we calculated the pairwise ANI among the 4,741

GORG-Tropics genomes with R50% estimated completion.

Most ANI values were <80%, indicating that few of the prokaryo-

plankton cells were closely related (Figure 1A). Only �9,500

(0.08%) of the >11 million genome pairs were found to belong

to the same, nominal ‘‘species,’’ as defined by the >96% ANI

cutoff that was recently adopted by the National Center of

Biotechnology Information (NCBI) (Ciufo et al., 2018). This high-

lights a disconnect between the current, nominal definitions of

microbial species on the one hand and the natural, yet poorly un-

derstood patterns of genomic variability and microevolution in

marine prokaryoplankton and other microbiomes.

None of the genomeswere identical to each other at the nucle-

otide level. Only 121 genome pairs (0.001%), 119 of which came

from GORG-BATS248, had an ANI >99.9%. In these 121 pairs,

the rate of nucleotide substitutions exceeded the rate ofmethod-

ological errors (Stepanauskas et al., 2017) by an order of magni-

tude, and the ratio of their non-synonymous versus synonymous

substitutions averaged �0.1, which is indicative of purifying

selection and cannot be explained by sequencing or assembly

errors. These 121 genome pairs also contained non-syntenic re-

gions that encompassed entire operons and putative prophages

(Figure 1B). We found the same regions with R80% nucleotide

identity in multiple other SAGs of the corresponding lineages

SAR11 surface group 1 (e.g., AG-913-O18) and S25-593 (e.g.,

AG-457-K09), but not in other microbial groups, which provides

further support for biological origins of these non-syntenic re-

gions rather than methodological artifacts. This vast microdiver-

sity across all lineages of marine prokaryoplankton expands on

the prior studies of Prochlorococcus, the most abundant photo-

troph in the ocean (Kashtan et al., 2014, 2017), as well as other

studies of large genome libraries (Good et al., 2017; Shapiro

et al., 2012; Wolf et al., 2016). Such genomic variability, which



Figure 1. Genomic Diversity among GORG-

Tropics SAGs

(A) Pairwise Average Nucleotide Identity (ANI) of

SAGs with estimated completeness of R50%. The

inset is an enlarged region of 85%–100% ANI. (B)

Examples of gene content differences among SAGs

with ANI >99.9%. Red bars indicate tRNA genes.

Sequence coverage depth is provided for the

aligned regions and ranges from 6 to >7,000.
includes both point mutations and gene content variation, likely

plays a major role in the collective functioning of complex micro-

biomes, their compositional dynamics in time and space, and re-

silience to environmental change.

A recent survey of all prokaryote genomes in NCBI databases

identified a pronounced discontinuity between >95% ANI values

found within named, nominal species and <83% ANI values

found in interspecies comparisons, which was interpreted as

an indication of evolutionary forces sustaining biological spe-

cies-like cohorts of bacteria and archaea (Jain et al., 2018). We

found no evidence for such discontinuity in GORG-Tropics (Fig-

ure 1A). This may indicate different patterns of microbial diversi-
Cel
fication in the ocean as compared to other

environments. Alternatively, the elevated

frequency of ANI >95% among genomes

currently held in NCBI may reflect non-

random genome sampling, with an over-

representation of a small number of medi-

cally relevant lineages that were selected

for sequencing based on the current, nom-

inal species definitions and isolation tech-

niques. The randomized cell selection

approach used in our study offers an unbi-

ased view of the genomic composition and

evolutionary dynamics of the analyzed

microbiomes.

Representation of Global
Prokaryoplankton by GORG-Tropics
We recruited individual reads of 119 pub-

licly available metagenomes from the

tropical and subtropical epipelagic (Table

S3) using a 95% nucleotide identity

threshold to gauge how much of global

prokaryoplankton diversity is represented

in GORG-Tropics. This recruited 6.3%–

72.6% (mean = 40.0%) of metagenome

reads, indicating that GORG-Tropics con-

tains a substantial fraction of the global

prokaryoplankton coding potential at

the nominal species resolution (Figure 2A).

An average of 58% recruitment could

be achieved by relaxing the nucleotide

identity threshold, demonstrating that

inter-study comparisons require uniform

methods (Figure 2B). We observed strong

metagenome fragment recruitment in the
Indian Ocean despite using only samples from the Atlantic

and Pacific to generate GORG-Tropics (Figure 2C). Metage-

nome recruitment was substantially lower, averaging 11%, in

temperate and polar waters (Figure S1). These patterns are

consistent with prior reports of water temperature and latitude

being the primary drivers of the global distribution of marine

planktonic bacteria, archaea and protists, and support the hy-

pothesis that microbes can be dispersed longitudinally over

long distances (Seeleuthner et al., 2018; Sunagawa et al.,

2015; Swan et al., 2013).

GORG-Tropics substantially improved the recruitment of pro-

karyoplankton metagenomes as compared to other available
l 179, 1623–1635, December 12, 2019 1625



Figure 2. Recruitment of Reads from Tropical and Subtropical Epipelagic Metagenomes

(A) Fraction of reads recruited from each of the 119 public metagenomes against the following genome databases: (I) GORG-Tropics (current study), (II) GORG-

BATS248 (current study), (III) all 98 marine isolates and SAGs sequenced by 2012 (Swan et al., 2013); (IV) 957 non-redundant metagenome bins from TARA

Oceans (Delmont et al., 2018); (V) 2,631 non-redundant bins from TARA Oceans with estimatedR50% completion and% 10% contamination (Tully et al., 2018);

(VI) 7,903 bins generated from all NCBImetagenomes (Parks et al., 2017); and (VII) all 3,726marine prokaryotic genomes in theMarDB database (Klemetsen et al.,

2018). Thresholds of R95% nucleotide identity and 100 bp alignment length were used in these analyses. (B) Fraction of reads recruited from each of the 119

public metagenomes against GORG-Tropics using various nucleotide identity thresholds and a minimum of 100 bp alignment length. (C) Geographic distribution

of recruitment against GORG-Tropics at nucleotide identityR95%. Circle centers correspond to metagenome collection location. Geographic coordinates can

be found in Table S1.
reference genome databases, including the recently published

genomes of 3,726 marine prokaryotes (Klemetsen et al., 2018)

and the complete sets of metagenome assembly bins produced

from either exclusively marine metagenomes (Delmont et al.,

2018; Tully et al., 2018) or all public metagenomes from diverse

environments (Parks et al., 2017) (Figure 2A). Even GORG-

BATS248, which consists of SAGs generated from a single,

0.4 mL water sample, outperformed metagenome bins that

were produced from the global set of metagenome reads that

was used in recruitment. This indicates that a substantial fraction

of the global coding potential of marine prokaryoplankton re-

sides in each tiny parcel of ocean water, due to effective mixing

on a global scale. The observed improvement of prokaryoplank-
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ton representation by GORG-Tropics likely depends on the abil-

ity of single-cell genomics to recover variable genome regions in

non-clonal populations. This corroborates our finding that close

relatives are rare among randomly sampled cells (Figure 1A).

