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Supplementary Methods 
 
1. The spatial organization principle and its global character 
 
In this manuscript, we explored the assumption that gene expression between nearby cells is generally 
more similar than gene expression between cells which are separated by larger distances. Biologically, 
this phenotype can result from multiple mechanisms – gradients of morphogens and nutrients, trajectory 
of cell maturation, and communication between neighboring cells. While all of these can induce either 
smooth gradients or sharp boundaries (or combinations thereof) in gene expression patterns, as long as 
there are spatial shifts between sharp boundaries exhibited by different genes, our hypothesis would hold 
since closeness is a combined property of all genes in the transcriptome. In other words, this is an 
assumption about overall gene expression across space. Individual genes may very well have sharp 
expression territories from one cell to a neighboring cell. Our assumption just states that overall, 
expression of individual genes should only rarely look like salt and pepper patterns but should be 
organized, for most genes, in (gene specific) spatial territories.  
    This assumption can be readily tested. Indeed, we showed that at different stages of the developmental 
process of organisms, or in different tissues in matured organisms, cells that are physically close are also 
close in expression space, and vice versa (Figs. 2b,f, and 3b). This occurs despite existing sharp 
boundaries in expression patterns for different genes, since closeness, which is properly defined below, 
depends on the combined effect of genes composing the full transcriptome. 
 
 
2. Integrating the continuity assumption into reference-guided reconstructions 
 
Our framework enables the incorporation of both structural and reference guided information. When 
reconstructing only by a reference atlas (which corresponds to alpha=1 in the manuscript), however, the 
structural correspondence assumption is already integrated to a certain extent. Although counter-intuitive, 
this stems from the fact that novoSpaRc exploits a new framework to reconstruct spatial information 
based on marker genes. There are two major advances implemented into novoSpaRc. First, existing 
methods (Seurat[1] and DistMap[2]) require binarization of the reference atlas: a gene is considered to be 
either ON or OFF in a given location of the tissue. In contrast, novoSpaRc works with continuous values 
and therefore exploits subtle gradients in gene expression that might be present in the data. Second, 
Seurat and DistMap map individually one cell at a time. By using the framework of optimal transport, 
novoSpaRc finds the optimal reconstruction by mapping all cells simultaneously, choosing the 
reconstruction that best satisfies the constraints and is consistent with the marginal distributions (see 
“Single cell embedding using optimal transport” supplementary section, and “Mathematical formulation 
of novoSpaRc” Methods section). Taking into account the use of gradients, this process favors 
reconstructions that best respect the continuity assumption in gene expression. This rather intricate issue 
will be further discussed in a future manuscript. 
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3. Choosing the target space shape 
 
A geometrical representation of the tissue will be in general unknown. In these cases, we can flexibly 
represent the target space as a regular lattice covering the shape of the original tissue (or, in fact, any 
distribution of finite support with predefined desirable properties). novoSpaRc supports target spaces of 
any shape and density, but we found that the reconstruction is greatly benefited when an appropriate 
target shape is selected. Therefore, any prior information or a good educational guess will result in better 
reconstruction of the investigated tissue. 
    If the (effective) dimension of the tissue to be reconstructed is unknown, it can be possibly 
approximated by computing the intrinsic dimensionality of the manifold spanned by single cells lying in 
the high dimensional expression space (by using for example a maximum likelihood-based approach[3] ). 
 
 
4. Computing graph-based distances in expression and physical space 
 
As the expression profiles are represented in high-dimensional space, metric distances are prone to 
multiple limitations. Instead, we use steps motivated by non-linear dimensionality reduction methods 
(e.g., Isomap[4]). However, at this stage we do not require finding low-dimensional coordinates, but 
rather constructing a robust distance matrix. For symmetry we apply the same procedure to both cells and 
locations independently (Extended Data Fig. 1a, first column). We start by computing pairwise distances 
between entities. We chose as a distance metric the Euclidean distance for the physical space (locations) 
and the correlation-based distance for the expression space (cells), but other measures can be used. These 
however do not capture the true geometry of nonlinear low- dimensional manifolds. Thus, we use these 
pairwise distances to construct a k-nearest neighbors graph (Extended Data Fig. 1a, second column). 
From these graphs, we compute the shortest path lengths for each pair of cells, resulting in graph-based 
distance matrices for cells and for locations. (Extended Data Fig. 1a, third column).  

