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Gene expression cartography

Mor Nitzan1,2,3,6, Nikos Karaiskos4,6, Nir Friedman3,5* & Nikolaus Rajewsky4*

Multiplexed RNA sequencing in individual cells is transforming basic and clinical life 
sciences1–4. Often, however, tissues must first be dissociated, and crucial information 
about spatial relationships and communication between cells is thus lost. Existing 
approaches to reconstruct tissues assign spatial positions to each cell, independently 
of other cells, by using spatial patterns of expression of marker genes5,6—which often 
do not exist. Here we reconstruct spatial positions with little or no prior knowledge, 
by searching for spatial arrangements of sequenced cells in which nearby cells have 
transcriptional profiles that are often (but not always) more similar than cells that are 
farther apart. We formulate this task as a generalized optimal-transport problem for 
probabilistic embedding and derive an efficient iterative algorithm to solve it. We 
reconstruct the spatial expression of genes in mammalian liver and intestinal 
epithelium, fly and zebrafish embryos, sections from the mammalian cerebellum and 
whole kidney, and use the reconstructed tissues to identify genes that are spatially 
informative. Thus, we identify an organization principle for the spatial expression of 
genes in animal tissues, which can be exploited to infer meaningful probabilities of 
spatial position for individual cells. Our framework (‘novoSpaRc’) can incorporate 
prior spatial information and is compatible with any single-cell technology. 
Additional principles that underlie the cartography of gene expression can be tested 
using our approach.

Single-cell RNA sequencing (scRNA-seq) has revolutionized our under-
standing of the rich heterogeneous cellular populations that make up 
tissues, the dynamics of developmental processes and the underlying 
regulatory mechanisms that control cellular function1–4. However, to 
understand how single cells orchestrate multicellular functions, it 
is crucial to have access not only to the identities of single cells but 
also to their spatial context. This is a challenging task, as tissues must 
commonly be dissociated into single cells before scRNA-seq can be 
performed, and thus the original spatial context and relationships 
between cells are lost. Two seminal papers tackled this problem com-
putationally5,6—the key idea being to use a reference atlas of informative 
marker genes as a guide to assign spatial coordinates to sequenced cells. 
This concept was successfully used in various tissues7–11, including the 
early Drosophila embryo12. However, such methodologies rely heavily 
on the existence of an extensive reference database for spatial expres-
sion patterns, which may not always be available or straightforward 
to construct. Moreover, in practice the number of available reference 
marker genes is usually not large enough to label each spatial position 
with a distinct combination of reference genes, making it impossible 
to uniquely resolve cellular positions. More generally, marker genes, 
even when available, convey limited information, which could possibly 
be enriched by the structure of single-cell data.

To this aim, we developed a new computational framework (novo-
SpaRc), which allows for de novo spatial reconstruction of single-cell 
gene expression, with no inherent reliance on any prior information, 
and the flexibility to introduce it when it does exist (Fig. 1). Similar to 
solving a puzzle, we seek the optimal configuration of pieces (cells) 

that recreates the original image (tissue). However, contrary to a typical 
puzzle, here we do not have access to the image that we aim to recon-
struct. Although the number of ways to spatially arrange (or ‘map’) 
sequenced cells in tissue space is enormous, our hypothesis is that 
gene expression in the vast majority of these arrangements will not be 
as organized as in the real tissue. For example, we know that typically 
there exist genes that are specifically expressed in spatially contiguous 
territories and are thus consistent with only a small subset of all pos-
sible arrangements. We therefore set out to identify simple, testable 
assumptions that govern how gene expression is organized in space, 
and to subsequently find the arrangements of cells that best respect 
those assumptions.

novoSpaRc charts gene expression in tissues
Here, we specifically explore the assumption that cells that are physi-
cally close tend to share similar transcription profiles, and vice versa 
(Extended Data Fig. 1a, Supplementary Methods). Biologically, this 
phenotype can result from multiple mechanisms, such as gradients of 
oxygen, morphogens and nutrients, the trajectory of cell development 
and communication between neighbouring cells. We stress that this is an 
assumption about overall gene expression across the entire tissue—not 
about individual genes and not about all cells that are physically close 
(Supplementary Methods). We show that, on average, the distance 
between cells in expression space increases with their physical distance, 
for diverse tissues in mature organisms or whole embryos in early devel-
opment. Thus, to predict the spatial locations of sequenced cells, we 
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seek to find a map of sequenced cells to tissue space (‘cartography’) 
such that overall structural correspondence is preserved—meaning that, 
overall, cells have similar relative distances to other cells in expression 
and physical space. The physical space is anchored by locations that may 
be either known (such as the reproducible cellular locations in the early 
stages of development of the Drosophila embryo13) or approximated 
by a grid (Supplementary Methods). The distances are first computed 
for each pair of cells across graphs constructed over the two spaces, 
to account for the underlying structure of the data (Supplementary 
Methods). Then, novoSpaRc optimally aligns the distances of pairs of 
cells between the expression data and geometric features of the physi-
cal space, in a way that is consistent with spatial expression profiles 
of marker genes when these are available (Methods, Supplementary 
Methods). For reasons that are both biologically and computationally 
motivated, we seek a probabilistic mapping that assigns each cell a distri-
bution over locations on the physical space (Supplementary Methods). 
We formulate this as a generalized optimal-transport problem14–16, which 
has been proven to be increasingly valuable for diverse fields (including 
biology17,18) and renders the task of reconstruction feasible for large data-
sets. Specifically, we formulate an interpolation between entropically 
regularized Gromov–Wasserstein19,20 and optimal-transport21 objectives, 
which serves to satisfy the assumption of structural correspondence 
between gene expression space and physical space, and to match prior 
knowledge when available (Methods). We show that this optimization 
problem can be efficiently solved using projected gradient descent 
reduced to iterations of linear optimal-transport sub-problems (Sup-
plementary Methods). To systematically assess the performance of 
novoSpaRc, we used a simple generative model of spatial gene expres-
sion to show that it can robustly recover it (Supplementary Methods, 
Extended Data Fig. 1b–d).

novoSpaRc reconstructs tissues de novo
Focusing on real single-cell datasets, we first reconstructed tissues 
de novo that have inherent symmetries that render them effectively 
one-dimensional, such as the mammalian intestinal epithelium10 and 
liver lobules7. Schematic figures of the reconstruction process are 
shown in Fig. 2a, e. Cells were previously classified into seven distinct 
zones for the intestine, or nine layers for the liver, on the basis of robust 
marker gene information7,10. We found that the average pairwise dis-
tances between cells in expression space increased monotonically with 
the pairwise distances in physical one-dimensional space (Fig. 2b, f), 
consistent with our structural correspondence assumption.