Next, we analyzed how well GORG-Tropics represents the

global pool of prokaryoplankton coding sequences (CDS), which

was recently estimated to comprise approximately 40 million

clusters, based on the TARA Oceans shotgun metagenomics

data (Sunagawa et al., 2015). The co-clustering of CDS from

GORG-Tropics genomes and TARA Oceans tropical and sub-

tropical metagenomes produced �35 million clusters. About 1

million of these clusters, comprising 29% of all CDS, were

shared between GORG and TARA, including >99.9% of clusters



Figure 3. General Patterns in CDS Clusters

(A) CDS clusters shared between the GORG-Tro-

pics and TARA Oceans datasets, as a function of

cluster size. (B) Normalized density histogram of

protein sequence length in clusters with >10

CDS (green, n = 1,035,323) and singletons (blue,

n = 22,263,710). Clustering was performed on

combined GORG and TARA CDS. (C) Correlation of

the counts of sequences with three levels of EC

annotation in clustered CDS from GORG-Tropics in

clusters containing >10 members compared to

corresponding annotations within GORG-Tropics

singleton sequences. (D) Predicted protein size

distributions for annotated and unannotated gene

clusters from GORG-Tropics containing >10 se-

quences compared to GORG-Tropics singletons.
containing >1,000 CDS (Figure 3A). Thus, GORG-Tropics offers

genomic context to the majority of abundant coding sequence

clusters encoded by surface ocean prokaryoplankton in the tro-

pics and subtropics.

Notably, 97% of all clusters had <10 CDS, while 12% of

GORG-Tropics CDS and 24% of TARA CDS were singletons,

consistent with the prevalence of rare genes in microorganisms

from other environments (Wolf et al., 2016). We found that 56%

ofGORG-Tropics singletonswere also present in the TARAdata-

set, indicating that they are not artifacts of techniques employed

in single-cell genomics (GORG) or shotgun metagenomics

(TARA). Rare genes were not enriched in eukaryotic or viral se-

quences (Table S4), implying that most of them do not originate

from phage infections or contaminants from Eukarya. While the

overall length of CDS peaked at 200 amino acids (aa), singleton

length exhibited a bimodal distribution, with local maxima at

around 50 aa and 200 aa length (Figure 3B). Examining GORG

CDS specifically, we found no major differences in functional

composition between the annotated singletons and clusters

(Figure 3C). However, singletons were enriched in hypothetical

proteins (Figure 3B). On average, the hypothetical CDS were

shorter than CDS for which functional annotations could be

obtained in both singletons and clusters (Figure 3D). Annotated

singletons were not enriched in short CDS, providing no evi-

dence for incomplete or degrading genes of known function to

comprise a major part of rare genes in prokaryoplankton,

although difficulties in annotating degraded genes may play a

role. The distinct peak in abundance at 50 aa among unanno-

tated singletons suggests that rare prokaryoplankton CDS may

be enriched in short sequences of unknown function.

Lineage-Resolved Genome Features of Marine
Prokaryoplankton
Complete or near-complete 16S rRNA gene sequences were

recovered from 5,536 GORG-Tropics SAGs, enabling their taxo-
nomic assignment to 20 phyla, 31 classes, 43 orders, 55 families,

49 genera, and 1 species of bacteria and archaea. The general

taxonomic composition of GORG-Tropics is consistent with prior

explorations of marine prokaryoplankton using 16S rRNA sur-

veys and shotgun metagenomics (DeLong et al., 2006; Giovan-

noni et al., 1990), with the predominance of Proteobacteria,

Bacteroidetes and Cyanobacteria phyla, and with more than

one third of the cells belonging to the lineage SAR11 Surface 1

(Figure 4, Table S5). Our results also highlight the numeric abun-

dance of lineages such as AEGEAN-169 (4.8% of prokaryo-

plankton in the analyzed samples) that have received limited

attention so far (Reintjes et al., 2019). Importantly, many com-

plete and near-complete 16S rRNA genes from SAGs could

not be assigned to SILVA database’s taxonomic ranks: classes

(1.2%), orders (2.3%), families (11%), genera (72%), and species

(99.98%). This demonstrates that a large fraction of marine pro-

karyoplankton remains taxonomically uncharted.

Over 40 distinct, previously defined prokaryoplankton lineages

were represented by at least 10members in GORG-Tropics (Fig-

ures 4 and 5, Table S5). Many of these lineages have no or few

cultured representatives and no previously published genomes.

Our data indicate that most of the prevalent lineages have small

genomes (1-2 Mbp), low G+C content (29%–35%), and small

cell diameters (0.2-0.5 mm) (Figures 4 and S2). These findings

are consistent with previous reports of genome streamlining

and small cell sizes of the cultured isolates of SAR11, the most

abundant lineage of marine prokaryoplankton (Giovannoni,

2017). However, some lineages did not conform to this predom-

inant pattern. For example, Arctic 97B-4 (Verrucomicrobia),

OM60 (Gammaproteobacteria), KI89 (Gammaproteobacteria),

E01-9C-26 (Gammaproteobacteria), and the Roseobacter

cluster (Alphaproteobacteria) exhibited average genome sizes

>3Mbp, G+C content >45% and cell diameters >0.4 mm. This in-

dicates specialized ecological niches and divergent adaptations

among lineageswith streamlined and non-streamlined genomes.
Cell 179, 1623–1635, December 12, 2019 1627



Figure 4. General Characteristics of Prokaryoplankton Lineages Represented by R10 SAGs in GORG-Tropics

Phyla Marinamargulisbacteria, NBK19 and Chloroflexi were also included as individual lineages, although they contained <10 SAGs.

(A) Relationships among average cell diameter, average genome size and average G+C content.

(B) Relationships among SAG count, pangenome size, and average genome size.

(C) Accumulation of gene clusters in prokaryoplankton lineages as a function of genes added. Included are lineages with >100k genes in GORG-Tropics.

(D) Number of new gene clusters per each new SAG added to the database. Displayed are means for last 10 SAGs sampled for each lineage.
There was a positive correlation between cell size and genome

size among the prokaryoplankton lineages (Figure 4A), which is

in agreement with prior reports that examined non-marine envi-

ronments and used different methods (Sorensen et al., 2019).

This may be caused by both variables being constrained by se-

lective pressures toward streamlining in the pelagic environment

(Giovannoni et al., 2014). Prochlorococcus and unclassified

Synechococcaceae cyanobacteria formed some of the most

pronounced outliers in the relationship between cell size and

genome size, as they have small genomes (1.65 ± 0.12 and

1.64 ± 0.13 Mbp) despite comparatively large diameters

(0.55 ± 0.20 and 0.70 ± 0.23 mm), which may be required to

accommodate the photosynthetic machinery. On the opposite

end of the spectrum, Verrucomicrobia lineage Arctic 97B-4

and Alphaproteobacteria lineage Roseobacter had similar or

smaller cell size estimates than Prochlorococcuswhile possess-

ing >4 Mbp genomes, with their larger genomes likely reflecting

elevated metabolic versatility.

The number of CDS clusters encoded by specific lineages

(pangenome size) correlated positively with the number of

SAGs in a lineage, indicating that we have not exhausted pange-

nomes of any of these lineages (Figure 4B). The largest pange-

nome (�100,000 clusters) was recovered from the most
1628 Cell 179, 1623–1635, December 12, 2019
abundant lineage SAR11 Surface 1, despite their individual

genome size averaging only 1.3 Mbp (Table S5). However,

lineages containing larger genomes tended to have a greater

slope in the pangenome size relative to each new genome added

to the analysis (Figures 4B and 4C). Most of the rare clusters are

lineage-specific, displaying narrow phylogenetic distributions,

and most of the genes in large pangenomes are rare (Table

S5). Remarkably, we observed no signs of exhausting the pan-

genome pools of these lineages, with an average of �45 new

clusters added with each new SAG sequenced in lineages repre-

sented by >200 SAGs (Figures 4C and 4D).

