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SUMMARY

Gene regulation is a complex non-equilibrium pro-
cess. Here, we show that quantitating the temporal
regulation of key gene states (transcriptionally inac-
tive, active, and refractory) provides a parsimonious
framework for analyzing gene regulation. Our theory
makes two non-intuitive predictions. First, for tran-
scription factors (TFs) that regulate transcription
burst frequency, as opposed to amplitude or dura-
tion, weak TF binding is sufficient to elicit strong
transcriptional responses. Second, refractoriness of
a gene after a transcription burst enables rapid re-
sponses to stimuli. We validate both predictions
experimentally by exploiting the natural, optoge-
netic-like responsiveness of the Neurospora GATA-
type TF White Collar Complex (WCC) to blue light.
Further, we demonstrate that differential regulation
ofWCC target genes is caused by different gene acti-
vation rates, not different TF occupancy, and that
these rates are tuned by both the core promoter
and the distance between TF-binding site and core
promoter. In total, our work demonstrates the rele-
vance of a kinetic, non-equilibrium framework for
understanding transcriptional regulation.

INTRODUCTION

How transcription factors (TFs) quantitatively control the rate of

transcription has been a central question of molecular biology.

The relation between TF concentration and transcription rate is

termed the gene-regulatory function (Rosenfeld et al., 2005;

Setty et al., 2003), and classical theory emphasizes TF occu-

pancy of cis-regulatory DNA elements as a proxy for transcrip-

tion rate (Ptashne and Gann, 2002). However, how context-

specific, differential activation of target genes is achieved

remains a fundamentally unresolved problem, as TFs bind to

short (�10 bp) DNA sequences with considerable degeneracy

(Spitz and Furlong, 2012). Sophisticated models, considering

binding of multiple TFs, interactions of TF with nucleosomes,

and number of binding sites, have been devised to account for
Cell Systems 6, 409–423,
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specificity (Bintu et al., 2005; Segal et al., 2008; Giorgetti et al.,

2010; Teif et al., 2013). A common denominator of these models

is that they compute equilibrium distributions for the binding of

TFs and their interaction partners. However, research in the

last decade has profoundly changed this ‘‘equilibrium view’’ of

transcriptional regulation in eukaryotes by showing that TFs do

not only serve as docking sites for the general transcription

machinery, but recruit enzymes that catalyze transitions

between chromatin states (Lefstin and Yamamoto, 1998; Coulon

et al., 2013; Voss and Hager, 2014). In particular, TF-induced

nucleosome remodeling, possibly in concert with covalent

modifications of histones, appears to be rate limiting for tran-

scriptional activation (Boeger et al., 2008; Kim and O’Shea,

2008). Thus TFs may impart memory of their presence to the

chromatin state, obviating the need for continuous binding

(Voss et al., 2011). Collectively, these findings challenge the

view that the transcriptional machinery decodes TF activity

based solely on the degree of TF occupancy.

Stimulated by these experimental observations, a new class of

‘‘non-equilibrium’’ models of gene regulation has begun to be

developed (Ahsendorf et al., 2014; Estrada et al., 2016; Scholes

et al., 2017). The defining feature of these models is the presence

ofdynamic transitionsbetweengenestates, characterizedbothby

TF binding and chromatin configuration; similar concepts have

been developed for DNA repair (Luijsterburg et al., 2010;

Verbruggen et al., 2014). Estrada et al. (2016) proposed a model

that shows with considerable generality that gene regulation out

of equilibrium may breach a regulatory ‘‘barrier’’ for the shape of

the gene-regulation function inherent in equilibrium-binding

models. Closer to experiment, Scholes et al. (2017) modeled

molecular states of the general transcription cycle and identified

possibilities for thekineticcontrol ofcombinatorial gene regulation.

However, specific experimental support for predicted non-equilib-

riummechanisms of decoding TF activity has so far been lacking.

Here we develop a family of non-equilibrium models of gene

regulation with the purpose of confronting generic theory with

quantitative experimental data. Our starting point is the observa-

tion that transcription often occurs in episodic bursts of mRNA

production separated by silent intervals, rather than as a Poisso-

nian process during which transcripts accumulate at a constant

rate. Genes with Poissonian transcript noise have also been

described (Battich et al., 2015), especially after correcting

for confounding parameters such as cell size (Ietswaart et al.,

2017). However, transcriptional bursting has been widely
April 25, 2018 ª 2018 The Authors. Published by Elsevier Inc. 409
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Figure 1. A Family of Non-equilibrium

Models for Transcriptional Regulation

(A) Equilibrium-binding model, (B) telegraph

model, and (C) refractory-cycling model.

(D) A TF may activate gene expression through

modulation of transcription burst amplitude, fre-

quency or duration.

(E) An example of detailed scheme for the re-

fractory-cycling model with TF modulating the

burst frequency (for all models see Figure S1).
identified and characterized for eukaryotic (and also many bac-

terial) genes (Raj and van Oudenaarden, 2008; Hornung et al.,

2012; Sanchez and Golding, 2013; Nicolas et al., 2017).

The dynamics of transcriptional bursting imply, in turn, the

existence of long-lived gene states, which can chiefly be charac-

terized as transcriptionally inactive (but activatable), active, and

refractory (Harper et al., 2011; Suter et al., 2011; Zechner et al.,

2014; Zoller et al., 2015). Cesbron et al. (2015) have recently

shown that transcriptional refractoriness is a property of the

core promoter, by utilizing a natural ‘‘optogenetic’’ system:

blue-light-controlled transcription in the fungus Neurospora

crassa. The ubiquity of transcriptional bursting suggests that

generic models of transcription dynamics may be based on

quantifying the transitions between key long-lived gene states

in the bursting cycle. Indeed, transcriptional modulators (TFs

or drugs altering chromatin state) affect the average frequency

or/and size of transcription bursts (Dar et al., 2012; Larson

et al., 2013; Molina et al., 2013; Neuert et al., 2013; Senecal

et al., 2014).
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Here we demonstrate that the mecha-

nisms by which TFs modulate the dy-

namics of transcriptional bursting shape

the gene-regulatory function. We ask

how sensitively and how rapidly a gene

responds to a TF, and how differential

expression could be encoded in dynamic

properties of the bursting cycle. The the-

ory predicts that speed and sensitivity of

a gene’s response overcome theoretical

limits of conventional equilibrium binding

models. We obtain quantitative experi-

mental evidence for the validity of the

predictions, using light-controlled tran-

scription in Neurospora.

RESULTS

Modulators of Transcription Burst
Frequency Sensitively Regulate
Transcript Abundance
We begin by constructing a family of

generic models for the action of TFs (Fig-

ure 1). In the most basic model, transcrip-

tional activators recruit RNA polymerase

(Ptashne and Gann, 2002), with the acti-

vator occupancy at its regulatory site(s)

determining the rate at which polymerase
initiates transcription (f) (equilibrium-binding model, Figure 1A).