We used novoSpaRc to embed the expression data into one dimen-
sion. The embedded coordinates of single cells correlated well on 
average with their layer or zone memberships (Fig. 2c, g, Supple-
mentary Methods). The median Pearson correlation coefficient for 
reconstructed expression patterns to original patterns for the top 100 
variable genes was 0.99 for intestine and 0.94 for liver (Supplementary 
Methods), and the fraction of cells that were correctly assigned up to 
one layer away from their original layer was 0.98 for intestine and 0.73 

for liver (Supplementary Methods, Extended Data Fig. 2a, b). novo-
SpaRc captured spatial expression patterns of the top zonated genes 
and spatial division of labour within the intestinal epithelium—as well 
as within the layers of the liver lobules (Methods, Fig. 2d, h, Extended 
Data Fig. 3a, b), in which cells in different tissue layers perform different 
tasks and exhibit different expression profiles. For the intestine, varying 
the grid resolution to include either fewer or more embedded zones 
did not compromise the quality of the reconstructed expression pat-
terns (Extended Data Fig. 3c), which shows the potential for increased 
resolution of single-cell-based relative to atlas-based embedding.

novoSpaRc reconstructs early embryos
Next, we focused on spatially reconstructing the well-studied Dros-
ophila embryo, as a more-challenging, higher-dimensional tissue. Late 
in stage 5 of development, the fly embryo consists of around 6,000 cells. 
It has been previously suggested22 that at early stages of fly develop-
ment, the expression levels of gap genes can be optimally decoded 
into positional information. The expression levels of 84 transcrip-
tion factors were quantitatively registered using fluorescence in situ 
hybridization (FISH) for each of the cells by the Berkeley Drosophila 
Transcription Network Project (BDTNP)13.

To assess the performance of novoSpaRc, we first simulated scRNA-
seq data by in-silico dissociating the BDTNP dataset into single cells 
(Methods), and then attempted to reconstruct the original expression 
patterns across the tissue both de novo and by using marker genes 
(Fig. 3a). Similarly to the ‘one-dimensional’ datasets, we found a mono-
tonically increasing relationship between the cell–cell pairwise dis-
tances in expression space and in physical space (Fig. 3b), confirming 
that the data adheres to our structural correspondence assumption.

The reconstructed patterns of spatial gene expression highly cor-
related with the original ones (Fig. 3c). We found that the novoSpaRc 
reconstruction that incorporated both structural and marker gene 
information outperformed the reconstruction based on only the lat-
ter, and that performance was saturated at two marker genes (Fig. 3c), 
independently of the marker genes used. As expected, the quality of 
the reconstruction increased with the number of genes used to provide 
structural information in expression space, and with the fraction of 
spatially informative genes (Supplementary Methods, Extended Data 
Fig. 4a, b). The majority of spatial patterns were recapitulated faithfully 
even when only a single marker gene was used (Fig. 3c, d). In addition, 
novoSpaRc identified the physical neighbourhoods from which cells 
originated when used de novo (up to inherent symmetries; see Sup-
plementary Methods), and pinpointed their true locations (P < 0.05 
compared to random assignment) when a handful of marker genes 
were used (Fig. 3e, Extended Data Fig. 5a, b).

We examined the expression patterns of four transcription factors that 
span the dorsal–ventral and anterior–posterior axes (Fig. 3d). The quality 
of the reconstruction improved when applying the structural correspond-
ence assumption (Supplementary Methods, Extended Data Fig. 5d). The 
de novo reconstruction correctly identified both axes of the embryo, and 
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the reconstructed portrait was remarkably similar to the original one 
(Fig. 3d). In general—because de novo reconstruction is performed with-
out any prior information that would anchor the cells—the reconstructed 
configuration is similar up to global transformations (reflections, rotations 
and translations), relative to the respective axes of symmetry (Supplemen-
tary Methods). Consequently, the resulting patterns of gene expression 
might be shifted or flipped relative to the expected ones. However, there 
are features of a faithful reconstruction that we can test for, such that the 
reconstruction would be robust to small changes in the optimization 
parameters (Supplementary Methods, Extended Data Fig. 4i) and that 

the embedding of cells onto the embryo would be relatively localized—as 
we would expect for a biologically meaningful embedding (Fig. 3e). This 
means that the distribution over locations that each cell is assigned should 
be localized, and indeed, the mean standard deviation of that distribution 
for all cells is significantly lower than that of a randomized embedding 
(Supplementary Methods, Extended Data Fig. 4j). Furthermore, we dem-
onstrated that the results from novoSpaRc—as measured by correlation 
to observed imaging data and optimization error—were robust to opti-
mization parameters and sources of noise, including partial sampling of 
cells, additive expression noise and dropouts (Extended Data Fig. 4c–h).
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We next used novoSpaRc to reconstruct the stage 6 Drosophila 
embryo by using a scRNA-seq dataset12 (Fig. 4a). In that study, 84 marker 
genes were required to reconstruct a virtual embryo by distributing 
1,297 cells over 3,039 locations. When we used novoSpaRc with the 
combination of both structural information and the reference atlas, the 
accuracy of reconstruction increased with the number of marker genes, 
reaching high correlation (Pearson correlation coefficient, 0.74) with 
the FISH data (Fig. 4b, Extended Data Fig. 5e). The de novo, atlas-free 
reconstruction accurately separated the major post-gastrulation spatial 
domains (mesoderm, neurogenic ectoderm and dorsal ectoderm), 
as well as finer spatial domains (Fig. 4c, d). We clustered the recon-
structed patterns of the highly variable genes and averaged to obtain a 
representative pattern for each cluster, which we term the ‘archetype’ 
(Methods, Supplementary Information). novoSpaRc identified numer-
ous distinct spatial archetypes (Fig. 4c, d, Extended Data Fig. 6). We 
compared representative genes of each spatial archetype with FISH 
images to visually assess the accuracy of the spatial reconstruction. 
Gene patterns that were expressed through the anterior–posterior 
or the dorsal–ventral axis were largely recapitulated: typical genes of 
the mesoderm (dorsal ectoderm), such as twi and sna (zen and ush), 
were colocalized ventrally (dorsally) (Fig. 4c, d, right, middle). novo-
SpaRc accurately captured localized spatial populations (Fig. 4c, d, 
left, Extended Data Fig. 6, archetype 5), whereas less-extensive spa-
tial domains were reconstructed with varying degrees of accuracy 
(Extended Data Fig. 6). Note that within the de novo reconstruction, 
accurate localization entails global transformations, as described above 
(Supplementary Methods).