Coding Potential for Carbon and Nitrogen Fixation
Microbial fixation of C and N into reduced, biologically acces-

sible forms is essential to the productivity of marine ecosystems.

By screening GORG-Tropics for key genetic markers, we identi-

fied the presence of ribulose-1,5-bisphosphate carboxylase/

oxygenase (RuBisCO) form I genes, indicative of CO2 fixation

via the Calvin-Benson-Bassham cycle, in Cyanobacteria and in

several lineages of Proteobacteria (Figure 5, Figure S3, Table

S5). We identified RuBisCO form IC/D, the thiosulfate-induced

cytochrome soxAX, and bacteriochlorophyll genes in the Al-

phaproteobacteria lineage Ca. Luxescamonaceae, confirming



Figure 5. Lineage-Resolved Genomic Potential for RuBisCO, Bacteriochlorophyll and Secondary Metabolites in the Context of the 16S rRNA

Gene Phylogeny

Pie charts indicate relative abundances of metabolite clusters among genomes with at least one cluster within each lineage. The type of biosynthetic system is

provided by color-coding and reflects a binning of antiSMASH biosynthetic gene cluster types in parentheses: Terpenes (terpene); Bacteriocins (bacteriocin and

bacteriocin-terpene); Polyketides (T1pks, T1pks-nrps, T1pks-PUFA, T1pks-PUFA-otherks, T1pks-otherks, T3pks, phosphonate-T3pks-terpene, otherks-bu-

tyrolactone-nrps, transatpks, and otherks); Arylpolyenes (arylpolyene); Phosphonates (phosphonate and phosphonate-terpene); Ecotines (ectoine); Lasso-

peptide (lassopeptide); Microcin (microcin); Non-ribosomal peptides (nrps, bacteriocin-nrps and lantipeptide-nrps); N-acyl homoserine lactones (hserlactone);

and Other metabolites (acyl amino acids, ladderane, lantipeptide, nucleoside, PUFA, resorcinol, siderophore, and other). Expanded analyses of secondary

metabolite biosynthetic potential are provided in Tables S2 and S5. The phylogenetic tree was constructed using MEGA X (Kumar et al., 2018). Secondary

metabolite gene clusters were predicted with antiSMASH 4.2.0 (Blin et al., 2017).
the recent findings by Graham et al. (2018). This suggests that

Ca. Luxescamonaceae may be capable of anoxygenic photo-

synthesis using reduced sulfur compounds as electron donors,

in contrast to the well-documented process of anoxygenic pho-

totrophy that does not result in net CO2 fixation (discussed

below). The composition of GORG-Tropics SAGs implies that
Ca. Luxescamonaceae comprise �1.1% of prokaryoplankton

in tropical and subtropical epipelagic samples (Figure S2, Table

S5) and are an order of magnitude more abundant than initially

proposed (Graham et al., 2018). Additionally, both RuBisCO

and bacteriochlorophyll genes were detected in two Parahaliaea

(Gammaproteobacteria) SAGs. The discovery of two potential
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photolithotrophic lineages, one of which is rather abundant, is

unexpected because anoxygenic photosynthesis is thought to

rely on reduced sulfur compounds, which are found in low con-

centrations in oxygenated ocean (Ksionzek et al., 2016). Further

studies will be required to confirm and quantify the genomics-

predicted involvement of Ca. Luxescamonaceae and Paraha-

liaea in anoxygenic photosynthesis.

The presence of genes for sulfur oxidation and RuBisCO indi-

cated the potential for chemoautotrophy in lineages SAR324,

Litoricola and ZD405 (Table S5). This is consistent with previous

observations that sulfur oxidation-based chemoautotrophy is

prevalent in the oxygenated ocean below the epipelagic region

(Swan et al., 2011). Intriguingly, SAR11, which constitute a

major fraction of marine prokaryoplankton, require reduced sul-

fur compounds for heterotrophic growth (Tripp et al., 2008).

Collectively, this indicates a greater role for reduced sulfur in

the biogeochemistry of oxygenated ocean than is currently

assumed, potentially operating through cryptic cycles similar

to those in hypoxic zones (Canfield et al., 2010).

Photoheterotrophic light harvesting via rhodopsin and bacte-

riochlorophyll, which does not involve net carbon fixation, is uti-

lized by aquatic microorganisms as a supplementary source of

energy (Béjà et al., 2000; Koblı́�zek, 2015; Pinhassi et al., 2016).

We found rhodopsin genes in 58% of all SAGs. Considering

the 38% average genome recovery in GORG-Tropics SAGs

(Table 1), this finding suggests that most prokaryoplankton

cells in the analyzed samples had the potential for photohetero-

trophy. Among lineages with >10 SAGs, these genes were only

absent from Nitrosopumilales (Thaumarchaeota), Arctic97B-4

(Verrucomicrobia) and Cyanobacteria. Furthermore, bacterio-

chlorophyll and type-II photochemical reaction centers, but not

CO2 fixation pathways, were identified in Roseobacter (Alphap-

roteobacteria), OM60 (NOR5) (Gammaproteobacteria) and some

rare lineages (Table S5). This reinforces the prevalence of non-

photosynthetic harvesting of solar energy in prokaryoplankton,

which was recently suggested to absorb a similar amount of so-

lar energy as chlorophyll-a-based phototrophy (Gómez-Consar-

nau et al., 2019).

We found no evidence for N2 fixation pathways in any of the

analyzed SAGs, including 17 members of the Planctomycetes

phylum. This stands in contrast to a recent report of planktonic

Planctomycetes being involved in nitrogen fixation (Delmont

et al., 2018) and suggests that the capacity for nitrogen fixation

among free-living prokaryoplankton in the oxygenated epipe-

lagic waters of the tropical and subtropical ocean is rare, as

might be expected from the high demand for energy and Fe

and the sensitivity to O2 of this process. In agreement with the

established role of Thaumarchaeota in ammonium oxidation

(Francis et al., 2005; Könneke et al., 2005; Wuchter et al.,

2006), we found ammonia monooxygenase genes in Nitrosopu-

milales (Table S5). No SAGs contained the genes required for

commamox, the complete oxidation of ammonia to nitrate

(Daims et al., 2015), suggesting that commamox is likely not sig-

nificant in the euphotic, oxygenated, tropical ocean. Similarly, no

SAGswere found to contain nitrite oxidoreductase, in agreement

with previous studies reporting that nitrite oxidizing bacteria are

scarce in the euphotic ocean, since they are outcompeted by

phytoplankton (Smith et al., 2014; Zakem et al., 2018).
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Respiratory nitrate reductase (narG) and nitrous oxide reduc-

tase (norZ), indicative of denitrification, were found in a small

number of SAGs. narG was detected in genomes belonging to

Alphaproteobacterial lineage Roseobacter and Gammaproteo-

bacteria lineages SAR92 and ZD405, while nosZ was recovered

in Bacteroidetes lineages Marinoscillum, NS2b, NS4, NS5 and

NS9. All but one of the genomes encoding denitrification genes

originated from a single, oxygen-depleted sample in the East

Tropical South Pacific (Table S1) suggesting a localized distribu-

tion. Cosmopolitan lineages likely adapt to local low oxygen

conditions by acquiring genes that enable the use of alternative

electron acceptors, as shown recently for SAR11 (Tsementzi

et al., 2016). These findings highlight the utility of large-scale,

randomized single-cell genomics to identify the potential of spe-

cific microbial lineages to contribute to biogeochemically impor-

tant processes.