At constant TF concentration, the distribution of transcript

numbers in this model is Poissonian. The simplest model that

produces transcriptional bursting is the random telegraph model

(Peccoud and Ycart, 1995; Friedman et al., 2006), with the gene

switching between an inactive state and an active state from

which several rounds of transcription initiation might take place

(Figure 1B). Statistical inference from single-cell time series of

gene expression in yeast has favored this model (Zechner

et al., 2014). In mammalian cells (Harper et al., 2011; Suter

et al., 2011) and Neurospora (Cesbron et al., 2015), the bursting

cycle of gene promoters has been found to contain a state that is

refractory to activation. The simplest model accounting for these

observations is the three-state refractory-cycling model (Fig-

ure 1C), although further gene states with appreciable lifetime

may exist (Zoller et al., 2015).

Random telegraph and refractory-cycling models allow for

three distinct modes of regulation: modulation of the amplitude

of a transcription burst (amplitude modulation [AM]), burst



frequency modulation (FM), and modulation of burst duration

(DM) (Figure 1D). TFs recruiting RNA polymerase will enhance

the rate of transcription initiation in the active gene state, f, and

thus control transcription burst amplitude (AM). TFs recruiting

chromatin-modifying enzymes will cause the transition of the

gene from an inactive into a transcriptionally active state, e.g.,

by nucleosome remodeling. Such activators will shorten the

lifetime of the inactive gene state, tI, and thus modulate burst

frequency (FM). Frequency modulation may also occur if an acti-

vator shortens the duration of the refractory state tR (this case is

discussed in the STAR Methods, Mathematical Modeling, Fig-

ure S1). Finally, it is conceivable that a TF counteracts promoter

inactivation, prolonging the lifetime of the active state tA and

hence burst duration (DM). Depending on its interaction

partners, a given TF might act through more than one mode on

transcription (Figure S1).

The properties of the gene-regulatory function (viewed in its

usual ‘‘macroscopic’’ sense as the population average of tran-

script number versusTFconcentration) are shapedby the ‘‘micro-

scopic’’ modes of decoding TF activity: AM, FM, or DM. To show

this,we focuson thecaseofasingleTFdriving transcription froma

cis-regulatory element. For simplicity, we assume that the TFmay

bind to each of the gene states in the telegraph or refractory-

cycling models and functions as an activator in a specific state.

As an example, the refractory-cyclingmodel with frequencymod-

ulation is shown in Figure 1E. Promoter activation proceedswith a

lowbasal rate in the absence of bound TF (dashed line fromstate I

to state A) and is strongly enhanced after TF binding (solid line); all

other transitions proceed at equal rates with or without bound TF.

Similarly, for AM or DM, we made the respective regulated

processes in the models dependent on the presence of the TF

(Figure S1; STAR Methods, Mathematical Modeling).

The TF occupancy of the cis-regulatory element is a saturating

function of TF concentration, [TF], being half-maximal at

[TF] = KD, the dissociation constant (Figure 2A). To understand

how the gene-regulatory function, transcription rate v versus

[TF], depends on [TF], we calculated the steady-state transcrip-

tion rates of the AM, FM, and DM random telegraph and

refractory-cycling models. For all models, the gene-regulatory

function saturates with increasing [TF] (akin to the Michaelis-

Menten equation for enzyme kinetics):

v = vmax

b+ ½TF�
U+ ½TF� ; (Equation 1)

with the maximal transcription rate vmax and the operating point

(half-saturation constant), U; b is due to the basal transcription

rate in the absence of TF and is smaller than U (Box 1). For the

simple equilibrium-binding model, the same expression holds

with U = KD, and hence the gene-regulatory function of this

model is proportional to TF occupancy (Figure 2B, upper panel).

By contrast, the operating point in the non-equilibrium models is

also a function of the lifetimes of the gene states in the bursting

cycle U = U(tI, tA, tR, KD) (Box 1). As a consequence, the gene-

regulatory function is generally not proportional to TF occu-

pancy. There are three principal cases:

d The bound TF accelerates a transition in the transcriptional

bursting cycle. For an activator, this would be the Inactive-
to-Active transition (or the Refractory-to-Inactive transi-

tion), causing burst frequency modulation. Then the tran-

scriptional output becomes maximal already before TF

occupancy saturates, as the operating point of the gene-

regulatory function is smaller than the TF dissociation

constant, UFM < KD (Figure 2B, orange line).

d The bound TF inhibits a transition in the bursting cycle. For

an activator, this would be the Active-to-Inactive transition

(random telegraph model) or the Active-to-Refractory

transition (refractory-cycling model), thus prolonging burst

duration (DM). Then the transcription rate responds much

less sensitively to the concentration of the activator and

increases only when the response element already shows

strong occupancy (UDM > KD Figure 2B, cyan line).

d The bound TF leaves the bursting cycle dynamics

unaffected but changes the transcription initiation rate

from the active promoter (AM). Only in this case is the tran-

scriptional output proportional to TF occupancy (UAM = KD

Figure 2B, black line).

Thus a TF accelerating (slowing) the transcriptional bursting

cycle has an operating point that is smaller (larger) than its disso-

ciation constant KD. These effects arise because the TFs regu-

late the lifetime of specific states in the non-equilibrium bursting

cycle. In the case of FM, the TF in question triggers the Inactive-

to-Active transition but is not needed tomaintain the active state,

hence weak TF occupancy suffices for achieving maximal tran-

scription rate. Conversely, in the case of DM, the TF inhibits

the Active-to-Refractory/Inactive transition, working against a

constant slippage of the inactivating transition taking place.

Therefore, very high TF occupancy is needed to shut down

inactivation (see Box 1 for details). Notably, transcription re-

sponds to a TF that modulates burst frequency more sensitively

(UFM < KD) than to a factor recruiting RNA polymerase (for which

UAM = UEQ = KD); burst frequency modulation thus overcomes a

sensitivity limit inherent in the equilibrium-binding bindingmodel.

Of note, this conclusion remains valid for responses to transient

stimuli (Figure S2), as well as an arbitrary number of refractory

states in the bursting cycle (Figure S1A; STAR Methods, Mathe-

matical Modeling; Zoller et al., 2015).

For the subsequent analysis of experimental data, the case of

a TF modulating burst frequency by accelerating the Inactive-to-

Active transition will be most relevant. Then the operating

point is:

UFM =KD

tI
tI + tA + tR

<KD; (Equation 2)

that is, KD is weighted by the TF-bound fraction of genes in the

inactive state (for simplicity, basal transcription was set to

zero, see Box 1 for the general case). Equation 2 entails a spe-

cific prediction. If a gene is readily activated upon binding of

the TF (tI small), it should be sensitive to even small [TF] and,

hence, weak occupancy of its response element (UFM � KD).

By contrast, if a gene requires a long time for activation (tI large),

it needs higher [TF] for activation and may even approach the

equilibrium limit (UFM � KD) (Figure 2C). In summary, the theory

predicts that (1) a gene may respond very sensitively to an acti-

vator that modulates burst frequency, and (2) that the respective
Cell Systems 6, 409–423, April 25, 2018 411
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Figure 2. Theoretical Predictions from the Generic Models of Transcriptional Regulation

(A) Steady-state TF occupancy as a saturating function of TF concentration.

(B) Dose responses of steady-state mRNA levels (normalized to maximum) for equilibrium-binding model (EQ, gray line), and non-equilibrium models with AM

(black line), DM (cyan line), and FM (orange line); telegraph and refractory-cycling models have principally the same behavior of the dose responses. The

operating point U is defined as the TF concentration at which the mRNA level reaches half saturation.