Before proceeding to more complex tissues, we reconstructed the 
zebrafish embryo dataset5 (Extended Data Fig. 7). Similar to the original 
seminal study, we mapped the cells onto the surface of a hemisphere 
consisting of 64 distinct locations. The resulting spatial expression pat-
terns highly correlated to the experimentally verified ones; novoSpaRc 
reconstructed the zebrafish embryo by using only 15 marker genes 
(in contrast to the 47 genes that were previously required5) and the 
accuracy of the reconstruction increased with the number of marker 
genes (Extended Data Fig. 7, Methods). Furthermore—in contrast to 
previous reconstructions—no data imputation or other specialized 
preprocessing was necessary5.

novoSpaRc charts diverse complex tissues
To further demonstrate the applicability of novoSpaRc to  
complex tissues, diverse sequencing technologies and different organ-
isms, we used it to reconstruct slices of mammalian brain cerebellum23 
(Fig. 5), the mammalian kidney24 (Extended Data Fig. 8) and a dataset 
of hundreds of individual Drosophila embryos22 (Extended Data Fig. 9).

The adult mammalian brain is a well-studied, highly differentiated 
and complex tissue. To benchmark the capabilities of novoSpaRc in 
reconstructing complex tissues, we used mouse cerebellum slices 
from a recently developed spatial transcriptomics technology23. The 
dataset of sagittal sections contained 46,376 locations, correspond-
ing to a single cell or a few cells, with a median of 52 quantified tran-
scripts per location. To provide enough information to novoSpaRc, we 
first coarse-grained the data by binning neighbouring locations. This 
resulted in 7,704 locations, with a median of 379 quantified transcripts 
per location (Methods, Fig. 5a). novoSpaRc successfully reconstructed 
the whole transcriptome, with a Pearson correlation coefficient of 0.5 
over all 15,878 genes when using 15 marker genes and 0.94 when using 
50 marker genes (Fig. 5b, Supplementary Methods). Spatial expres-
sion patterns emerged when using only a few markers. For example, 
spatial positions of Purkinje cells were revealed by reconstructing 
with only five marker genes (excluding all genes exhibiting an abso-
lute Pearson correlation coefficient with Pcp4 of 0.25 or higher). Τhe 
signal improved markedly when more markers were included (Fig. 5c). 
The reconstructed cerebellum slices showed concordance with the 
original spatial gene expression for a large number of known cell-type 
marker genes (Fig. 5d). To illustrate the versatility of novoSpaRc, we 
further applied it to a coronal section of a brain cerebellum23, with 
similar results (Fig. 5e).

Next, we used novoSpaRc to spatially reconstruct a single-cell data-
set from whole kidney24, which is a complex tissue with stereotypical 
organization. In the absence of a reference atlas of gene expression, the 
reconstruction was performed de novo. We focused on six major cell 
types of the kidney (Extended Data Fig. 8) and mapped the cells onto 
a two-dimensional target space. The de novo reconstruction recapitu-
lated the urine flow within the kidney sub-compartments, as shown by 
the spatial gene expression of corresponding marker genes (Extended 
Data Fig. 8). We note that, as no prior information was required for this 
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reconstruction, this case demonstrates the applicability of novoSpaRc 
to a wide variety of medically relevant tissues.

Finally, to show that novoSpaRc can reconstruct not only a prototypi-
cal tissue but also individual samples, we used a dataset that captures 

expression patterns in hundreds of individual Drosophila embryos22. 
In this dataset, the expression of four gap genes and four pair-rule 
genes was measured along the anterior–posterior axis for 101 and 
177 embryos, respectively, providing a distribution over expression 
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embryo (reconstruction with the BDTNP marker genes) and a slice of the 

mammalian cerebellum (reconstruction with 50 markers), using a measure of 
spatial autocorrelation. b, Expression patterns of the top 15 spatially 
informative genes in the Drosophila embryo. c, The spatial autocorrelation 
values (spatial information index) of the 84 transcription factors (TFs) chosen 
for the BDTNP dataset13 are among the highest values over all 8,924 genes of the 
fly embryo, demonstrating that they are identified to be highly spatially 
informative. d, Top 10 spatially informative genes (out of the top 1,000 variable 
genes) in a section of the cerebellum.
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patterns. We used novoSpaRc to reconstruct the expression patterns of 
the gap and pair-rule genes for individual embryos. For a given embryo, 
novoSpaRc reconstruction using a reference atlas based on the gene 
expression within the same embryo consistently outperformed recon-
struction using a reference atlas based on the averaged gene expression 
across all embryos in the dataset (Extended Data Fig. 9)—yet reached 
high correlation values for both (median Pearson correlation coeffi-
cients for reconstructing a fourth gene based on the three remaining 
genes were 0.99 (for expression within the same embryo) (0.95 for 
expression averaged across embryos) and 0.94 (0.77) for the gap and 
pair-rule genes, respectively).

We examined the effect of the interpolation between structural and 
marker gene information, and evaluated the performance of novoSpaRc 
by comparing it to available reconstruction methods that fully rely on 
a reference atlas (Seurat5 and DistMap12) (Extended Data Figs. 10, 11). 
novoSpaRc has several advantages when compared to the other exist-
ing methods and overall shows substantial benefits in reconstruction 
performance (Extended Data Fig. 10, Supplementary Discussion).