Lineage-Resolved Biosynthetic Gene Clusters
Secondary metabolites are important in microbial ecology and

are utilized by humans as sources of antibiotics, anti-cancer

drugs and other therapeutic compounds (Fenical and Jensen,

2006; Gerwick and Moore, 2012). To date, secondary metabo-

lites in bacteria associated with marine sediments, corals, tuni-

cates, and sponges have received the most attention, while

studies of prokaryoplankton have been limited in phylogenetic

scope, and primarily focused on cultivated isolates (Fenical

and Jensen, 2006; Gerwick and Moore, 2012). In an effort to

bridge this knowledge gap, we applied the genome mining tool

antiSMASH (Blin et al., 2017) on the GORG-Tropics dataset.

This uncovered, in a quantitative and phylogenetically resolved

manner, a remarkably diverse suite of predicted gene clusters

for the biosynthesis of terpenes, bacteriocins, polyketides, aryl-

polyenes, phosphonates, lassopeptides, microcins, ectoines,

non-ribosomal peptides, N-acyl homoserine lactones and other

secondary metabolites (Figure 5, Table S5).

Although Actinobacteria from soils and marine sediments

have served as the primary microbial source of bioactive com-

pounds in biotechnology (Rigali et al., 2018), we found that the

two most abundant Actinobacteria lineages in marine prokaryo-

plankton are among the most deplete in biosynthetic gene clus-

ters (Figure 5, Table S5). Only terpene synthesis clusters were

found in the Sva0996 lineage, while no recognizable biosynthetic

clusters were found in Actinomarina. This is consistent with the

genome sizes of Actinomarina and Sva0996 being some of the

smallest among prokaryoplankton lineages (Figures 4 and S2,

Table S5), although we cannot exclude the possibility that

some secondary metabolite clusters escaped detection. Inter-

estingly, some of the uncultured lineages, such as SAR324 (Del-

taproteobacteria), Arctic97B-4 (Verrucomicrobia) and Marina-

margulisbacteria (Margulisbacteria) encoded among the most

diverse sets of biosynthetic clusters, which suggests potential

targets for future studies.

Terpene clusters were found in most prokaryoplankton line-

ages (Figure 5, Table S5), in agreement with a recent report

identifying them in many bacterial genomes in public databases

(Yamada et al., 2015). Of particular relevance in terms of thera-

peutic potential was the observed diversity of polyketide syn-

thase genes (PKSs), constituting markers of one of the major



Figure 6. Fraction of Independently Derived Mock Metagenome

Reads from Tropical (A) and Temperate (B) Epipelagic with Correct

and Incorrect Taxonomy and Function Assignments Using GenBank

nr versus GORG-Tropics Databases

Kaiju (Menzel et al., 2016) was used for all taxonomy assignments and for the

assignment of functions based on the GORG-Tropics database. Prokka

(Seemann, 2014) was used for the functional annotation of GORG-Tropics and

mock metagenome reads.
classes of natural products (Helfrich et al., 2019; Hertweck,

2009). Many of the Type I PKS systems shared >80% identity

with known PKS-type polyunsaturated fatty acid (PUFA) syn-

thases, which have commercial markets for both prescription

drug and nutraceutical applications (Calder, 2015). Several

Type I PKS pathways contained conserved 4’-phosphopante-

theinyltransferases (PPTases), particularly those from the Sfp su-

perfamily specific for secondary metabolism (Beld et al., 2014).

An interesting example of a modular type I PKS cluster was

found in SAG AG-912-B08, where the presence of trans-acyl-

transferase (AT) domains suggested the potential biosynthesis

of macrolides, a class of natural products well known for thera-

peutic utility (Karpi�nski, 2019) but with unknown function in the

oceans. The GORG-Tropics SAGs also contained multiple

hybrid, non-ribosomal peptide synthase (NRPS)-Type I PKS

and trans-AT PKS systems, natural product classes that have

demonstrated utility as antibiotics and chemotherapeutics

(Amoutzias et al., 2016; Helfrich et al., 2019; Hertweck, 2009).

Several of the NRPS pathways, e.g., in the Bacteroidetes SAG
AG-313-C05, displayed biosynthetic elements for siderophores,

small molecule iron chelators secreted to scavenge growth-

limiting metals (Hider and Kong, 2010). This is just a small selec-

tion of the thousands of biosynthetic gene clusters identified in

the GORG-Tropics SAGs.

The observed abundance and diversity of biosynthetic clus-

ters in marine prokaryoplankton is surprising, considering their

generally small genomes (Figures 4 and S2, Table S5) and dilute

environment, where intercellular communication and warfare

may be less effective than in biofilms and other, more crowded

settings. Thus, consideration should be given to the potential

for the products of these biosynthetic clusters to play yet un-

known, intracellular and intercellular roles. The general patterns

highlight how large-scale single-cell genomics enables a

methodical exploration of biosynthetic capabilities of uncultured

microorganisms. Our findings may facilitate the generation of

new hypotheses leading to novel insights into the roles of sec-

ondary metabolites in microbial interactions in nature as well

as translate practical applications for biotechnological and me-

dicinal applications. Cultivation-independent research tools are

becoming essential in studies of chemical ecology and bio-

prospecting (Gerwick and Moore, 2012; Harvey et al., 2015). In

contrast to meta-omics, single-cell genomics recovers complex

biosynthetic clusters from an individual cell, which may improve

the characterization of variable regions of these clusters, ensure

the compatibility of co-dependent genes and help selecting suit-

able heterologous expression systems as well as aid in the

design of more effective methods for laboratory culturing.

GORG-Tropics as a Reference Database for
Prokaryoplankton Meta-omics
To improve the utility of this dataset, we created a computational

pipeline - the GORGClassifier - which facilitates interpretation of

meta-omics data using the GORG-Tropics SAGs as a reference.

This tool integratesGORG-Tropics into Kaiju (Menzel et al., 2016)

to produce taxonomic and functional annotations of shotgun

metagenomes, metatranscriptomes and metaproteome peptide

sequences. Evaluation of the performance of the GORG Classi-

fier was conducted by analyzing pre-annotated, mock metage-

nomes of prokaryoplankton from the tropical versus temperate

epipelagic ocean. Mock metagenomes were produced by

generating new, randomized SAG datasets separate from

GORG-Tropics, and then computationally shredding them to

imitate Illumina shotgun reads. These mock metagenomes

were analyzed with the GORG Classifier, with either GORG-

Tropics or the NCBI non-redundant database (nr) serving as a

reference database. The taxonomic and functional assignments

obtainedwere compared to the values expected from the source

SAG annotations.