(C) The operating point of FM model as a function of the lifetime of the inactive promoter state tI.

(D) In response to a sudden increase in TF binding (upper panel) the different models show distinct dynamics of promoter activity (middle panel) andmRNA output

(bottom panel). Notably, transcription rate in the FM refractory-cycling model overshoots.

(E) Graphical summary of the theoretical predictions. Parameter values: tI = 1min, tA = 15min and tR = 40min for the FM refractory-cyclingmodel (cf. Table S2 for

experimentally inferred values) and tI = 15min, tA = 1min, tR = 40min for the DM refractory-cycling model; mRNA lifetime in (D) is 30min. See also Figures S2–S4

and Table S1.
operating point is controlled by the gene’s activation rate: a

kinetic property of the bursting cycle.

Refractory Genes Can Be Induced Rapidly
Next, we asked how fast transcript levels rise in response to an

activator. The kinetics of transcription initiation, elongation/

splicing, and mRNA loss will all affect the speed of the response

to some degree. As a general principle, the time for switching on

a molecular component in a simple, monotonic manner is deter-

mined by the lifetime of the component, and hence mRNA life-

time is expected to limit the speed of the transcriptional

response to a stimulus (Savageau, 1974; Rosenfeld et al.,

2002; Alberts et al., 2015). In particular, transcript and protein

lifetimes cannot be arbitrarily short if a certain steady-state level

is to be achieved.

We systematically investigated the kinetic responses of the

different models and found that in the majority of cases (AM

and DM in both telegraph and refractory-cycling models, FM in
412 Cell Systems 6, 409–423, April 25, 2018
the telegraph model), mRNA lifetime limits the speed of the

response (Figure 2D, black lines and cyan lines; STAR Methods,

Mathematical Modeling). In all these models, a rise in TF activity

leads to a monotonic increase in transcription rate until the

steady state is reached. The resulting rise in mRNA level trails

the increase in promoter activity with a delay that is governed

by mRNA lifetime. In particular, increasing the rate of gene acti-

vation in the model would not speed up the response time to

steady state because the steady-state level would also increase.

By contrast, frequency modulation in the refractory-cycling

model shows a fundamentally different response, because

response speed and steady state can be decoupled due to the

additional degree of freedom provided by the refractory state.

To illustrate this, we consider the simple case that the basal tran-

scription rate vanishes in the absence of TF; TF is activated at a

given time point and then held constant. Prior to TF activation,

the steady state of the model is full occupancy of the inactive

state. If, after TF binding, the gene activation rate is large,



Box 1. Gene-Regulatory Functions for Transcriptional Bursting Models

The population-level dynamics of the random telegraph and refractory-cycling models are described by systems of ordinary

differential equations for the fractions of genes in the inactive, active and (for refractory cycling) refractory states, being TF bound

or unbound. We calculated the gene-regulatory functions in terms of the steady-state transcription rates for constant [TF] (STAR

Methods, Mathematical Modeling) and discuss them in turn for AM, FM, and DM.

In the case of AM, the binding of the TF does not affect the transcriptional bursting cycle but rather enhances the initiation rate from

the active state. Let tA, tI, and tR be the average lifetimes of the active, inactive, and refractory gene states (for the random tele-

graph model tR = 0). Further, let KD and f denote, respectively, the dissociation constant of the TF and the transcription initiation

rate with TF bound. Without bound TF, transcription is initiated with the basal rate 3AMf, where 0 % 3AM < 1. The gene-regulatory

function is

vAM = f
tA

tI + tA + tR|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
maximal rate

3AMKD + ½TF�
KD + ½TF�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
dose response

: (Equation 4)

The operating point is defined as the [TF] at which the transcription rate is halfway between the basal and maximal rates, yielding

UAM =KD: (Equation 5)

Hence the dose response of the AMmodel is identical to the basic equilibrium-binding model. We will see below that this is due to

the fact that the bursting cycle is not influenced by TF binding. The maximal transcription rate,

vmax = f
tA

tI + tA + tR
; (Equation 6)

is the product of the occupancy of the active gene state and the initiation rate.

For the FM and DMmodels, the bursting cycle is modulated by TF binding. Therefore, we distinguish basal (TF unbound) and acti-

vated (TF bound) bursting cycles. In the FM model, bound TF accelerates the transition from the inactive to the active gene state.

We denote the lifetime of the inactive gene state in the presence of bound TF by tI (active bursting cycle) and in the absence of TF

by tI/ 3FM, where 0 % 3FM < 1 (basal bursting cycle). The gene-regulatory function has the same principal form as for AM,

vFM = vmax

3FMKD + ½TF�
UFM + ½TF� ; (Equation 7)

with identical maximal rate but different dose response, as the operating point is

UFM =KD

tI + 3FMðtA + tRÞ
tI + tA + tR

<KD: (Equation 8)

For DM, we denote the lifetime of the active state with bound TF by tA (activated bursting cycle) and in the absence of TF by 3DMtA,

where 0 < 3DM < 1 (basal bursting cycle). The gene-regulatory function becomes

vDM = vmax

KD + ½TF�
UDM + ½TF�; (Equation 9)

with the operating point

UDM =KD

tA + ðtI + tRÞ= 3DM

tI + tA + tR
>KD: (Equation 10)

Thus the essential difference between the gene-regulatory functions for AM, FM, and DM is in the operating point. Remarkably, the

operating points for the distinct models follow from a general relation. Let Ractive,i and Rbasal,i denote the fractions of time that gene

state i (i = A, R, I) occupies in the active and basal bursting cycles. Consider the gene state whose lifetime is regulated by the bind-

ing of the TF. For FM, we have i = I and

Ractive;I =
tI

tI + tA + tR
and Rbasal;I =

tI= 3FM

tI= 3FM + tA + tR
; (Equation 11)

while for DM, we have i = A, and

(Continued on next page)
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Box 1. Continued

Ractive;A =
tA

tI + tA + tR
and Rbasal;A =

tA 3DM

tI + tA 3DM + tR
: (Equation 12)

It is straightforward to verify that the operating point is, in general,

U=
Ractive;i

Rbasal;i

KD; (Equation 13)

where the index i denotes the regulated gene state. This equation also contains the AM case, as here TF-bound and unbound

cycles have the same length and, hence, Ractive,i/Rbasal,i = 1. Moreover, Equation 13 also holds in the relevant limiting case of

vanishing basal cycle rate for FM ( 3FM = 0), as the fraction occupied by the inactive state is 1.

These arguments can be phrased more generally, considering multiple refractory states and also TFs acting as repressors (STAR

Methods, Mathematical Modeling). A TF enhancing the Inactive-to-Active transition is an example of a TF accelerating the tran-

scriptional burst cycle when bound. For such ‘‘accelerating’’ TFs, we always have U < KD. Conversely, a TF extending the lifetime

of the active state is an example of prolongation of the bursting cycle by the bound TF. Such ‘‘braking’’ TFs always have U > KD.