 

5. Single cell embedding using optimal transport 
 
As was discussed in the main text, the optimal probabilistic coupling 𝑇∗ ∈ 𝑅!!×! between N single cell 
expression profiles and M cellular locations can be framed as the solution to the following optimization 
problem:  

𝑇∗ = argmin!∈!!,!  1− 𝛼 𝐷! 𝑇 + 𝛼𝐷! 𝑇 − 𝜖𝐻 𝑇  
where  

𝐷! 𝑇 = 𝐿 𝐷!,!
!"#,𝐷!,!

!"#$ 𝑇!,!𝑇!,!
!,!,!,!

 , 

𝐷! 𝑇 = 𝐷!,!
!"#,!"#$ 𝑇!,!

!,!

 , 
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𝜖 is a non-negative regularization constant, and 𝛼 ∈ [0,1] is a constant interpolating between the first two 
objectives, and can be set to 𝛼 = 0 when no reference atlas is available. The set of coupling between the 
distribution over expression profiles, 𝒑 ∈ {𝑝 ∈ 𝑅!!; 𝑝! = 1! }, and the distribution over locations, 
𝒒 ∈ {𝑞 ∈ 𝑅!!; 𝑞! = 1! }, is 𝐶!,! ≡ {𝑇 ∈ 𝑅!!"#; 𝑇!,!! = 𝑝!   ∀𝑖 ∈ 1,… ,𝑁 , 𝑇!,!! = 𝑞!   ∀𝑗 ∈ 1,… ,𝑀 }. 
    To retrieve the coupling 𝑇∗, we extend upon the results for entropically regularized optimal  
transport[5]  and Gromov-Wasserstein distance-based mapping between metric-measure spaces[6], and 
use projected gradient descent, where the projection is based on the Kullback-Leibler (KL) metric. Each 
iteration of the projected exponentiated gradient method consists of two steps; in the first step the current 
estimate of T is updated by exponentiated gradient descent step, similarly to[6], to yield 𝑇:  

𝑇 ← 𝑇⊙ 𝑒!!∇{!!! ! ! !!! !! ! !!" ! } 
where ⊙ is an element-wise multiplication, 𝑒(!) is element-wise operation, and 𝜏 > 0 is a small step size.  
In the second step, 𝑇 is projected back into the set 𝐶!,! according to the KL metric:  

𝑇 ← Proj!!,!
!" 𝑇  , 

where the KL projection is  

𝑃𝑟𝑜𝑗!!,!
!" 𝐾 ≡ argmin!∈!!,!𝐾𝐿(𝑇||𝐾) ≡ argmin!∈!!,! 𝑇!,!

!,!

log
𝑇!,!
𝐾!,!

  . 

    It was shown in[7] that the KL projection can be rewritten as an instance of entropically-regularized 
optimal transport:  

Proj!!,!
!" 𝐾 ≡ argmin!∈!!,! < −𝜖 log 𝐾,𝑇 > −𝜖𝐻 𝑇   . 

    The gradient of the objective function can be written as  
∇ 𝛼𝐷! 𝑇 + 1− 𝛼 𝐷! 𝑇 − 𝜖𝐻 𝑇 = 𝛼𝐿 𝐷!"#,,𝐷!"#$ ⊗ 𝑇 + 1− 𝛼 𝐷!"#,!"#$ + 𝜖 log𝑇  , 

where log(𝑥) is an element-wise operation, and the tensor product is defined as  

𝐿⊗ 𝑇 ≡ 𝐿!,!,!,!𝑇!,!
!,! !,!

  . 

    Altogether, we have:  
Proj!!,!

!" 𝑇⊙ 𝑒!!∇{!!! ! ! !!! !! ! !!" ! } = argmin!∈!!,!
< −𝜖 log 𝑇 + 𝜖𝜏 𝛼𝐿 𝐷!"#,,𝐷!"#$ ⊗ 𝑇 + 1− 𝛼 𝐷!"#,!"#$ + 𝜖 log𝑇 ,𝑇 > −𝜖𝐻 𝑇  . 