We found that the GORG-Tropics database substantially

improved the sensitivity and accuracy of both taxonomic and

functional assignments of the tropical epipelagic mock metage-

nome reads (Figure 6A). The accuracy of taxonomic assignments

was improved at all levels, with lower taxonomic levels showing

the greatest improvement. For example, GORG-Tropics enabled

correct genus-level classification of 83% reads while keeping

the error rate at <0.1%, as compared to only 28% reads

accurately classified with the NCBI nr database. The functional
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assignments showed an even more dramatic improvement,

where GORG-Tropics enabled accurate annotation of 86%

reads, as compared to only 0.15% reads being correctly

annotated with Prokka (Seemann, 2014). This workflow enables

both functional and taxonomic annotation of individual, short

reads without the computationally expensive and error-prone

assembly and binning steps, while retaining the quantitative

aspect of raw read data. The annotation improvements offered

by GORG-Tropics were limited to mock metagenomes from

the tropical and subtropical epipelagic ocean and did not

extend into temperate regions, where erroneous taxonomic

assignments were prevalent with both nr and GORG-Tropics

databases (Figure 6B). This is consistent with the global

patterns of metagenome fragment recruitment in this study

(Figure 2) and earlier findings of prokaryoplankton differing

among tropical, temperate and polar regions, as well as the

deep ocean (DeLong et al., 2006; Mende et al., 2017; Swan

et al., 2011, 2013).

DISCUSSION

Our expansive, randomized single-cell genomics approach

enabled quantitative analyses of the distribution of hereditary

material in prokaryoplankton of tropical and subtropical epipe-

lagic ecosystem, a complex microbiome that plays a key role

in global biogeochemical cycles, in unprecedented detail. We

found all 12,715 sequenced cells to be genomically unique and

a large fraction of them taxonomically uncharted. We also

observed a substantial portion of the global prokaryoplankton

pangenome in a single, 0.4 mL ocean water sample. These find-

ings provide a new perspective on the genomic complexity and

organization of microbiomes in nature. In particular, each cell’s

genomic uniqueness offers possible explanations for the large

pangenomes ofmarinemicrobial lineages and challenges in their

separation into metagenome bins.

The approach we employed here enabled the first methodical,

lineage-resolved survey of gene clusters involved in energy, ni-

trogen and secondary metabolisms. This confirmed an earlier

finding of the genomic potential for aerobic anoxygenic photo-

synthesis in Ca. Luxescamonaceae, and showed that this line-

age of Alphaproteobacteria is substantially more abundant

than previously thought. The abundance and diversity of the

identified biosynthetic clusters suggested an importance of

secondary metabolites in the dilute environment of free-living

prokaryoplankton and offered a bioprospecting roadmap for

biotechnology applications.

Utilized as a reference database, GORG-Tropics enabled ac-

curate assignment of both taxonomy and predicted functions to

the majority of individual metagenome reads from the tropical

and subtropical epipelagic, which was not possible before. We

expect the GORG-Tropics to serve as a useful resource for ma-

rine microbiology. We also propose that randomized single-cell

genomics should serve as a new, instrumental approach for

studies of soil, plant, mammalian and other microbiomes in order

to fill our major knowledge gaps about these important microbial

players in the functioning of diverse ecosystems and macroor-

ganisms, as well as in climate change and other global pro-

cesses (Cavicchioli et al., 2019).
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onté, J.M., Becraft, E.D., Brown, J.M., Pachiadaki, M.G., Povilaitis, T., et al.

(2017). Improved genome recovery and integrated cell-size analyses of indi-

vidual uncultured microbial cells and viral particles. Nat. Commun. 8, 84.

Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar,

G., Djahanschiri, B., Zeller, G., Mende, D.R., Alberti, A., et al.; Tara Oceans co-

ordinators (2015). Ocean plankton. Structure and function of the global ocean

microbiome. Science 348, 1261359.

Suyama, M., Torrents, D., and Bork, P. (2006). PAL2NAL: robust conversion of

protein sequence alignments into the corresponding codon alignments. Nu-

cleic Acids Res. 34, W609-12.

Swan, B.K., Martinez-Garcia,M., Preston, C.M., Sczyrba, A., Woyke, T., Lamy,

D., Reinthaler, T., Poulton, N.J., Masland, E.D.P., Gomez, M.L., et al. (2011).

Potential for chemolithoautotrophy among ubiquitous bacteria lineages in

the dark ocean. Science 333, 1296–1300.

Swan, B.K., Tupper, B., Sczyrba, A., Lauro, F.M., Martinez-Garcia, M., Gonzá-
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mapdata (R package) Multiple developers https://cran.r-project.org/web/packages/mapdata/index.html

MMseqs2 version 7.4e23d Steinegger and Söding, 2017 https://github.com/soedinglab/MMseqs2

seaborn (Python package) Multiple developers https://seaborn.pydata.org

matplotlib (Python package) Hunter, 2007 https://matplotlib.org

fastANI Jain et al., 2018 https://github.com/ParBLiSS/FastANI

BLASTP Gish and States, 1993 https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=

BlastDocs&DOC_TYPE=Download

Clustal Omega Sievers et al., 2011 http://www.clustal.org/

PAL2NAL Suyama et al., 2006 https://github.com/LANL-Bioinformatics/PhaME/blob/master/

src/pal2nal.pl

PAML4.8 Yang, 2007 https://github.com/etetoolkit/ext_apps/tree/master/src/paml4.8

Kaiju Menzel et al., 2016 https://github.com/bioinformatics-centre/kaiju

gorg-classifier This paper https://github.com/BigelowLab/gorg-classifier

randomreads.sh bbmap version 38.22 Brian Bushnell, JGI https://github.com/BioInfoTools/BBMap/blob/master/sh/

randomreads.sh
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources, reagents, and scripts should be directed to and will be fulfilled by the Lead Contact,

Ramunas Stepanauskas, (rstepanauskas@bigelow.org).

This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Field sample collection
Aquatic samples were collected using Niskin bottles from the epipelagic zone at 20 tropical and subtropical locations in the Pacific

and Atlantic oceans (Figure 2A; Table S1). 1-2 mL aliquots of raw seawater were transferred to sterile cryovials, amended with 10%

(final concentration) glycerol for cryoprotection, flash-frozen in liquid nitrogen, and stored at �80�C.

METHOD DETAILS

Single amplified genome (SAG) generation
The generation, sequencing, de novo assembly, annotation and quality control of SAGswere performed at the Bigelow Laboratory for

Ocean Sciences’ Single Cell Genomics Center (scgc.bigelow.org). First, we utilized SAGs generated in an earlier study (Berube et al.,

2018), where one 384-well microplate of SAGswas generated from 24 field samples (Table S1). Additional SAGswere generated from

four samples collected during the cruise BULA (Table S1), one microplate per sample. The cryopreserved seawater samples were

thawed and pre-filtered through a 40 mm mesh size cell strainer (Becton Dickinson). In order to discriminate heterotrophic bacteria

and extracellular particles, seawater samples were incubated with the SYTO-9 DNA stain (5 mM final concentration; Thermo Fisher

Scientific) for 10-60 min, after which the particle green fluorescence (proxy for nucleic acid content), light forward scatter (proxy for

size), and the ratio of green versus red fluorescence (for improved discrimination of cells from detrital particles) were used to define

the sort gate. Fluorescence-activated cell sorting (FACS), cell diameter determination, cells lysis and whole genome amplification

with WGA-X were performed as previously described (Stepanauskas et al., 2017).