These cases include repressor action, e.g., when a TF shortens the lifetime of the active state or extends the lifetime of the inactive

or refractory states; the dose response is then a decreasing function of [TF], but the operating point is nevertheless determined by

Equation 13 (STAR Methods, Mathematical Modeling). Finally, a TF that leaves the lifetime of the bursting cycle unchanged has

U = KD. Thus, the operating point of the gene-regulatory function is shaped by the non-equilibrium nature of the transcriptional

bursting cycle.
transcript will start to accumulate rapidly. However, the steady

state to which the system relaxes could still be low, as a long-

lived refractory state would prevent immediate reactivation of

transcription. In this situation, the transcription rate overshoots

(on the population level) before settling to the steady state (Fig-

ure 2D, orange lines). As a consequence, mRNA levels may

rise rapidly, overshoot, and relax to the steady state. If transcrip-

tion rate overshoots, the response time is no longer limited by

mRNA lifetime (Figure S3; STAR Methods, Mathematical

Modeling). Thus, paradoxically, the theory predicts that tran-

scriptional refractoriness allows for rapid induction of transcript.

Moreover, we find that the amplitude of the transcriptional

response is insensitive to the duration of the input stimulus,

thus allowing for robust, stereotypic gene induction once a

stimulus threshold is crossed (Figure S4).

Taken together, the theory predicts that the decoding of TF ac-

tivity by transcription bursting cycles overcomes principal limits

inherent in equilibrium-binding models (Figure 2E): strong tran-

scription responses may be induced without saturating the occu-

pancy of TF binding sites, and gene refractoriness allows for a

rapid rise in transcript levels that is not limitedby transcript lifetime.

Light-Controlled Genes of Neurospora Are Frequency
Modulated
We tested the utility of the models for understanding experi-

mental data. To this end, we made use of the light-controlled

GATA-type TF, White Collar Complex (WCC), in Neurospora

crassa. Activation of WCC by blue light is based on a stable

covalent photoadduct between the TF and its bound flavin

adenine dinucleotide cofactor (Malzahn et al., 2010). Hence, a

brief non-saturating pulse of blue light splits the population of

WCC into an activated fraction and an inactive fraction, which

is available for activation by a consecutive light pulse. After a

brief light pulse, activated WCC binds to the cis-regulatory ele-

ments of its target genes, the light-response elements (LREs),
414 Cell Systems 6, 409–423, April 25, 2018
and synchronously activates their transcription in this syncytial

organism. As we have shown recently (Cesbron et al., 2015),

double light pulses reveal the existence of transcriptional refrac-

toriness (depicted schematically in Figure 3A, upper panel).

WCC target genes show a continuum of responses in this exper-

imental setting, ranging from clearly refractory genes, such as

frequency (frq), to genes with no apparent refractoriness, such

as vivid (vvd) (Figure 3A, lower panel).

To test our theory against experiment we used a comprehen-

sive, time-resolved dataset obtained for frq and vvd, consisting

ofmeasurements onWCCbinding (by chromatin immunoprecip-

itation-PCR), mRNA levels (by RT-PCR), and protein levels

(measured with a stably integrated luciferase reporter construct)

for single and double-light-pulse protocols (Cesbron et al.,

2015). To fit the models to these data, we modeled the light-

induced activation and subsequent inactivation of the WCC

and coupled it to all possible telegraph or refractory-cycling

models for frq and vvd expression showing AM, FM, or DM, or

combinations of these decoding modes (Figures S1 and S5A).

This yielded 484 distinct models that share the WCC activation

pulse but, for each gene, allow different numbers of states (tele-

graph or refractory-cycling models) and activation modes by

WCC (STAR Methods, Mathematical Modeling). To comprehen-

sively scan the space of the �30 model parameters, we per-

formed 1,000 optimization runs for each of these models, using

Latin hypercube sampling for the initial conditions. We then

ranked the models according to their performance in reproduc-

ing all the data by two standard criteria, the Akaike information

criterion (Akaike, 1974) and the goodness of fit (Figures 3B and

S5B). Both criteria yielded a clear partitioning of the models

into a small group consisting of four models that account for

the data and the large remainder that does not (Figure 3C).

This result indicates that, at the given level of model complexity,

the experimental data are highly informative on the underlying

gene-regulatory mechanisms.
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Figure 3. Model Selection and Parameter Inference for Light-Controlled Gene Activation in Neurospora crassa

(A) Repeated light pulses reveal a refractory gene state: the light-activated TF WCC is recruited to its regulatory elements (LREs) by each light pulse, yet tran-

scription is refractory during the second pulse (upper panel, schematic drawing based on data of Cesbron et al., 2015); response ratio to second versus first light

pulse (given 30 min apart) for 71 light-inducible genes, as quantified by the recruitment of Ser5-phosphorylated RNA polymerase (lower panel, redrawn from

Cesbron et al., 2015).

(legend continued on next page)
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The fitting models are variations on a common theme: they all

include a refractory state for both frq and vvd, and burst fre-

quency modulation by WCC (Figure 3C). Thus, the large-scale

model selection identified a common mechanism for the regula-

tion of WCC target genes: frequency modulation of a transcrip-

tional bursting cycle with a refractory period. The inferred role

of WCC in bringing the genes into an active state is supported

by its involvement in chromatin remodeling (Sancar et al., 2015).

We selected the most parsimonious Model 3, which has no

additional features for further analysis in the remainder of the pa-

per (the other threemodels effectively converge toModel 3 given

the inferred parameter values). For both vvd and frq, the model

captured the dynamics of WCC binding to the respective LREs

(Figure 3D), as well as the dynamics of mRNA level (Figure 3E)

and luciferase reporter (Figure 3F) in single- and double-pulse

experiments. Moreover, comprehensive dose responses, where

active WCC levels were varied by varying light pulse intensity,

were also accounted for (Figure 3G). All model parameters

were statistically constrained by the data; 27 out of 29 parame-

ters were fully identifiable from the data and the remaining two

had upper 95% confidence bounds (Figure S6; Table S2). These

findings imply that the model can be used to make quantitative

predictions.

Transcription Rate Overshoots for Both frq and vvd

The double-light-pulse experiment (Cesbron et al., 2015) directly

showed a refractory period for frq (cf. Figure 3A, lower panel) but

not for vvd. The model selection suggests that vvd has neverthe-

less a refractory state but promoter activation is so inefficient

that the first light pulse (low light intensity) leaves many pro-

moters available for activation by the second high light pulse

(see also below). However, irrespective of the efficiency of

gene activation, the presence of a refractory gene state implies,

on the population level, an initial overshoot in transcription rate.

By contrast, without promoter refractoriness transcript levels

should reach their respective steady state through a monotonic

increase (cf. Figure 2D).

To test this prediction experimentally, we applied a constant

light stimulus, enabling us to observe both the initial transient

response of gene expression and the eventual steady state.

The experimental data agreed closely with the respective model

simulations (Figure 4A). Both frq and vvdmRNA levels overshot,

whereas the WCC occupancy of the LREs of the genes was

steady (Figures 4B and S7A). Moreover, the model predicts

that frq shows a transcriptional overshoot already at lower light

intensities than vvd (Figure 4A). To test this, we applied constant

light stimuli of lower intensities, and measured the kinetics of

luciferase induction from both frq and vvd gene promoters. To

increase the sensitivity and temporal resolution of the measure-

ments we used a PEST-destabilized luciferase reporter (Cesbron

et al., 2013, 2015). As RT-PCR for mRNA was not quantitatively

reliable at low induction levels we inferred the underlying time

courses of mRNA computationally. Even if we made the conser-
(B) A total of 484 possible models of WCC action fitted to time-resolved data for

(C) The best four models for frq and vvd selected by AIC.