Identifying spatially informative genes
A novoSpaRc-based spatial reconstruction allows us to identify known 
and potentially new spatially informative genes directly from the single-
cell sequencing data. For the intestine and liver datasets, we recovered 
highly zonated genes without a reference atlas (Methods, Supplemen-
tary Information), and found that the top inferred zonated genes were 
supported experimentally and/or computationally (Fig. 6a, Supplemen-
tary Tables 1, 2). Gene ontology enrichment analysis25 further revealed 
that zonation-compatible biological processes enriched for different 
domains in the intestine and the liver were reconstructed by novoSpaRc 
(Supplementary Information). For the Drosophila single-cell data-
set, we ranked all 8,924 genes according to their spatially informative 
rank (Methods, Fig. 6b, Supplementary Information), and found that 
transcription factors were (as known from classic genetics26) among 
the most highly informative genes (Fig. 6c). In addition, novoSpaRc 
identified numerous long non-coding RNAs and transcription factors 
as being highly spatially informative, many of them already predicted in 
a previous study12. Finally, we ranked all 15,878 genes in the cerebellum 
by their spatially informative rank (Methods, Fig. 6d, Supplementary 
Information), and found that well-known marker genes with a defined 
pattern of spatial expression are indeed among the highest-ranking 
spatially informative genes (Fig. 6d).

Discussion
Together, we have demonstrated here that one can spatially reconstruct 
diverse biological tissues on the basis of a simple hypothesis about 
how gene expression is organized in space—a structural correspond-
ence between the distances of cells in expression space and in physical 
space—and that it can be used to extract spatially informative genes. 
Our current implementation is based on pairwise comparison of cells 
and locations. This requirement can be readily altered. In fact, it is 
compelling to hypothesize that within certain biological contexts, 
different cell types may require higher-order interactions or exhibit 
different principles of spatial organization. Furthermore, we stress that 
because of the availability of general mathematical results in optimal-
transport theory, our framework is versatile and can support a variety of 
alternative ways to compare distances in expression and physical space 
by varying the optimization loss functions (Methods, Supplementary 
Methods). Such alternative schemes are not currently supported by 
novoSpaRc, but could be implemented.

Our data analyses and the success of the reconstructions by novo-
SpaRc suggest that we have identified a general principle for how gene 
expression is organized in tissue space (Supplementary Discussion). It 
will be interesting to find tissues for which this organization principle 

is weak or not valid. However, this principle may be underestimated, as 
most of the single-cell data available are relatively shallow and noisy. 
Our data also suggest that many more genes than perhaps anticipated 
are involved in spatial features and functions (including physiology and 
pathophysiology) of tissue. We have demonstrated that we can system-
atically identify at least a subset of these genes directly from single-cell 
data. In the future, we will extend these analyses to identify genes that 
are predicted to functionally interact in space. Finally, our developed 
framework can be flexibly extended beyond spatial reconstruction. We 
are currently using it to recover different types of biological signals, 
such as temporal progression on short (for example, cell cycle) and 
long (for example, developmental) timescales.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-019-1773-3.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Data pre-processing
For the cases for which normalized data was not available or used by 
the authors, we adopted the standard library size normalization in 
log-space, for example, if dij represents the raw count for gene i in cell 
j, we normalized it as
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Highly variable genes were identified by plotting the dispersion of a 
gene as a function of its mean and selecting the outliers above cut-off 
values (usually 0.125 for the mean and 1.5 for the dispersion).

In the Slide-seq datasets23, we summed up the transcriptomes of 
neighbouring cells by rounding the coordinates of the physical loca-
tions to the next integer multiple of 50. This resulted in a total of 8,331 
(9,890) cells for the sagittal (coronal) section of the cerebellum. Low-
quality locations were further filtered out by requiring at least 50 genes 
per cell, resulting in a total of 7,704 (8,258) for the sagittal (coronal) 
section. Marker genes for the reconstruction were randomly selected 
from the set of 747 genes. As one of the means of benchmarking the dif-
ferent reconstructions was to visually assess the expression pattern of 
Pcp4, we ensured that no genes with a Pearson correlation of |R| ≥ 0.25 
with Pcp4 were selected as marker genes.

Mathematical formulation of novoSpaRc
The procedure used by novoSpaRc includes several steps. We first 
compute the graph-based distance matrices for N single cells in expres-
sion space, D R∈ N Nexp × , and for M locations, D R∈ M Mphys ×  (Extended 
Data Fig. 1a, Supplementary Methods). Then, optionally, if a reference 
atlas is available, we compute the matrix of disagreement, 
D R∈ N Mexp,phys × , between each of the cells to each of the locations,  
on the basis of the inverse correlation between the partial expression 
profile for each location given by the reference atlas and the  
respective expression profile for each cell. Equipped with these meas-
ures of intra- and inter-dataset distances, we set out to find an optimal 
(probabilistic) assignment of each of the single cells to cellular phys-
ical locations.

We formulate this problem as an optimization problem within the 
generalized framework of optimal transport14–16. Optimal transport is 
a mathematical framework that was first established in the eighteenth 
century by Gaspard Monge and was initially motivated by the question 
of the optimal (minimal cost) way to rearrange one pile of dirt into a dif-
ferent formation (the respective minimal cost is appropriately termed 
the ‘earth mover’s distance’). The framework evolved both theoretically 
and computationally15,16,21 and was extended to the correspondence 
between pairwise similarity measures via the Gromov–Wasserstein 
distance19,20. Thus, in our context, it allows us to build on these results 
and tools to feasibly solve the cellular assignment problem.

We aim to find a probabilistic embedding, T R∈ N M
+

× , of N single cells 
to M locations that would minimize the discrepancy between the pair-
wise graph-based distances in expression space and in physical space, 
and—if a reference atlas is available—simultaneously minimize the 
discrepancy between its values across the tissue and the expression 
profiles of embedded single cells. For each cell i, the value of Ti,j is the 
relative probability of embedding it to location j. These optimization 
requirements over T are formulated as follows. We measure the pairwise 
discrepancy of T for the expression and physical spaces using the Gro-
mov–Wasserstein discrepancy19

( )∑D T L D D T T( ) = , ,
i j k l

i k j l i j k l1
, , ,

,
exp

,
phys

, ,

where L is a loss function; specifically, we use the quadratic loss 
L a b a b( , ) = −1

2
2. This term captures our preference to embed single 

cells such that their pairwise distance structure in expression space 
would resemble their pairwise distance structure in physical space. 
Intuitively, if expression profiles that correspond to cells i and k are 
embedded into cellular locations j and l, respectively, then the distance 
between i and k in expression space should correspond to the distance 
between j and l in physical space (for example, if i and k are close expres-
sion-wise they should be embedded into close locations, and vice versa). 
The discrepancy measure weighs these correspondences by the respec-
tive probability of the two embedding events.