To gain a deeper understanding of prokaryoplankton coding potential within a single sample, 37 additional microplates of SAGs

were generated from a single cryovial of sample BATS248. Twenty of these plates were generated by cell sorting based on the

SYTO-9 stain as above, but the sort gate was inclusive of particles with fluorescence spectra typical to Synechococcus. Ten of

the additional BATS248 microplates were produced after cell labeling with an alternative probe RedoxSensor Green (1 mM final con-

centration for 20-40 min at room temperature; Thermo Fisher Scientific), which targets viable cells (Stepanauskas et al., 2017). The

final seven supplementarymicroplates of BATS248were generated by sorting particles that fell below the typical prokaryote sort gate

on the SYTO-9 fluorescence axis. For all but five prokaryoplankton lineages there was no statistically significant difference in the rela-

tive abundance among SAGs generated with SYTO-9 and RedoxSensor Green probes (Welsh two sample t test, p > 0.5; Figure S5).

However, to avoid potential methodological biases, only SAGs that were generated with the SYTO-9 stain and the typical prokaryo-

plankton sort gate were used in the quantitative analyses of prokaryoplankton lineages. All 37 supplementary BATS248 SAG plates
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and all four plates of equatorial SAGs from the BULA expedition were generated with an extended spectrum of index FACS size cali-

bration (Stepanauskas et al., 2017), which included a Pelagibacter ubique calibration culture, allowing us to accurately size prokary-

ote cells in the range of 0.2-2.0 mm.

Sequencing and de novo assembly of SAGs
All SAGs were subject to Low Coverage Sequencing (LoCoS) (Stepanauskas et al., 2017), after which 150 SAGs with lowest Cp

values from each plate were selected for deeper, post-LoCoS sequencing. While LoCoS generated a variable number of

23150bp reads per SAG, with an average of �300k, the post-LoCoS sequencing produced >2M reads for each selected SAG.

The goal of this selection and sequencing strategy was to dedicate a deeper, post-LoCoS sequencing effort to a taxonomically un-

biased set of SAGs with the highest potential for good genome recovery, based on the previously observed negative correlation

between WGA-X Cp and subsequent genome recovery (Stepanauskas et al., 2017). We found no significant taxonomic differences

between SAGs with high and lowWGA-X Cp values, providing indications that this strategy does not introduce compositional biases

during this selection process (X2-test, p > 0.05; Figure S6). SAG paired-end libraries were created with Nextera XT kits (Illumina),

sequenced with a NextSeq 500 (Illumina) and de novo assembled using a workflow utilizing SPAdes (Bankevich et al., 2012), as pre-

viously described (Stepanauskas et al., 2017). The quality of the sequencing reads was assessed using FastQC and the quality of the

assembled genomes was assessed using checkM (Parks et al., 2015) and tetramer frequency analysis (Woyke et al., 2009). This

workflow was previously evaluated for assembly errors using three bacterial benchmark cultures with diverse genome complexity

and %GC, indicating no non-target and undefined bases in the assemblies and average frequencies of mis-assemblies, indels

and mismatches per 100 kbp being 1.5, 3.0 and 5.0 (Stepanauskas et al., 2017).

Although the single-cell genomes in this dataset were screened for contamination introduced during cell sorting and DNA ampli-

fication, users should be aware that these screening procedures may not completely eliminate the potential for multiple genomes

being present in the same assembly. Some SAGs, for example, may be derived from cells infected with a bacteriophage (i.e., viro-

cells) and thus contain both host and virus genomes. Other single cells may contain multiple genomes due to a close physical as-

sociation between two cells that resulted in co-sorting and co-amplification of DNA.

Taxonomic and functional annotation of SAG assemblies
16S rRNA gene regions longer than 500 bpwere identified using local alignments provided by BLAST against CREST’s (Lanzén et al.,

2012) curated SILVA reference database SILVAMod v128 and taxonomic assignments were based on a reimplementation of

CREST’s last common ancestor algorithm. The taxonomic assignments were used to group SAGs into lineages. Lineage clustering

was performed by grouping SAGswith the same SILVA affiliation and the name of lineages correspond to their name of lowest rank in

SILVA. In this manuscript, we report lineages that have 10 or more representatives, with the exception of SAR202, Marinamargulis-

bacteria and NKB19. The latter lineages have fewer than 10 representatives. Marinamargulisbacteria were initially annotated as

ML635J-21 Cyanobacteria (k__Bacteria;p__Cyanobacteria;c__ML635J-21;o__?;f__?;g__?;s__?) and NKB19 did not receive taxo-

nomic annotation below Superkingdom level (k__Bacteria;p__?;c__?;o__?;f__?;g__?;s__?). For these two lineages, near full-length

16S rRNA gene sequences were aligned using the SINA aligner (Pruesse et al., 2012) with a curated Bacterial domain 16S rRNA

gene phylogeny clustered at an operational taxonomic unit (OTU) threshold of R85% nucleotide identity. Maximum-likelihood

(ML) phylogenies were created with MEGA 6.0 (Tamura et al., 2013) using the General Time Reversible (GTR) Model, with Gamma

distribution with invariable sites (G+I), and 95% partial deletion for 100 replicate bootstraps. If the SAG 16S rRNA gene sequence

hadR85%nucleotide identity to an unclassified 16S rRNAgene sequence in the database, and phylogenetically clusteredwith those

sequences (i.e., shared a monophyletic node), it was classified as the corresponding candidate phylum.

For Unclassified Rhodobacteraceae, a phylogenetic approach to refine the taxonomy was also applied. TheR1,300 bp 16S rRNA

gene sequences of the 84 SAGs that were initially annotated as ‘‘Rhodobacteraceae Unclassified’’ by CREST were combined with

222 cultured representatives of various Alphaproteobacteria families, aligned using SINA (Pruesse et al., 2012), and used to construct

a ML tree with RAxML (Stamatakis, 2014). 16S rRNA gene sequences of Unclassified Rhodobacteraceae SAGs that were shorter

than 1,300 bp were then placed in the RAxML tree. The initially Unclassified Rhodobacteraceae SAGs formed two distinct, boot-

strap-supported clades (bootstrap value >90). Metabolic gene content and whole genome trees verified that one of the clades

was the recently described Ca. Luxescamonaceae. For the concatenated protein tree, 13 SAGs with 17 other Alphaproteobacteria

genomes that were obtained from theNCBI, including 4MAGs identified asCa. Luxescamonaceae byGraham et al. (2018) were used

for phylogeny. The GToTree phylogenomic workflow (Lee, 2019) was utilized to determine phylogeny of these genomes using a HMM

set of 117 single copy gene targets for Alphaproteobacteria. Genomes containing at least half of the total single copy gene targets

were kept for further analysis and downstream phylogenetic placement. A ML phylogenetic tree based on the final concatenated

SCG sets was generated using FastTree version 2.1.10 (Price et al., 2009) with the default parameters (Figure S4). Table S2 contains

the SILVA taxonomy and the refined lineage assignment of each SAG.

Functional annotation was first performed using Prokka (Seemann, 2014) with default Swiss-Prot databases supplied by the soft-

ware. Prokka was run a second time with a custom protein annotation database built from compiling Swiss-Prot (Bateman et al.,

2017) entries for Archaea and Bacteria. The output of Prokka and the secondary annotation were joined into a single, tab-delimited

table with headers identifying the origin of the assignment. Biosynthetic pathways were identified using AntiSMASH 4.0 (Blin et al.,

2017), with KnownClusterBlast, ActiveSiteFinder and SubClusterBlast options.
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To generate a RuBisCO tree, all RuBisCO sequences from the GORG-Tropics SAGs, 10 sequences of marine MAGs, and se-

quences from 72 cultured representatives (Figure S3) were aligned with ClustalW (Thompson et al., 1994). The RuBisCO tree was

constructed with MEGA X (Kumar et al., 2018) using the ML and the Le Gascuel 2008 model (Le and Gascuel, 2008). Initial tree(s)

for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise dis-

tances estimated using a JTTmodel and then selecting the topology with superior log likelihood value. A discrete Gamma distribution

was used to model evolutionary rate differences among sites (6 categories (+G, parameter = 1.4194)). The rate variation model al-

lowed for some sites to be evolutionarily invariable ([+I], 1.27% sites). The tree is drawn to scale, with branch lengths measured in

the number of substitutions per site. This analysis involved 317 amino acid sequences. All positions with less than 75% site coverage

were eliminated.