(D–G) Data versus best fit of Model 3 for: WCC binding (D), RNA dynamics (E), luc

(G) (LP, light pulse). The colors in (G) represent different intensities of light pulses

estimated errors of the data from the error model. See also Figures S5 and S6.
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vative assumption of monotonically increasing signals of PEST-

destabilized luciferase (thus strongly curtailing the impact of

measurement noise on the inference of the mRNA kinetics), the

data clearly implied overshooting mRNA levels for both genes

and, moreover, showed the predicted higher excitability of frq

(Figures 4C and S7B). Taken together, these data show that a

transcriptional overshoot is an intrinsic property of the frq and

vvd genes in response to a constant activating WCC signal, as

predicted by the refractory-cycling model.

Differential Dose Responses of frq and vvd Are due to
Different Activation Rates
To understand the mechanistic basis of the different responses

of frq and vvd genes to WCC, we examined the model parame-

ters inferred from the data (cf. Figure 3). The key parameters

determining the dose response (Equation 2; Box 1) are the affin-

ity for the transcriptional activator (measured byKD), the initiation

rate from the active promoter (f) and the lifetimes of the gene

states (tI, tA and tR). The inferred average gene state lifetimes

are between 36 and 65 min for the refractory state and between

10 and 20 min for the active state. The average lifetimes of the

inactive state at maximal TF occupancy are inferred to be short,

several seconds for frq and 1–3 min for vvd (for a summary of all

parameter estimates see Table S2).

The model predicts that only two of these parameters, the

transcription initiation rate and the lifetime of the inactive gene

state, differ significantly between frq and vvd (Figure 5A; note

that tI depends on WCC concentration and the diagram shows

that the minimal values approached at high WCC levels). To

test the prediction on different transcription rates, we quantified

the gene occupancy by initiating RNA polymerase, which is

marked by C-terminal phosphorylation at serine 5. Neither frq

nor vvd show a peak of ‘‘paused’’ polymerase at their respective

promoters, but rather have broad distributions of serine-5-phos-

phorylated polymerase in the promoter-proximal parts of the

genes (Cesbron et al., 2015). Provided that the polymerase

progression rates are similar for both genes, this polymerase

occupancy can be considered as a proxy for initiation rate.

The�10-fold higher polymerase occupancy of the vvd promoter

is consistent with the model prediction that the initiation rate

from this promoter is about one order of magnitude larger than

the frq initiation rate (Figure 5B).

The second differential parameter, the lifetime of the inactive

gene state, yields very different dose responses of the two genes

to WCC according to our theory (Figure 5C), which is indeed

seen experimentally (Figure 5D). In particular, for the frq gene,

we find that transcription rate saturated before WCC binding

(Figure 5E). Hence, a remarkable prediction from the viewpoint

of the classical theory of gene regulation is that the different

dose responses of frq and vvd genes arise solely from different

activation rates, whereas the WCC affinities of the two

genes’ LREs are predicted to be statistically indistinguishable

(cf. Figure 5A).
frq and vvd, and ranked by the Akaike information criterion (AIC).

iferase reporter varying double-light-pulse interval (F), and light pulse intensity

used for gene induction. The shaded areas around the curves in (D–G) give the
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Figure 4. Transcriptional Overshoot of WCC Target Genes frq and vvd

(A) Simulation of mRNA dynamics of frq and vvd (lower panel) under constant WCC levels (upper panel), using the parameter values from the best fit.

(B) Experimental data of WCC binding (upper panel, chromatin immunoprecipitation-PCR) and mRNA dynamics of frq and vvd (lower panel, RT-PCR) under

constant high light intensity (n = 3).

(C) Inference of mRNA kinetics from luciferase reporter kinetics under constant low light intensities (n = 4). The first row shows the fitting results for frq by

monotonic cubic splines, and the second row is the inferred mRNA dynamics. The third and fourth rows show the same quantities for vvd. Shaded areas depict

95% confidence intervals determined by non-parametric bootstrap. Data in (B) and (C) are presented as mean ± SEM. See also Figure S7.
Indeed, the frq and vvd LREs share a common sequence

grammar, both containing tandemGATCmotifs forWCCbinding,

but differing somewhat in the number and spacing of the motifs

(Sancar et al., 2015). Previous work has shown comparable

WCC binding to the two LREs after light activation (Cesbron

et al., 2015). To examine whether the small differences in LRE

sequence cause differential gene regulation or, as indicated by

the model, have no impact on theWCC dose response, we engi-

neered a vvd construct replacing the original vvd LRE by the frq

LRE (Table S3–S5). If the LRE sequence determined the sensitive

WCC dose response of the frq gene (Figure 5F), then this swap

should render the vvd gene sensitive to lower light intensities.

However, LRE swapping did not alter the vvd dose response at

all (Figure 5G). This absence of a specific LRE effect is consistent

with the model prediction that the differential dose responses of

frq and vvd are due to distinct lifetimes of the inactive gene state.
Enhancer-Promoter Distance and Core Promoter
Encode Differential Gene Activation
The gene activation rate (1/tI) is inversely proportional to the life-

time of the inactive gene state and depends on the level of active
WCC inducing activation. A striking difference between frq and

vvd is the placement of the respective LRE, proximal to the frq

promoter (145 bp to transcription start site [TSS]; Figure 5F)

and distal to the vvd promoter (1,632 bp to the TSS; Figure 5G).

Indeed, the contact frequency of two sites on the chromatin fiber

drops dramatically over this genomic distance (Ringrose et al.,

1999). Therefore, we hypothesized that, at a given WCC occu-

pancy of an LRE, the genomic distance between the LRE and

the promoter controls the activation rate of the gene. To make

testable predictions, we extended the mathematical model by

decomposing promoter activation into a reversible chromatin

looping step that brings LRE-bound WCC and the promoter

into proximity and a subsequent transition from the inactive to

the active gene state (Figure 6A; STAR Methods, Mathematical

Modeling). Then the overall rate of gene activation becomes

approximately:

Activation rate=
1

tIðLÞx
1

tO

tlooped
tunlooped

=
cjMðLÞ
tO

; (Equation 3)

where tunlooped and tlooped, respectively, are the average lifetimes

of the unlooped state (no contact between LRE and TSS) and the
Cell Systems 6, 409–423, April 25, 2018 417
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Figure 5. Identification of Key Parameters for Differential Gene Regulation of WCC Target Genes

(A) Comparison of inferred key parameters between frq and vvd, with 95% confidence bounds.

(B) Experimental quantification of RNA polymerase C-terminal tail phosphorylation at Ser5 within frq and vvd (marker for transcription initiation). Error bars

indicate SEM.

(C) Theoretical prediction of the mRNA dose-response (normalized by maximum level) by varying tI.

(D) Differential responses (quantified by normalized luciferase signals) of frq (orange) and vvd (blue) to light-activated WCC, which were obtained from Figure 3G.