To measure the match to existing prior knowledge, or an available 
reference atlas, we consider

∑D T D T( ) = .
i j

i j i j2
,

,
exp, phys

,

This term represents the average discrepancy between cells and 
locations according to the reference atlas, weighted by T. Finally, we 
regularize T by favouring embeddings with higher entropy, where 
entropy is defined as

∑H T T T( ) = − log
i j

i j i j
, =1

, ,

Intuitively, higher entropy implies more uncertainty in the map-
ping. Entropic regularization drives the solution away from arbitrary 
deterministic choices and was shown to be computationally efficient21.

Putting these together, we define the optimization problem for the 
optimal probabilistic embedding T*:

T α D T αD T εH T= argmin(1 − ) ( ) + ( ) − ( )⁎
1 2

subject to

∑ T p i N= ∀ ∈ {1, …, }
j

i j i,

∑ T q j M= ∀ ∈ {1, …, }
i

i j j,

where ε is a non-negative regularization constant, and α ∈ [0, 1] is a 
constant interpolating between the first two objectives, and can be set 
to α = 0 when no reference atlas is available. The constraints reflect the 
fact that the transport plan T should be consistent with the marginal 
distributions { }p p R p∈ ∈ ; ∑ = 1N

i i+  and { }q q R q∈ ∈ ; ∑ = 1M
i i+ , over 

the original input spaces of expression profiles and cellular locations, 
respectively.

These marginals can capture, for example, varying densities of single 
cells in the vicinity of different cellular grid locations, or the quality 
of different single-cell expression profiles (hence forcing low-quality 
single cells to have a smaller contribution to the reconstructed tissue-
wide expression patterns). When such prior knowledge is lacking, p 
and q could be set to be uniform distributions.

We derive an efficient algorithm for this optimization problem, 
inspired by the combined results for entropically regularized opti-
mal transport21 and mapping based on Gromov–Wasserstein distance 
between metric-measure spaces20 (Supplementary Methods).

Then, given the original single-cell expression profiles, represented 
by a matrix Y R∈ N g×  (for N single cells and g genes), and the inferred 
probabilistic embedding T R∈ N M

+
×  (for N single cells and M locations), 

we can derive a virtual in situ hybridization (vISH), S Y T R= ∈T g M
+

×   



(for g genes and M locations), which contains the gene expression val-
ues for every cellular location of the target space.

Note again that because our mapping is probabilistic, each of the 
cellular locations of the vISH does not correspond to a single cell in 
the original data. Rather, the vISH represents the expression patterns 
over an averaged, stereotypical tissue from which the single cells could 
have originated.

novoSpaRc algorithm
To spatially reconstruct gene expression, novoSpaRc performs the 
following steps:

1. Read the gene expression matrix.
1a. Optional: select a random set of cells for the reconstruction;
 1b. Optional: select a small set of genes (for example, highly  
variable).

2. Construct the target space.
3. Set up the optimal-transport reconstruction.

3a. Optional: use existing information of marker genes, if available.
4. Perform the spatial reconstruction including:

4a. Assigning cells a probability distribution over the target space;
4b. Deriving a vISH for all genes over the target space.

The novoSpaRc package, system requirements, installation guide 
and demo instructions are provided at https://github.com/rajewsky-
lab/novosparc.

Generating in silico single-cell data for the BDTNP dataset
To test the performance of novoSpaRc with single-cell resolution 
ground truth, we generated an in silico single-cell dataset for the BDTNP 
data13. In that case we have access to expression profiles for different 
locations across the embryo. We effectively dissociate the embryo by 
taking these expression profiles to be the expression profiles of single 
cells in our in silico set, masking their true original locations, and use 
novoSpaRc to reconstruct the original embryo (which may be done at 
lower spatial resolution).

Identification of spatial archetypes
The identification of spatial archetypes is performed by cluster-
ing the spatial expression of a given set of genes. The gene expres-
sion is first clustered by hierarchical clustering at the vISH level,  
although in principle different clustering methods can be used. The 
number of archetypes is chosen by visually inspecting the resulting 
dendrogram. The expression values of each gene of the cluster are then 
averaged per location to produce the spatial archetype for that cluster. 
Representative genes for each cluster are identified by computing the 
Pearson correlation of each gene within the cluster against the spatial 
archetype. The derivation of the spatial archetypes strongly depends 
on the set of genes used. We observed that the set of highly variable 
genes generally resulted in sensible spatial archetypes. A list of genes 
that correspond to each archetype is provided in the Supplementary 
Information.

Identification of zonated genes
For tissues with one-dimensional symmetry, we produce a ranking of 
highly zonated genes, both according to the original spatial expression 
patterns (Extended Data Fig. 2c, d) and the reconstructed patterns 
(Fig. 6a).

The input is a spatial expression matrix (either original or recon-
structed), specifying the expression level of each gene in each of the 
spatial zones. Then, to find a ranked list of genes that are highly zonated 
towards the first or last spatial zones (for example, crypt in the liver), we 
first select all genes (i) whose highest expression occurs in that respec-
tive zone; (ii) whose maximum expression value is in the top 1% of all 
genes; and (iii) that are statistically significantly zonated. To compute 
the zonation significance of individual genes, we used a non-parametric 
test based on the Kendall’s tau coefficient. The Kendall’s tau coefficient 

is a measure for the correspondence between two ranked lists—in our 
case, the expression values of a given gene over consecutive spatial 
zones and the numbering of the zones. Finally, the remaining genes 
are ranked according to their centre of mass.

The lists of predicted zonated genes based on novoSpaRc’s recon-
struction for the mammalian intestine and liver are available in the Sup-
plementary Information.