    Therefore, if we set 𝜏 = 1/𝜖 , each iteration of the algorithm can be simplified to a Sinkhorn 
projection,  

𝑇 ← argmin!∈!!,! < 𝛼𝐿 𝐷!"#,,𝐷!"#$ ⊗ 𝑇 + 1− 𝛼 𝐷!"#,!"#$ ,𝑇 > −𝜖𝐻 𝑇   . 
    Each of these iteration steps can be computed using Sinkhorn’s fixed point algorithm[5]. Specifically,  

𝑇 ← diag 𝑎 𝐾diag 𝑏  , 
where the Gibbs kernel associated with {𝛼𝐿 𝐷!"#,,𝐷!"#$ ⊗ 𝑇 + 1− 𝛼 𝐷!"#,!"#$}  

is 𝐾 ≡ e!
!
!{!" !!"#,,!!"#$ ⊗!! !!! !!"#,!"#$} ∈ 𝑅!!"# . 
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    Finally, 𝑎 ∈ 𝑅!! and 𝑏 ∈ 𝑅!! can be computed using Sinkhorn’s fixed point iteration[8] involving 
element-wise division: 

𝑎 ←
𝑝
𝐾𝑏   ,   𝑏 ←

𝑞
𝐾!𝑎  . 

 
    We provide a Python package for the implementation of novoSpaRc at https://github.com/rajewsky-
lab/novosparc. Parts of the code are based on modifications of the Python Optimal Transport Package 
(https://pot.readthedocs.io/). 
 
 
6. Justification of probabilistic mapping 
 
We posed the spatial mapping problem as finding a probabilistic embedding between the cells and 
locations. That is, each single cell is to be assigned a distribution over cellular locations. A probabilistic 
mapping is preferable for several reasons. 
    Single cell data does not yield an exact 1-to-1 matching problem. (i) When a tissue is dissociated into 
single cells, we would generally not be able to retrieve information for the full batch of single cells, but 
only for a certain fraction of them, due to experimental constraints. (ii) There would generally not be 
information about the number of original single cells in the tissue and their exact location, meaning we 
would need to resort to assignment of single cells over a grid. (iii) Even in cases where there are known, 
reproducible cellular locations, and there is the possibility to dissociate many nearly-identical tissues to 
increase the single cell coverage, we would still expect to have cellular locations that correspond to 
multiple single cells, and cellular locations that do not correspond to any of the single cells in the dataset. 
    Probabilistic mapping would yield smoother expression patterns and would be more robust to the 
noisy, partially sampled single cell data. Given imperfect data, as is the case for experimental setups, we 
may be uncertain about the exact location of a dissociated single cell and would rather place it in a certain 
neighborhood of the tissue (or, probabilistically spread it over several locations in that area). This is 
motivated both by noise and dropouts in the original data, and the fact that if we are mapping single cells 
to a grid, their true original location may be in between several nodes (cellular locations) on the grid, in 
which case their true mapping should be distributed over the grid nodes surrounding the original location, 
weighted by their corresponding distance from that location. 
    Probabilistic matching is more efficient computationally. Intuitively, we replace a discrete optimization 
problem over a large combinatorial space with a continuous optimization of a smooth function, which 
allows us to employ more efficient optimization methods. Details can be found in the Supplementary 
section ‘Single cell embedding using optimal transport’. 
 
    Finally, we are interested in the reconstructed expression patterns over stereotypical tissues, and not 
necessarily in assigning single cells their exact original location. 
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7. Evaluation of spatial reconstruction. 
 
We evaluate the quality of reconstruction by novoSpaRc by three different measures: (a) Correlation of 
expression patterns. The reconstructed spatial gene expression of all genes (vISH) can be compared to the 
original expression patterns by computing the Pearson correlation between them, averaged over all genes, 
such as in Fig. 3c. (b) Alignment of single cell assignment. For the tissues with 1d symmetry we also 
compute the fraction of cells correctly assigned to their original spatial zone. To do this, we compare for 
each cell its original spatial zone to its reconstructed zone according to novoSpaRc. More specifically, the 
zone that the cell is assigned to with highest probability. This notion can be extended to the fraction of 
cells assigned to a spatial zone that is found at most at a certain distance from their original zone. We 
show this evaluation for increasing distances for the reconstruction of the intestinal epithelium and the 
liver (Extended Data Figs. 2a,b). (c) Probability heatmap. In Fig. 2c,g we quantify the assignment of 
single cells to their corresponding 1d spatial zones by a probabilistic version of a confusion matrix (the 
probability heatmap). For each original zone (on the x-axis), we average over the reconstructed spatial 
probability distribution of single cells originating from that zone and display that on the y-axis. 
 