All unique bacterial 16S sequences from GORG-Tropics were aligned by SINA (Pruesse et al., 2012) and a ML tree with the Kimura

2-parameter model (Kimura, 1980) was constructed using MEGA X (Kumar et al., 2018). Initial tree(s) for the heuristic search were

obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the

MaximumComposite Likelihood approach, and then selecting the topology with the superior log likelihood value. A discrete Gamma

distribution was used to model evolutionary rate differences among sites (4 categories (+G, parameter = 0.6966)). The rate variation

model allowed for some sites to be evolutionarily invariable ([+I], 18.34% sites). The tree is drawn to scale, with branch lengths

measured as the number of substitutions per site. This analysis involved 2,898 nucleotide sequences. All positions with less than

75% site coverage were eliminated.

Metagenomic fragment recruitment
We calculated the percentage of read fragments recruited from 119 publically available marine metagenomes (Table S3; Figure 2A)

from epipelagic tropical and subtropical oceanic regions against seven genomic databases: (I) GORG-Tropics v1 (current study), (II)

GORG-BATS248 (current study), (III) All 98 marine isolates and SAGs sequenced before 2013 (Swan et al., 2013); (IV) 957 nonredun-

dant metagenome assembled genomes (MAGs) from TARA Oceans (Delmont et al., 2018); (V) 2,631 nonredundant good quality

(completion R50% and contamination % 10%) MAGs from TARA Oceans (Tully et al., 2018); (VI) 7,903 MAGs from all NCBI meta-

genomes (Parks et al., 2017); and (VII) all 3,726 marine prokaryotic genomes in MarDB database (Klemetsen et al., 2018). The meth-

odological details of the recruitment are reported in detail previously (Pachiadaki et al., 2017). In brief, paired metagenomic reads

were joined using flash version 1.2.11 with the following parameters: -x 0.05 -m 20 -M 150 (Mago�c and Salzberg, 2011). Successfully

joined metagenomic reads were subsampled to 106 reads using seqtk and were aligned to a concatenated file containing all ge-

nomes from each of the aforementioned databases using bwa memwith the default parameters (Li et al., 2009). Read alignment files

were filtered using samtools (Li et al., 2009) and pysam to identify reads aligning at 95% percent identity over a minimum alignment

length of 100 nt. Results were visualized using the ggplot2 package in R. For the visualization of the biogeographical distribution of the

metagenomic recruitment, the R packages maps and mapdata were used. The percent of reads aligned against the GORG-Tropics

database at various percent identity thresholds (100, 98, 95, 92, 90, 88, 85, 80 and 70) was also calculated.

Gene clustering
All coding sequences (CDS) from TARA Oceans tropical and subtropical epipelagic samples (Sunagawa et al., 2015) were down-

loaded from EMBL and translated into amino acid sequences (92,128,162 sequences). GORG-Tropics protein sequences

(8,589,814 sequences) were called using prodigal with the ‘-p meta’ flag tomimic protein calling used for metagenomic samples (Hy-

att et al., 2010). TARA and GORG proteins were then combined and clustered using the linclust clustering method (80% identity

threshold and 80 kmers) within theMMseqs2 software package (Steinegger and Söding, 2017). Clustering parameters were selected

to reflect the stringent parameters used for previously reported cluster analyses for TARA microbial metagenomic data (Sunagawa

et al., 2015). We attempted to replicate previous clustering methods exactly, but ran into computational resource limitations and

instead found MMseqs2 to be a more efficient clustering tool. The amino acid length for singletons and cluster seed sequences

from clusters with >10 members were used to generate Figure 3B using seaborn and matplotlib python packages for plotting.

For functional examination of singleton sequences and clusters from GORG-Tropics, and for lineage-specific pangenome ana-

lyses, all translated CDS fromGORG-Tropics SAGs called by Prokka and functionally annotated as described above were combined

and clustered once again, using the linclust clustering method (80% identity threshold and 80 kmers) within the MMseqs2 software

package.

To draw rarefaction curves (Figure 3C) for each lineage, CDS were randomly sampled from the MMseqs2 output tsv file and deter-

mined to be either amember of a previously sampled cluster, or a new cluster. This was repeated until all CDS from each lineagewere

sampled. Results were plotted as the number of sequences sampled versus the number of clusters accumulated for each lineage

using the matplotlib python plotting library. To calculate the number of clusters added per genome (Figure 3D), rarefaction curves

were drawn similarly to Figure 3C, except that sequences were sampled per randomly selected SAG. A linear regression was calcu-

lated for the last 10 selected SAGs per lineage against the number of accumulated clusters added per SAG, and the calculated slope

was recorded as the rate of CDS clusters added per genome. This was repeated 10 times per lineage, to account for variability in

genome completeness among randomly sampled SAGs. The average rate of CDS clusters added per genome was used for plotting

and reporting.
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Average nucleotide identity (ANI) and synteny analyses
Paiwise ANI was calculated for all GORG-Tropics SAGs with greater than 50% completeness using fastANI with default parameters

(Jain et al., 2018). ANI distributions were plotted using seaborn andmatplotlib python packages. Synonymous and non-synonymous

mutations were assessed by conducting all against all BLASTP searches between pairs of SAGs that sharedR99%ANI using a 95%

sequence identity cut-off. Selected sequence pairs were aligned using Clustal Omega (Sievers et al., 2011) with default parameters.

Using the PAL2NAL tool (Suyama et al., 2006), the nucleotide sequences that correspond with each of the aligned protein sequence

pairs were converted into codon alignments. The resulting codon alignment pairs were used to estimate synonymous and non-syn-

onymous substitution ratios using the YN00 program from PAML4.8 with an implementation of the Yang and Nielsen 2000 method

(Yang, 2007; Yang and Nielsen, 2000).

GORG-Tropics database for Kaiju
The annotated assemblies of SAGs from which the 16S rRNA gene was recovered were compiled into a GORG-Tropics reference

database for implementation in Kaiju, a computational tool for meta-omics read annotation (Menzel et al., 2016). The database

consists of contigs (GORG_v1.fasta), gene sequences (GORG_v1_<taxonomy>.faa), Kaiju indexes based on NCBI taxonomy

(GORG_v1_NCBI.fmi) and SILVAmod taxonomy (GORG_v1_CREST.fmi), and a text reference file linking contig, gene, gene coordi-

nates, and functional annotations to gene sequence headers (GORG_v1.tsv). The link between gene sequence references and the

Kaiju indexes allows both taxonomic and functional annotation. Annotation of DNA or amino acid sequences is performed using Kaiju

against GORG’s index (-m 11 -e 3). Using Kaiju’s supplemental method addTaxonNames, the taxonomic lineage can be added

based on the selected index. Names (names.dmp) and nodes (nodes.dmp) definitions per taxonomy are required by Kaiju and

each are supplied. Using the GORG tabular annotation data, Kaiju hits are mapped to their respective annotated SAG assembly,

fromwhich complete functional annotations are retrieved, including enzyme commission number, gene identifiers, and gene product

descriptions.