Gene ontology enrichment
We used GOrilla for gene ontology (GO) enrichment analysis25,  
in which GO enrichment was computed on the basis of target and  
background lists of genes (Supplementary Methods). For both the 
target and background lists of genes, we selected genes that had a maxi-
mum expression value in the top 10% of all genes. The target lists for 
genes that were zonated towards the boundaries of the one-dimensional 
spatial axes (crypt and V6 in intestine; layers 1 and 9 in liver) were further 
filtered to contain only genes that are statistically significantly zonated, 
as described in ‘Identification of zonated genes’. The background lists 
contained the corresponding complements of the target lists.

Identification of spatially informative genes
We use a spatial autocorrelation measure to rank genes as spatially 
informative. Specifically, we use Moran’s I as a measure for global spatial 
autocorrelation. For each individual gene i, the Moran’s I score for its 
spatial expression, yi, over n cellular locations is:

I
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z w z
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∑

∑
i j i i j j
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2

where z y y= −i i i
, yi

 is the mean expression of gene i, S w= ∑i j i j0 , ,  and wi,j 
is a spatial weights matrix, which we base on a k-nearest neighbours 
graph for each cellular location (k = 8). To calculate the Moran’s I score 
and the respective P values for different genes, we used the implemen-
tation of PySAL, a Python spatial analysis library27.

The Moran’s I scores with their respective P values, based on novo-
SpaRc’s reconstructions for all genes of the Drosophila embryo, 
zebrafish embryo and cerebellum, are available in the Supplementary 
Information.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The scRNA-seq datasets were acquired from the Gene Expression Omni-
bus (GEO) database with the following accession numbers: GSE99457 
for the intestinal epithelium10, GSE84490 for the liver7, GSE95025 for 
the Drosophila embryo12, GSE66688 for the zebrafish embryo5 and 
GSE107585 for the kidney24. The cerebellum Slide-seq datasets23 were 
acquired from the Broad Institute Single Cell Portal (https://portals.
broadinstitute.org/single_cell/study/slide-seq-study). The individual 
Drosophila embryos dataset22 is available as a supplementary informa-
tion file of the original manuscript22. The BDTNP dataset was down-
loaded directly from the BDTNP webpage13.

Code availability
A Python package for novoSpaRc, and the scripts for reconstructing 
selected tissues presented in the manuscript, are provided at https://
github.com/rajewsky-lab/novosparc.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Overview of probabilistic optimal matching using 
novoSpaRc and corresponding generative model. a, Based on the raw data of 
single cells in expression space and locations along a grid resembling the target 
tissue, graph structures are computed and distance matrices are derived from 
these graphs (Supplementary Methods). The two branches, and potentially  
a reference atlas, are aligned using novoSpaRc, under our structural 
correspondence assumption (distance in expression space on average 
monotonically increases with distance in physical space) and by using 
probabilistic embedding (Supplementary Methods). b, c, Left, visualization of 
noisy expression patterns for three random genes in models for 1-dimensional 
(1D) (b) and two-dimensional (2D) (c) tissues. Right, the original expression 
pattern for a representative gene, its coarse-grained representation 

(decreased spatial resolution) and its reconstruction using novoSpaRc. d, The 
Pearson correlation of the reconstructed expression pattern data to the 
original synthetic expression data increases with increasing signal-to-noise 
ratio, with the number of marker genes and with the fraction of informative 
genes, and exhibits non-monotonic behaviour with the α parameter. We note 
that α is an interpolation parameter (defined in the Methods section 
‘Mathematical formulation of novoSpaRc’) between using only a reference 
atlas (α = 1) and using only structural information (driven by the structural 
correspondence assumption) (α = 1). Results are averaged over 100 
instantiations of the generative model; data are mean ± s.d. The generative 
model and its default parameters are described in the Supplementary 
Methods.



Extended Data Fig. 2 | Evaluation of novoSpaRc reconstruction of the 
intestinal epithelium and the liver lobule. a, b, The fraction of cells in the 
crypt-to-villus axis (a) and the liver lobule axis (b) that is correctly assigned to 
its corresponding original villus zone10 and original lobule layer7, or is assigned 
to a zone up to d zones away from the original zone (x axis), is substantially 
higher than that of random assignment. c, d, novoSpaRc reconstructs the 
spatial expression patterns of the top zonated genes in the intestinal 

epithelium (c) (10 top zonated genes towards the crypt, and 10 top zonated 
genes towards V6) and in the liver lobule (d) (10 top zonated genes towards the 
central vein (CV), and 10 top zonated genes towards the portal node (PN)). 
2810417H13Rik is also known as Pclaf. The selection of the top zonated genes is 
described in the Methods. The expression level of each gene in c and d is 
normalized to its maximum value.
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Extended Data Fig. 3 | novoSpaRc reconstruction of the intestinal 
epithelium and the liver lobule is robust and consistent with changing grid 
resolution. a, b, Examples of FISH expression patterns of six zonated genes 
across the liver lobules, comparing the reconstructed (de novo vISH data) 
expression patterns produced by novoSpaRc to the expression patterns 
reported in a previous study7 (a), and the original (FISH) data (adapted from the 
same study7) (b). The visualization in a is a heat map, which shows the 
expression values of each gene across the lobule layers. The visualization of the 

reconstructed vISH data in b is intended to be comparable to the FISH images, 
and therefore the 1D reconstructed coordinates are projected onto a polar 
coordinate system (central vein–middle, portal node–outer circumference).  
c, The successful de novo reconstruction of the intestinal epithelium dataset9 
is achieved for varying numbers of layers used for the target space (including 
both lower and higher numbers of layers compared with the original number 
(seven) of reference layers). The expression level of each gene is normalized to 
its maximum value.