Dots and squares, experimental data; solid curves, best fit of the model; shaded areas, estimated errors.

(E) Fold change in WCC occupancy (black) and mRNA level (red) for frq with different light pulse intensities (± SEM; n = 3). n.s., not significant; *p < 0.05, two-

sample t test. Pairwise tests of all mRNA levels (n = 3) show no significant difference.

(F and G) Prediction and validation of LRE-swapping. Left panels, construct design (with GATCmotifs in LREs); right panels, theoretical prediction (solid lines and

shaded 95%confidence bands) and experimental data (dots). Red diamonds show the predicted operating points. Model 3 was used throughout (see Figure 3C).

See also Table S2.
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Figure 6. Differential Gene Regulation by

Promoter-LRE Distance

(A) Extended model incorporating switching

between an unlooped state (with lifetime tunlooped)

and a looped state (with lifetime tlooped), coupled

with an irreversible transition from looped to active

promoter state (with characteristic time tO).

(B) Chromatin looping efficiency jM as a function of

the genomic distance between two sites on the

chromatin. Blue and orange dots mark the vvd and

frq constructs used in (C–E), respectively.

(C–E) Left panels show vvd and frq constructs with

various LRE-TSS distances measured from the

center of LRE to TSS. The right panels show the

corresponding model prediction (solid lines, with

shaded 95% confidence bands; red diamonds,

predicted operating points) and experimental data

(dots) (n = 3 for each construct and light intensity).

(F) LRE-TSS distance and core promoter jointly

determine the operating points of the frq and vvd

dose responses to WCC (in units of light pulse

intensity). Dots represent the operating points in the

model (which are characteristic of the experimen-

tally observed ones), see (C–E); labeled arrows

correspond to two kinds of experimental manipu-

lation: promoter exchanges (A and C) and changes

in LRE-TSS distance by �1.4 kb (B and D). For a

given gene, the two manipulations have similar

quantitative effects.
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looped state (WCC-occupied LRE and TSS in contact); jM
denotes the effective concentration of the LRE with respect to

the TSS according to standard polymer theory and c is a con-

stant (Chen et al., 2014). The new parameter tO is the opening

time for the promoter following enhancer-promoter looping; it

may be gene specific. Thus Equation 3 connects the activation

rate to the chromatin looping distance via jM(L) (Figure 6B). Of

note, this extension of themodel does not introduce new free pa-

rameters, as jM(L) has beenmeasured (Ringrose et al., 1999), and

then the promoter opening time tO is fixed by the already inferred

values of tI for frq and vvd. Hence, the activation rate for a gene

following TF binding is determined by a promoter-specific

component, the opening time (tO) and the genomic distance

between enhancer and promoter (L).

To test the hypothesis that gene activation rate controls its TF

sensitivity, we first changed the gene activation rate according to

Equation 3 in the model by varying the LRE-TSS distance (Fig-

ure 6B). The theoretically predicted dose-response curves for

vvd and frq showed an increase in activator sensitivity with

decreasing LRE-TSS distance (Figure 6C, solid lines and shaded

areas). We generated luciferase constructs driven by the vvd

core promoter and the frq LRE inserted at different distances

from the TSS. vvd expression is rendered increasingly sensitive

to WCC by bringing the LRE closer to the promoter (Figure 6C,

blue dots), which agrees quantitatively with the predictions of

the mathematical model. To test the effect of the reverse manip-

ulation (moving the LRE away from the promoter) we drove lucif-

erase expression from the frq core promoter, with the frq LRE

being gradually dislodged from its wild-type promoter-proximal

location. These data again agreed with the model prediction in

showing that the gene gradually loses sensitivity to the TF (Fig-

ure 6D). Thus, the genomic distance between promoter and

cis-regulatory element (LRE) determines the gene’s sensitivity

to its activator. Finally, apart from the distance, Equation 3 also

contains the gene specific parameter tO. We introduced the frq

core promoter into the vvd gene and found that the experimental

data matched the theoretical predictions obtained with model

containing the tO for frq and the vvd LRE-promoter distance (Fig-

ure 6E). These data show that the gene-specific parameter tO is

a function of the core promoter.

Collectively, these findings provide strong support for the

model prediction that gene activation rate, and not WCC-LRE

affinity, determines the differential regulation of the vvd and frq

genes. The gene activation rate is set by the genomic distance

between promoter and cis-regulatory element and by a pro-

moter-specific component. Quantitatively, the effect of putting

the more slowly activated vvd promoter in place of the frq pro-

moter is approximately the same as moving the frq LRE 1.4 kb

away from its native site, and vice versa for the vvd-frq promoter

swap (Figure 6F). Thus, for the two genes studied here, the

effects of core promoter and genomic distance on activation

rate balance.

DISCUSSION

Transcription belongs to themost complex enzymatic processes

in the cell, yet a compellingly simple ‘‘effective’’ model that

relates transcription rate to equilibrium distributions of TF bind-

ing, has beenwidely used to quantitate its regulation. Predictions
420 Cell Systems 6, 409–423, April 25, 2018
with this model on a large-scale basis, however, are far from per-

fect (Segal et al., 2008). As experimental tools are becoming

more sophisticated, complex relationships between TF binding

sequences, TF occupancy, and transcript abundance are being

found, thus suggesting that sequence-controlled TF occupancy

may not directly convert into transcription rate (Spitz and

Furlong, 2012; Bentovim et al., 2017). For example, in two

Drosophila species, Khoueiry et al. (2017) found conserved

combinatorial TF occupancy despite sequence divergence,

and conserved enhancer function despite diverged occupancy.

Indeed, regulated accessibility of chromatin for TFs and the gen-

eral transcription machinery has emerged as a prime determi-

nant of transcription rate in eukaryotes. While the chromatin

state may be locally controlled by sequence-specific TFs, the

downstream reactions, such as nucleosome remodeling and

posttranslational histone modifications, are highly dynamic

non-equilibrium processes that consume metabolic energy

(Coulon et al., 2013; Voss and Hager, 2014) and thus may ‘‘pro-

cess’’ the information contained in TF binding in unexpected

ways (Ahsendorf et al., 2014; Estrada et al., 2016; Scholes

et al., 2017). Here we proposed a simple yet generic model of

non-equilibrium gene regulation and demonstrated its utility in

gaining insight from experimental data.

We based our theory on observable properties of transcrip-

tional bursting dynamics, namely the existence of long-lived

active, inactive, and refractory gene states. Interestingly, the

lifetimes of these states inferred here for Neurospora genes (be-

tween 30 min and 1 hr combined for refractory and inactive

states, and between 10 and 20min for the active state) are rather

similar to the values for mammalian genes derived from live-cell

imaging (one to several hours for the refractory state and of the

order of 10 min for the active state; Harper et al., 2011; Suter

et al., 2011).