 
8. Generative model for spatial gene expression. 
 
To systematically evaluate novoSpaRc’s performance, we generated synthetic spatial expression data 
using a simple generative model that is based on independent Gaussian spatial expression patterns for 
each gene, for either a 1d (line), 2d (squre) or 3d (cube) shaped synthetic tissue. 
For 1d tissues, the expression 𝐸 of each gene 𝑔 over the spatial zones is proportional to a gaussian 

distribution, 𝐸(𝑥|𝜇!,σ!) ∝ 𝑒
!
(!!!!)!

!!!! , where 𝜇! is the mean of the gaussian, sampled uniformly across the 
1d grid, and 𝜎! is the standard deviation. For 2d and 3d tissues, the expression is proportional to a 

multivariate normal distribution, 𝐸(𝒙|𝝁!,𝚺!) ∝ 𝑒
!!!(𝒙!𝝁!)

!𝚺!!!(𝒙!𝝁!), where 𝝁! is the mean vector 
(sampled uniformly across the 2d or 3d grid), and 𝚺!  is the covariance matrix. 
After generating the synthetic expression matrix, we add gaussian noise to the expression values with 0 
mean and 𝜎!"#$%𝜎!"#$!%%&'( standard deviation, where 𝜎!"#$!%%&'( is the standard deviation of the entire 
expression matrix, and 𝜎!"#$% is a parameter that sets the signal to noise ratio. 
The expression of ‘spatially informative’ genes is set according to the model above, while the expression 
of ‘spatially non-informative’ genes is randomly permuted across the synthetic tissue.  
The default parameters for the simulations and novoSpaRc reconstructions are: 1000 single cells (or 
closest approximation for the 2d grid), 100 grid locations (or closest approximation for the 3d grid), 100 
genes, 𝜎 = 10, 𝜎𝐼!  (where 𝐼 is the identity matrix), 𝛼 = 0.5, number of marker genes = 5, and 
𝜎!"#$!%%&'( = 0.1.  
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9. Genes contained within each nutrient class in the intestinal epithelium 
 
Table corresponding to Fig. 2d.	
 
Nutrient class Associated genes 
Apolipoproteins Cholesterol Apobec1, Apob, Apoa4, Apoa1, Npc1l1 
Carbohydrates Slc5a1, Slc2a5, Slc2a2 
Peptides Slc15a1 
Amino acids Slc7a9, Slc7a8, Slc7a7 

 
 
10. De novo reconstruction is possible up to inherent symmetries of the target space  
 
When reconstructing a tissue de novo, meaning without any reference atlas, the reconstruction can be 
established up to the symmetry axes of the target space. This is not specific to novoSpaRc, but an inherent 
property of the problem. For example, when reconstructing a 1-dimensional tissue, then without 
additional prior knowledge there is no way of distinguishing between a ‘right-to-left’ and ‘left-to-right’ 
reconstruction (see illustration in the Figure below, left). This can be remedied by including prior 
information that would break the symmetry, such as marker gene expression information (as long as they 
do not exhibit the same underlying symmetries). Such prior information would correctly “anchor” the 
reconstruction and might also appear more intuitive to the user. 