Evaluation of GORG-based metagenome annotation
We employed mock metagenome datasets to evaluate classifications based on the GORG reference database. New libraries of pro-

karyoplankton SAGs were generated, LoCoS-sequenced and annotated from one tropical epipelagic and one temperate epipelagic

sample (Table S1), two 384-well microplates per sample, following the same procedures as described above. For this purpose, the

tropical epipelagic water sample was collected from 80 m depth in the central Atlantic Ocean (22�48’36.0’’ N, 46�03’37.8’’ W) on

October 14, 2017, during the AT39-01 North Pond CORKs research cruise. The temperate epipelagic sample was collected from

1m depth in the Gulf of Maine (43�51’37.72’’ N, 69�34’41.25’’ W) on April 12, 2017. In both cases, onemicroplate of SAGswas gener-

ated by sorting cells in a typical prokaryote gate using the SYTO-9 stain, and one microplate of SAGs was generated using the

RedoxSensor Green probe, as described above. This resulted in 211 tropical and 124 temperate SAGs from which the 16S rRNA

geneswere retrieved. The 16S-containing assemblies were taxonomically and functionally annotated in the sameway asGORG-Tro-

pics SAGs and then computationally shredded into 150-280 basepair shreds using the bbtools script randomreads.sh, resulting in

approximately 23 and 7 million mock metagenome reads from each of the environments, corresponding to >203 coverage. The

script’s default parameter ‘‘adderrors=t’’ introduced substitution errors in the obtained mock metagenomic reads that are typical

to the Illumina sequencing technology. The reads were analyzed with Kaiju with either GORG-Tropics or NCBI nr as its underlying

database, and the obtained taxonomic and functional assignments were compared to the expected values, based on the source

SAG annotations.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was determined through t test or X2-test as reported in the method detail section. All computational and sta-

tistical analyses were conducted using the aforementioned referenced open source software tools.

DATA AND CODE AVAILABILITY

GORG-Tropics database genomes are available at NCBI under bioproject ID GenBank: PRJEB33281 and at Open Science Frame-

work under OSF: PCWJ9, https://doi.org/10.17605/OSF.IO/PCWJ9.Mockmetagenomes are also available at Open Science Frame-

work under OSF: PCWJ9, https://doi.org/10.17605/OSF.IO/PCWJ9. As previously reported (Berube et al., 2018), ancillary physical,

chemical, and biological data associated with the dataset can be accessed from C-MORE (http://hahana.soest.hawaii.edu/

cmoreDS/), HOT (http://hahana.soest.hawaii.edu/hot/hot-dogs/), BATS (http://bats.bios.edu/), GEOTRACES (http://www.

geotraces.org/), and SCOPE (http://scope.soest.hawaii.edu/data/) using the sample metadata available in Table S1.

ADDITIONAL RESOURCES

This study did not generate additional resources.
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Supplemental Figures

Figure S1. Related to Figure 2

Fraction of reads recruited on GORG-Tropics from publicly accessible metagenomes that were obtained from marine prokaryoplankton samples collected from

latitudes 40�N and above (North, n = 21), 40�S and above (South, n = 31), and between 40�S and 40�N (Tropics, n = 119). Thresholds of 95% nucleotide identity

and 100 bp alignment length were applied.



Figure S2. Related to Figure 4

(A–D) Characteristics of prokaryoplankton lineages with the relative abundanceR1% in GORG-Tropics. Displayed are the relative abundance (A), G+C content

(B), estimated genome size (C), and estimated cell diameter (D). The relative abundance of each lineage was calculated by dividing the number of SAGs belonging

to a specific lineage by the total number of the 16S-identified prokaryotic SAGs. In A, provided are means, medians, standard deviations and ranges of values

calculated for each analyzed sample. Only SAGs with estimated completeness ofR50%were included in the estimates of G+C content and genome size. Plots

B-D display means, medians, standard deviations, ranges and distribution of values calculated for individual SAGs.



Figure S3. Related to Figure 5

Phylogenetic tree of the RuBisCO genes from GORG-Tropics SAGs (in bold), TARA Oceans metagenome bins, and cultured isolates. Stars indicate SAGs that

encode at least one of the genes chlorophyllide reductase 52.5 kDa chain (bchY) or reaction center protein M chain (pufM), which are indicators of bacterio-

chlorophyll. Although these two genes were not recovered in SAG AG-470-I23 (lineage ‘‘Parahaliea’’), other essential genes in bacteriochlorophyll synthesis were

detected. The high sequence identity of the RuBisCO genes from Parahaliea SAGs and the metagenomic bin TMED255 suggests that the originally reported

taxonomic assignment of this bin to Euryarchaeota is likely incorrect.



Figure S4. Related to Figure 5

Phylogenetic relationships among Ca. Luxescamonaceae (Alphaproteobacteria) SAGs and their closest relatives in GORG-Tropics and public databases. The

maximum likelihood tree was constructed using Fasttree from a concatenated set of 117 single copy genes. Grey circles represent bootstrap values R0.75.



Figure S5. Related to STAR Methods Section ‘‘Single Amplified Genome (SAG) Data Generation’’

Relative abundance of prokaryoplankton lineages among GORG-BATS248 SAGs that were generated using either SYTO-9 (a nucleic acid stain) or RedoxSensor

Green (RSG; cell viability probe) for cell sorting. Provided are means, medians, standard deviations and ranges of values calculated for each 384-well plate.

Asterisks indicate statistically significant differences between the two treatments.



Figure S6. Related to STAR Methods Section ‘‘Single Amplified Genome (SAG) Data Generation’’

Taxonomic composition of GORG-Tropics SAGs withWGA-X Cp values below and above 3 h. Only SAGs fromwhich 16S rRNA genes were recovered and which

were generated using the typical prokaryote cell sort gate, one microplate per field sample, were included in this comparison. This dataset included 3,181 SAGs

with WGA-X Cp < 3 and 19 SAGs with Cp >3. We found no significant taxonomic differences between the two Cp categories (X2-test, p > 0.05).


	Charting the Complexity of the Marine Microbiome through Single-Cell Genomics
	Introduction
	Results
	Prokaryoplankton Genomic Diversity
	Representation of Global Prokaryoplankton by GORG-Tropics
	Lineage-Resolved Genome Features of Marine Prokaryoplankton
	Coding Potential for Carbon and Nitrogen Fixation
	Lineage-Resolved Biosynthetic Gene Clusters
	GORG-Tropics as a Reference Database for Prokaryoplankton Meta-omics

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	References
	STAR★Methods
	Key Resources Table
	Lead Contact and Materials Availability
	Experimental Model and Subject Details
	Field sample collection

	Method Details
	Single amplified genome (SAG) generation
	Sequencing and de novo assembly of SAGs
	Taxonomic and functional annotation of SAG assemblies
	Metagenomic fragment recruitment
	Gene clustering
	Average nucleotide identity (ANI) and synteny analyses
	GORG-Tropics database for Kaiju
	Evaluation of GORG-based metagenome annotation

	Quantification and Statistical Analysis
	Data and Code Availability
	Additional Resources