While our derivation of gene-regulatory functions does not rely

on detailed knowledge about the molecular nature of the states,

the confrontation of the models with experimental data provided

concrete leads to molecular mechanisms. Systematic model

selection identified the key role of the TF studied, the GATA-fac-

tor WCC, as enhancing the transition from the inactive to the

active gene state. Indeed, WCC, as many other TFs, recruits

nucleosome remodelers and causes nucleosome eviction (San-

car et al., 2015). Thus, our findings are in line with studies

showing that TF-induced nucleosome remodeling is rate limiting

for transcriptional activation (Boeger et al., 2008; Kim and

O’Shea, 2008). Interestingly, model selection rules out a direct

effect ofWCCon transcription initiation rate, indicating that other

factors quantitatively control RNA polymerase recruitment and/

or transcription initiation after the gene transits into an active

state. Our findings further imply that TFs such as WCC may

only need to interact transiently with their target genes to activate

them. This transient effect has indeed been observed for the

glucocorticoid receptor in mammalian cells (Voss et al., 2011),

where extremely short DNA binding events (seconds) have a

lasting effect on chromatin accessibility for downstream regula-

tors of transcription. Further supporting this idea, we observed

here that activation of frq transcription by WCC reached its

maximum long before WCC binding to the respective enhancer

element (LRE) became saturating. Moreover, a recent theoretical

study has shown how the transient action of multiple TFs on the



Figure 7. Gene Regulation within a Non-

equilibrium Framework

TF binding (depending on KD and [TF]) signals

gene activation mediated, e.g., by chromatin

remodeling. The rate of gene activation, which is

governed by enhancer-promoter distance (L) and

a promoter-specific rate component tO, de-

termines how sensitive a gene responds to the TF.

Thus transient TF occupancy may cause full gene

activation. The presence of a refractory state

enables rapid responses to stimuli.
transcription cycle can cause combinatorial regulation of tran-

scription rate without physical TF interactions, which has been

termed kinetic control (Scholes et al., 2017).

Following this lead by the theory allowed us to identify a spe-

cific non-equilibrium mechanism that governs differential

expression of WCC target genes. Judged from the viewpoint of

(equilibrium) TF occupancy, the vvd and frq LREs are very

similar, containing, respectively, four and three GATC binding

motifs. In agreement with these sequence properties, WCC

occupancies are similar at the two LREs, with vvd having some-

what higher occupancy (Cesbron et al., 2015). However, tran-

scription of the frq gene is much more sensitive to WCC

concentration.

Model-based inference from the experimental data shows that

the differential sensitivities of frq and vvd transcription to WCC

are controlled by a kinetic parameter: the gene activation rate.

Based on the known enhancer configurations for two key WCC

target genes, frq and vvd, we reasoned that the rate of dynamic
C

enhancer-promoter interactions, gov-

erned by genomic distance, determines

the gene activation rate (Figure 7). The

quantitative comparison of theory with

experiment also identified a promoter-

specific component in setting the gene’s

activation rate, which had a similar

quantitative effect on gene regulation as

genomic distance. Remarkably, tuning

these two regulators of the gene activa-

tion rate allows differential gene activa-

tion without differences in TF binding

affinity or occupancy.

While the model was parameterized

here for light-controlled transcription in

Neurospora, we expect it to be more

broadly applicable. A recent elegant

study in Drosophila embryos supports

the notion that enhancer-promoter asso-

ciations are dynamic by showing that two

genes can be transcribed at the same

time under the control of a shared

enhancer, which, incidentally, controls

transcription burst frequency of the

genes (Fukaya et al., 2016). In mamma-

lian cells, forced enhancer-promoter

looping also causes an increase in burst

frequency (Bartman et al., 2016).
Promoter-enhancer distance may control gene activation rate

also by mechanisms other than direct looping. In particular,

chromatin states may propagate by autocatalytic mechanisms

(Angel et al., 2011; Berry et al., 2015), which, however, may

also involve chromatin looping as a parameter (M€uller-Ott

et al., 2014). We would like to emphasize, however, that the

key feature of our model is that burst frequency modulation by

a TF allows highly sensitive gene regulation. Genomic distance

is only one of several molecular parameters that could impact

on frequency modulation.

Furthermore, coupling burst frequency modulation with

inherent promoter refractoriness allows the transcript to over-

shoot its steady state when the upstream TF becomes active.

This hallmark of transcriptional refractoriness has an implication

for the precision of a gene’s response to stimuli, on both cell-

population and single-cell levels. In a single cell, the first

transcription burst induced by a stimulus can already yield the

full transcriptional response also seen after a sustained stimulus,
ell Systems 6, 409–423, April 25, 2018 421



because after a brief period of activity, the gene enters a long

refractory period, during which it remains insensitive to stimula-

tion. Therefore, a refractory gene can give a unique and precise

answer to a stimulus regardless of the time duration it is applied.

In Neurospora, WCC and VVD proteins are light sensors that

govern the entrainment of the circadian clock to the day-night

cycle and its adaptation to continuous light, respectively (Mal-

zahn et al., 2010; Gin et al., 2013). Precise responses to light

stimuli that fluctuate with weather and growth environment of

the fungus might be critical here for robust function. By contrast,

transcripts of a refractory gene with slow activation rate or a non-

refractory gene (as in the telegraph model) will build up incre-

mentally in single cells before the full response is reached, and

thus the answer will be strongly controlled by signal duration in

this case. Both response modes, full response on first trigger

versus buildup of response with stimulus length, may be appro-

priate in different functional contexts.With the increasing body of

evidence showing that dynamic input stimuli differentially regu-

late gene expression and cell fate (Purvis and Lahav, 2013), the

dissection of the transcription cycles of target genes should

provide insight into the mechanisms underlying specificity.

The basic line of reasoning in this study is that ‘‘microscopic’’

properties of the transcription cycle, such as the lifetimes of inac-

tive, active, and refractory gene states, have ‘‘macroscopic’’

consequences on gene regulation that determine the regulatory

logic at the level of the cell population. However, our theoretical

framework can equally be applied to study variability and robust-

ness of gene expression at the single-cell level.
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Thomas

Höfer (t.hoefer@dkfz.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Culture Conditions
Standard growth medium contained 2%glucose, 0.5% L-arginine, 13 Vogel’s medium. If not indicated otherwise, cells were grown

36 h in constant light (LL) and 24 h in constant darkness (DD) before the specific light treatment.

METHOD DETAILS

Plasmid Construction and Neurospora Transformation
A pFH62-frqDup lucPEST plasmid (Cesbron et al., 2015) was used as parental plasmid. The synthetic promoter contains a SphI and a

Asc1 site 107 bp upstream and 153 bp downstream of the TSS (+1), respectively.

Different frq hybrid lucPEST constructs (frq-frqLRE-0.5 lucPEST and frq-frqLRE-1.1 lucPEST) were created by inserting various lengths

(657 bp and 1257 bp) of frqDLRE fragment (Table S3) into the SphI and AscI sites of frqDup lucPEST.

Similarly different vvd hybrid lucPEST constructs (vvd-frqLRE-0.2 lucPEST, vvd-frqLRE
-0.4 lucPEST ,vvd-frqLRE-1.0 lucPEST and vvd-

frqLRE-1.6 lucPEST) were created by inserting various lengths (457 bp, 657 bp, 1257 bp and 1900 pb) of vvd promoter fragment

into the SphI and AscI sites of frqDup lucPEST.