Below are a few examples for such symmetries (specified using a double-arrowed line on each target 
space) that fundamentally cannot be resolved de novo: 
  

 
 
 
 
11. Gene ontology analysis for genes extracted as highly zonated in the intestine and liver 
 
Based on novoSpaRc’s de novo reconstruction of the mammalian intestine [9] and liver [10] single cell 
datasets, we extracted a list of genes whose expression is localized to different layers of the two tissues. 
We used gene ontology (GO) enrichment analysis [11] to show that these groups of genes are enriched 
for distinct biological processes, many of which are consistent with the respective expression localization. 
    We filtered for genes whose maximum value in the sDGE is among the top 20% of all genes. We then 
chose the genes whose maximum spatial expression is localized at one of the two ends of the 1d tissue 
and whose associated Kendall Tau p-value < 0.05, to be set as the groups of genes highly expressed in 
either the ‘top’ or the ‘bottom’ of the tissue. We chose the genes whose maximum spatial expression is 
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localized at either one of the middle layers of the tissue (one layer apart from the two border layers of the 
tissue at either side), to be set as the ‘intermediate’ gene group. We used the Gorilla package [11] to run 
GO enrichment analysis, by performing pairwise comparisons between two unranked lists of genes at a 
time: a target set and a background set (composed of the complement of the target set). 
    In the intestine, the reconstructed crypt was enriched for transcription, translation, RNA splicing, and 
cell cycle related genes. The middle part of the reconstructed intestinal crypt-to-villus axis was enriched 
for amino acid and carbohydrates transport and processing, ion transport and intestinal absorption related 
genes. The reconstructed tip of the villus (V6) was enriched for lipoprotein metabolic processes, catabolic 
processes, extracellular matrix organization, cholesterol transport and processing, and stress related 
processes. In the liver, the reconstructed pericentral layer was enriched for xenobiotic metabolism, fatty 
acid metabolism and catabolic processes, while the reconstructed periportal layer was enriched for 
carboxylic processes, oxidation-reduction processes and ATP biosynthesis. The full lists of enriched 
genes and their associated p-values and FDR q-values, for both the intestine and the liver, can be found as 
Supplementary Files.  
 
 
12. Sample sizes for main text figures 
 
Respective sample sizes for data along x-axis: 
 
Figure 2b: [154730, 227485, 167832, 137948, 149135, 84683, 33840]. 
Figure 2f: [34256, 43408, 52544, 30083, 28042, 14723, 7416, 1678, 76]. 
Figure 3b: [83541, 723081, 1001329, 1184469, 741496, 528972, 240138, 107831, 8423]. 
Extended Data Figure 9b: [49873, 92934, 80571, 69714, 57566, 46117]. 
Extended Data Figure 9f: [49184, 90843, 79501, 68159, 56817, 45475]. 
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Supplementary Discussion 
	
 
novoSpaRc’s advantages, limitations, and direct comparison to existing reconstruction methods.  
 
novoSpaRc offers several features which cannot be exploited as a whole by existing methods: (a) it 
enables incorporation and interpolation of both structural information (such as the structural 
correspondence assumption) and a reference atlas, (b) it naturally provides probabilistic embedding of 
single cells onto their original spatial context, which provides a more robust reconstruction, (c) it allows 
to incorporate prior structural information regarding the structure of the tissue from which the cells were 
dissociated, (d) it does not require any tailored pre-processing steps and can utilize continuous expression 
data directly, (e) and finally, it is flexible in terms of its structural assumption (which can be potentially 
adjusted in future work) and allows to incorporate marginal information (effectively incorporating prior 
knowledge about different aspects such as varying local density of cells across the tissue and varying 
quality of sequenced single cells).  
    We directly compare novoSpaRc to two available spatial reconstruction methods that fully rely on a 
reference atlas: Seurat[1] and DistMap[2]. A comparison of the intrinsic characteristics of the three 
approaches, as well as their corresponding reconstruction results for the BDTNP data[12], scRNA-seq 
data of the Drosophila[2] and zebrafish embryos[1] and the cerebellum[13] are shown in Extended Data 
Fig. 10. This comparative analysis is performed for varying numbers of marker genes and shows how, for 
the same number of marker genes, novoSpaRc generally outperforms other available methods. Both 
DistMap and Seurat require a large number of marker genes to reconstruct the BDTNP dataset, whereas 
the Pearson correlations for novoSpaRc saturate at perfect reconstruction with only 2 marker genes. 
novoSpaRc outperforms Seurat and DistMap in the case of the Drosophila embryo and performs 
comparably to them for the zebrafish embryo, while it should be stressed that DistMap and Seurat were 
developed and tailored for these two datasets, respectively. Finally, novoSpaRc substantially outperforms 
DistMap and Seurat for the reconstruction of the brain cerebellum, where both DistMap and Seurat 
struggle to form meaningful reconstructions. It should be noted that DistMap requires a threshold to 
produce the expression patterns, which is in principle unknown. We selected the threshold which 
maximizes the Pearson correlations, thus giving DistMap an unfair advantage in these comparisons. 
    It is important, however, to keep in mind novoSpaRc’s limitations.  novoSpaRc works by embedding 
the single cells into a predefined shape, and so does not allow to learn a latent representation of the data 
that was not used as input. In addition, as mentioned in the main text, do novo reconstruction can be 
achieved up to global transformations relative to symmetries of the shape of the target space. This is not a 
limitation specific to novoSpaRc but inherent to the problem of de novo reconstruction without additional 
prior information, such as marker gene data (see “De novo reconstruction is possible up to inherent 
symmetries of the target space” supplementary section). Finally, novoSpaRc employs an assumption 
about spatial gene expression (here we use the structural correspondence assumption) to reconstruct 
cellular locations. In general, we found the structural correspondence assumption to hold to a certain 
extent in all tissues and organisms we looked into so far, including highly heterogeneous and challenging 
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tissues like the brain. We believe this hints that spatial gene expression is much more structured and 
informative than currently believed, and that external signaling gradients and cell-to-cell communication 
provide stronger signals for spatial patterning than expected. In cases where this is a weak assumption, 
challenged for example by complex tissues with multiple cell types or multiple domains, novoSpaRc may 
struggle. However, it is important to stress that novoSpaRc’s flexibility allows it to employ alternative 
principles or assumptions that would fit different biological scenarios or incorporate diverse experimental 
prior information.  
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Supplementary Tables 
	