Extended Data Fig. 4 | novoSpaRc reconstruction of the Drosophila embryo 
on the basis of the BDTNP dataset is robust and self-consistent. a, b, The 
Pearson correlation of the reconstructed expression patterns to the original 
FISH expression data12 increases with the number of genes used to construct 
the structural cellular graph in expression space (a), and with the fraction of 
those genes that are spatially informative (b). Spatially non-informative genes 
in this case were simulated as random Gaussian variables with mean and s.d. 
comparable to that of the original set of genes. c–f, The Pearson correlation of 
the reconstructed expression patterns to the original FISH expression data12 
increases with the percentage of sampled single cells (without replacement) (c) 
and with the percentage of sampled single cells (with replacement) (d), and 
steadily decreases with noise level (e) and with the percentage of dropouts in 
the data (f). g, The mean value and variance of the optimization objective 

function (which we aim to minimize) increase with noise level. The results in  
a–g are averaged over 100 random choices of two marker genes; data are 
mean ± s.d. h, The Pearson correlation of the de novo reconstructed expression 
patterns to the original FISH data varies gradually with the entropic 
regularization parameter ε. i, The Pearson correlation of embedded de novo 
expression patterns of the BDTNP dataset12 for different values of the entropic 
regularization parameter ε with the expression pattern for ε = 5 × 10−5 (vertical 
dotted line). j, The spatial s.d. of embedded cells over the Drosophila embryo of 
the BDTNP dataset derived from de novo reconstruction by novoSpaRc is 
significantly lower than the s.d. derived from randomized embedding 
(P < 10−200, two-sided Kolmogorov–Smirnov test). Histograms show results for 
all 3,039 cells.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | novoSpaRc accurately reconstructs the Drosophila 
embryo on the basis of the BDTNP dataset and single-cell data. a, Examples 
of mapping probabilities of single cells produced by novoSpaRc for the 
Drosophila embryo, using the BDTNP dataset13. The predicted spatial positions 
of cells are distributed over relatively many locations when reconstruction is 
done de novo, and are more localized when marker genes are used.  
b, Histogram of Euclidean distances between the original cellular location of 
single cells and the most likely location predicted by novoSpaRc using one and 
two marker genes, compared to a histogram for random spatial predictions.  
c, The expression patterns of the two marker genes and one marker gene that 
were used for the results presented in a, b and in Fig. 3d, e. d, Visualization of 

reconstruction results for four transcription factors. The original FISH data are 
compared to reconstruction by novoSpaRc that exploits both structural and 
marker gene information (using two marker genes and one marker gene),  
and reconstruction without any marker gene information (de novo). 
Reconstruction that uses both structural and marker gene information (or a 
reference atlas) outperforms reconstruction that is based solely on a reference 
atlas. e, Visualization of novoSpaRc-based reconstruction results for the four 
transcription factors, based on single-cell data12 that exploit both structural 
and marker gene information (using 10–80 marker genes). The results in a–d 
are based on the BDTNP dataset13, and the results in e are based on a single-cell 
dataset12.
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Extended Data Fig. 6 | novoSpaRc identifies spatially informative 
archetypes by using scRNA-seq data for the Drosophila embryo. The 
archetypes shown complement those of Fig. 4c, d. Preferred spatial 
positioning is denoted by colouring ranging from blue (low) to yellow (high). 
FISH images were taken from the BDGP database28. For genes for which an 
image was not available, DVEX12 was used instead. Two representative genes are 

shown for each spatial archetype. novoSpaRc accurately groups genes 
expressed in a particular domain—for example, the subdomain of the 
mesoderm, which is characterized by the transcription factor gcm (Archetype 
5)—whereas it does not capture the details of the fine expression patterns of 
pair-rule genes (Archetype 8). CG42666 is also known as prage.



Extended Data Fig. 7 | novoSpaRc reconstructs the zebrafish embryo.  
a, Histograms assessing the increase in the accuracy of novoSpaRc 
reconstruction (measured by the Pearson correlation with FISH data5) with 
increasing number of marker genes. b, novoSpaRc reconstructs patterns of 
gene expression in the zebrafish embryo on the basis of only 15 marker genes, 

and the results improve as the number of marker genes increases. Top row, FISH 
data (reproduced from ref. 5); second row: Seurat predictions using 47 marker 
genes5; bottom three rows: novoSpaRc predictions using 15, 30 and 47 marker 
genes. The genes shown were not used in any of the reconstructions.
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Extended Data Fig. 8 | novoSpaRc reconstructs a whole-kidney dataset 
de novo. a, Sketch of the major cell types that are reconstructed with 
novoSpaRc. b, Representative marker genes for each of the cell types shown in 
a. Top rows depict a rough positioning for each cell type in yellow–green; 

bottom rows show the gene expression predicted by novoSpaRc in the 
reconstructed tissue. Nphs1, podocytes; Nrp1, endothelial cells; Slc27a2, 
proximal tubule cells; Umod, loop of Henle; Pvalb, distal convoluted tubules; 
Aqp2, collecting duct cells. Expression ranges from low (blue) to high (yellow).



Extended Data Fig. 9 | NovoSpaRc reconstructs single Drosophila embryos. 
a, e, The averaged original expression of four gap genes (a) and four pair-rule 
genes (e) is shown for 101 and 177 individual Drosophila embryos, 
respectively22. Solid line, mean; dark shadow, s.d.; light shadow, minimum and 
maximum values over all embryos. b, f, Demonstration of the monotonic 
relationship between cellular pairwise distances in expression and physical 
space, consistent with the structural correspondence assumption. Data are 
mean ±s.d. c, g, The Pearson correlation increases with the number of marker 
genes used by novoSpaRc for the reconstruction of the remaining genes 
(α = 0.5) for both gap genes (c) and pair-rule genes (g). Using a reference atlas 
that corresponds to the individual embryo being reconstructed (‘individual 

atlas’) results in a consistently higher reconstruction quality than using an 
averaged reference atlas over all embryos (‘averaged atlas’). Data are 
mean ±s.d. d, h, Examples of the reconstruction of the expression patterns 
across a single random embryo, in which the reconstruction of each of the four 
genes is performed using the three complement genes as a reference, for both 
gap genes (d) and pair-rule genes (h). Note that the reconstructed expression 
patterns presented in d, h were computed while the corresponding gene in 
each case was not used for the reconstruction. The expression level of each 
gene in a, d, e, h is normalized to the maximum value over the mean expression 
of all embryos.
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Extended Data Fig. 10 | Comparison of spatial reconstruction with 
novoSpaRc versus available methods that fully rely on a reference atlas.  
a, The Pearson correlation of the predicted versus the original spatial gene 
expression is shown as a function of the top 100 highly variable genes for the 
intestinal epithelium and liver datasets, or the number of marker genes used 
for the reconstruction for the BDTNP dataset, the Drosophila and zebrafish 
embryos and the brain cerebellum (84, 84, 45 and 745 genes, respectively). For 
the 1D datasets, the reconstructions are done de novo (with no reference atlas) 
and the existing baseline methods are inapplicable. For the liver, the last lobule 
layer was removed from the analysis, as only five cells were associated with it. 
For the 2D datasets, correlations are computed only for genes that were not 