 
Intestine: predicted by NovoSpaRc to be zonated towards the crypt 
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Additional support [a]      [a]    
 
[a] Was found to be expressed similarly to Top2a in single cells [17]. 
[b] Associated with cell division 
[c] Reported to regulate cell proliferation, apoptosis and migration in bladder [18]. 
[d] Inferred to be involved in regenerative process, proliferation, or stem cell identity [19]. 
[e] Gene ontology process: cell cycle and cell division [20]. 
 
Intestine: predicted by NovoSpaRc to be zonated towards the tip of the villus 
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Supplementary Table 1 | Literature-based support for highly zonated genes in the intestinal 
epithelium revealed by novoSpaRc. All 20 genes recovered by novoSpaRc to rank highest among 
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zonated genes (10 top zonated genes towards the crypt, and 10 top zonated genes towards V6), were 
either independently reconstructed (based on a reference atlas) to be zonated, and/or have direct 
experimental support for their zonation profiles, and/or were shown to be functionally related to processes 
associated with their respective zonation profiles. Selection of top zonated genes is described in Methods. 
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Liver: predicted by NovoSpaRc to be pericentral (zonated towards layer 1) 
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Liver: predicted by NovoSpaRc to be periportal (zonated towards layer 9) 
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Reconstructed as zonated 
towards PV [10] 

X X X  X X X X X X X 

Reported as zonated towards PV  [24]         
Differentially methylated [24] X X  X  X   X X 
Lower expression in Axin2+ 
pericentral hepatocytes [29]  

X    X      

Additional support  [c]   [a]  [b]   [c] 
 
[a] A gene found to increase  in liver of mice exposed to chronic hypoxia [30]. 
[b] secretory antioxidase that protects against oxidative damage, whose overexpression reduced local and 
systemic oxidative stress generated by BDL [31]. 
[c] Reported as differentially expressed genes between PV and CV zone that were associated with 
differentially methylated regions featuring hypomethylation coinciding with a transcriptional 
upregulation in the respective zone [24]. 
 
Supplementary Table 2 | Literature-based support for highly zonated genes in the liver lobule 
revealed by novoSpaRc. All 20 genes recovered by novoSpaRc to rank highest among zonated genes (10 
top zonated genes towards the CV, and 10 top zonated genes towards PV), were either independently 
reconstructed (based on a reference atlas) to be zonated, and/or have direct experimental support for their 



14	
	

zonation profiles, and/or were shown to be functionally related to processes associated with their 
respective zonation profiles. Selection of top zonated genes is described in Methods. 
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