used for the reconstructions. Note that for the Drosophila embryo novoSpaRc 
outperforms DistMap12, and for the zebrafish embryo novoSpaRc performs 
comparably to or better than Seurat5—although those methods were 
developed and tailored for the Drosophila and zebrafish embryos, respectively, 
and the best-performing threshold was chosen for DistMap. For the box plots, 
the centre line is the median, box limits are the 0.25 and 0.75 quantiles and 
whiskers extend to ±2.698 s.d. For the BDTNP dataset, the Drosophila and 
zebrafish embryos and the brain cerebellum, the results are shown for 100 
random choices of marker genes. b, The intrinsic characteristics of novoSpaRc 
compared against Seurat5 and DistMap12.



Extended Data Fig. 11 | Reconstruction quality varies with the α parameter. 
Reconstructions of the BDTNP dataset, the Drosophila and zebrafish embryos 
and the brain cerebellum, with varying numbers of marker genes used for the 
reconstruction and different values of the α parameter. The reconstruction 
quality is quantified by calculating Pearson correlations between the predicted 
and the original patterns of gene expression for all genes that were not used as 
markers for the reconstruction. The quality of the reconstruction decreases for 
α = 1 in the BDTNP and brain cerebellum cases, which corresponds to 

reconstructing based only on reference marker genes, without taking the 
structural correspondence assumption into account. We note that α is an 
interpolation parameter (defined in the Methods section ‘Mathematical 
formulation of novoSpaRc’) between using only a reference atlas (α = 1) and 
using only structural information (driven by the structural correspondence 
assumption) (α = 1). For the box plots, the centre line is the median, box limits 
are the 0.25 and 0.75 quantiles and whiskers extend to ±2.698 s.d. Results are 
shown for 100 random choices of marker genes.



1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Nikolaus Rajewsky, Nir Friedman

Last updated by author(s): Aug 28, 2019

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection. All data shown in the manuscript is already publicly available.

Data analysis We wrote custom software code which is available online on Github (distributed under the MIT License, version 0.2.2, https://
github.com/rajewsky-lab/novosparc). The code is written in python and uses commonly used python libraries (numpy, matplotlib, 
sklearn, scipy, ot). To calculate spatial autocorrelation we used the implementation of PySAL (version 2.0.0), a Python spatial analysis 
library. We also used an implementation of the Gromov-Wasserstein transport method by Erwan Vautier (distributed under the MIT 
License).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

No datasets were generated during the current study. The single cell datasets analyzed for the current study were acquired from the GEO database with the 
following GEO accession numbers: GSE99457 for the intestinal epithelium, GSE84490 for the liver, GSE95025 for the Drosophila embryo, GSE66688 for the zebrafish 
embryo and GSE107585 for the kidney. The cerebellum Slide-seq datasets were acquired from the Broad Institute Single Cell Portal (https://
portals.broadinstitute.org/single_ cell/study/slide-seq-study). The individual Drosophila embryos dataset (Petkova, M.D., et al., Cell 2019) is available as 
Supplemental Information files of the original manuscript. The BDTNP dataset was downloaded directly from the BDTNP webpage (http://bdtnp.lbl.gov). 



2

nature research  |  reporting sum
m

ary
O

ctober 2018

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes for Fig. 3c & Ext. Data Figs. 2c 6a-g, 11b,c, 17,18 were based on 100 instantiations, and for Figs. 2b,f, 3b, 5b & Ext. Data Figs. 10b, 
16b,c,f,g there was no subsampling of the data.

Data exclusions No data were excluded

Replication Experimental replication was not attempted and is not applicable to this study

Randomization Since the single cell transcriptomes are unique and technically not reproducible,  
randomization was not applicable to the study

Blinding No datasets were generated during the current study, and therefore blinding was not applicable.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	Gene expression cartography
	novoSpaRc charts gene expression in tissues
	novoSpaRc reconstructs tissues de novo
	novoSpaRc reconstructs early embryos
	novoSpaRc charts diverse complex tissues
	Identifying spatially informative genes
	Discussion
	Online content
	Fig. 1 Overview of novoSpaRc.
	Fig. 2 novoSpaRc successfully reconstructs complex tissues with effective one-dimensional structure de novo.
	Fig. 3 novoSpaRc accurately reconstructs the Drosophila embryo on the basis of the BDTNP dataset13.
	Fig. 4 novoSpaRc identifies spatial archetypes in the Drosophila embryo by using scRNA-seq data.
	Fig. 5 novoSpaRc reconstructs mouse cerebellum tissue.
	Fig. 6 novoSpaRc identifies spatially informative genes.
	Extended Data Fig. 1 Overview of probabilistic optimal matching using novoSpaRc and corresponding generative model.
	Extended Data Fig. 2 Evaluation of novoSpaRc reconstruction of the intestinal epithelium and the liver lobule.
	Extended Data Fig. 3 novoSpaRc reconstruction of the intestinal epithelium and the liver lobule is robust and consistent with changing grid resolution.
	Extended Data Fig. 4 novoSpaRc reconstruction of the Drosophila embryo on the basis of the BDTNP dataset is robust and self-consistent.
	Extended Data Fig. 5 novoSpaRc accurately reconstructs the Drosophila embryo on the basis of the BDTNP dataset and single-cell data.
	Extended Data Fig. 6 novoSpaRc identifies spatially informative archetypes by using scRNA-seq data for the Drosophila embryo.
	Extended Data Fig. 7 novoSpaRc reconstructs the zebrafish embryo.
	Extended Data Fig. 8 novoSpaRc reconstructs a whole-kidney dataset de novo.
	Extended Data Fig. 9 NovoSpaRc reconstructs single Drosophila embryos.
	Extended Data Fig. 10 Comparison of spatial reconstruction with novoSpaRc versus available methods that fully rely on a reference atlas.
	Extended Data Fig. 11 Reconstruction quality varies with the α parameter.