Construction of the vector containing vvd-frqCorePromTSS lucPEST was performed in two steps. A pFH62-vvd lucPEST plasmid

(Cesbron et al., 2013) was used as parental plasmid. A SphI site was introduced by site-directed mutagenesis upstream of the

vvd transcriptional start site (-111). A 92 bp fragment containing frq core promoter was amplified by PCR and inserted in place of

vvd transcriptional start site into the SphI and NotI sites.

LucPEST reporter genes were inserted into the his-3 locus of the indicated bd strains. Primers are listed in Table S4.
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The sequences of frq and vvd LRE are, respectively: GGGACCGGACGACGGCTGGCCAATTAGACGGCCGTCGCAGAGGACCCT

GAACTTTTCGATCCGCTCGATCCCCTGGAACCTGGGCAGTGATGAGGATCGGGGCGATTCCTGT GCGGTTTCAATTGTTCGTGC

TGGCGCGTGGGTCCCGTTCTTGGTTCGATCCACGGCGCTGGTGCGATCGCTGCGGATCTGGGTCCCTCGATGGTTTAGCAGCT

GCGATCGGTCAGCATCGCTGTCCCCATTCTACACTGCCATCCAAAATC

The GATC motifs are highlighted.

RNA Analysis
RNAwas preparedwith peqGOLDTriFAST (PeqLab). The reverse transcriptionwas donewith theQuantiTect reverse transcription kit

(Qiagen) following the manufacturer’s instructions. Transcript levels were analysed by quantitative real-time PCR in 96-well plates

with the StepOnePlus real-time PCR system (Applied Biosystems). TaqMan Gene Expression Master Mix (Applied Biosystems),

TaqMan, and UPL probes (Roche) were used. Primers and probes are listed in Table S5.

In Vivo Luciferase Measurements
Light pulse assay: standard growthmedium contained 2%glucose, 0.5% L-arginine, 13 Vogel’s and 150 mMfirefly luciferin. 96-well

plates were inoculated with 1.53 105 conidia per well and incubated in darkness for 16 hours at 25�C. Plates were then exposed to

the indicated light pulse regime. Bioluminescence was recorded in darkness at 25�C with an EnVision Xcite Multilabel Reader.

Antibodies
Polyclonal anti-rabbit antibodies were raised and purified using standard techniques. Pol II Ser5-P was raised against SPT(pS)

PSYSPT(pS)PSC. WC2 antibodies were raised against a GST-WC-2 protein expressed in Escherichia coli 65. WC1 rabbit antibodies

were raised against the C-terminal peptide CREEMGEHQQGLSV and affinity purified. The cysteinyl residues (C) were added to allow

coupling of the peptides to SulfoLink coupling resin for affinity purification of antibodies.

Chromatin Immunoprecipitation (ChIP)
ChIP was performed as described previously66. 400 ml grounded mycelia was resuspended in 1.1 ml ChIP Lysis Buffer (50 mM

HEPES pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1%, SDS, 0.1% DOC, 1 mM PMSF, 1 mg/ml leupeptin, 1 mg/ml pep-

statin A) and sonicated using a Covaris S220X sonicator (180 peak power, 20.0 duty factor, 200 cycles/bursts, for 4 min at 4�C). Total
extracts were subjected to ChIP with affinity purified antibodies (�1 mg).

RNA and ChIP Sequencing
cDNA was prepared with NEBNext Ultra RNA Prep kit and NEBNext Multiplex oligos. ChIP DNA libraries were prepared with

NEBNext ChIP-Seq Library Prep Reagent Set for Illumina with NEBNext Multiplex oligos. A 2100 Bioanalyser was used for quality

control of libraries. Fifty base pairs unpaired sequencing was performed with a HiSeq 2000 at GeneCore EMBL Heidelberg.

Sequencing Data Analysis
Raw readsweremapped toNeurospora crassa genome (NC10) using Bowtie68. Threemismatcheswere allowed and readsmapping

to more than one location were discarded. RNA-seq analysis: Gene expression was quantified by counting reads falling into exons.

Normalization was carried out using the size factor formula as described69. Pol II (Ser5-P) ChIP-seq analysis: The median of Pol II

Ser5-P reads in extragenic regions was used for normalization. If not stated otherwise Pol II Ser5-P occupancy was quantified by the

number of reads falling into a 500 bp window centered around the start codon.

Mathematical Modeling
Theory for Regulation of transcriptional Bursting Cycles

We analyze a family of models for transcription factors (TF) that activate transcription by modulating different aspects of transcrip-

tional bursting kinetics: burst amplitude (AM), duration (DM) and frequency (FM) (Figures S1 and 1).

To compare with non-equilibriummodels, we first formulate a simple thermodynamic model: a TF reversibly binds to its regulatory

site, and the bound state initiates mRNA synthesis by physically recruiting RNA polymerase (RNAP, and other co-factors) at the gene

promoter. RNAP recruitment is considered a direct consequence of TF binding and is not modeled explicitly. The transcription

dynamics at the cell-population level are governed by the following differential equations:

du

dt
= � konuw+ koffc

dc

dt
= konuw� koffc

dm

dt
= fc� m

tm

(Equation 14)
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where u and c denote the levels of the TF-free and TF-bound promoters, respectively. w is the TF concentration;m the mRNA level;

kon and koff denote the association and dissociation rate constants of the TF, respectively; f is the rate constant of productive

transcription initiation (RNAP firing rate), and tm the mean lifetime of mRNA.

As TF-DNA interaction are highly dynamic in eukaryotic cells, with dwell times on the order of seconds (Voss et al., 2011; Morisaki

et al., 2014), we assume that the TF binding reaches equilibrium very rapidly. Therefore, the TF-free and TF-bound promoter levels

can be calculated as u = Kd/(Kd + w), c = w/(Kd + w), where Kd = koff/kon (dissociation constant). Equation 14 thus reduces to a first-

order differential equation:

dm

dt
= f

w

Kd +w
� m

tm
(Equation 15)

The rapid equilibrium approximation for TF binding is also used in the following models.

Solving for the steady state (with constant TF concentration), the mRNA level is

mEQ = tmvEQ (Equation 16)

with the transcription rate

vEQ = f
w

Kd +w
(Equation 17)

The operating point, defined as the TF concentration at which the transcription rate is half-maximal, is the TF dissociation constant

Kd. Thus, the sensitivity of the transcription response to the TF is determined by the TF affinity.

Next, we model a generic transcriptional bursting cycle, consisting of an active state, an inactive (but activatable) state and any

number (N = 1, 2,.) of refractory states (Figure S1A). We assume that the transcription factor binds to all states with the same disso-

ciation constant Kd. Considering rapid equilibrium for TF binding, the differential equations governing the gene fractions in the

different states, xi, as well as mRNA count, m, are:

dxA
dt

=

�
1

tIB

w

Kd +w
+

1

tIU

Kd

Kd +w

� 
1� xA �

XN
j = 1

xRj

!
�
�

1

tAB

w

Kd +w
+

1

tAU

Kd

Kd +w

�
xA

dxR1
dt

=

�
1

tAB

w

Kd +w
+

1

tAU

Kd

Kd +w

�
xA �

�
1

tRB1

w

Kd +w
+

1

tRU1

Kd

Kd +w

�
xR1

dxRj
dt

=

�
1

tRBj�1

w

Kd +w
+

1

tRUj�1

Kd

Kd +w

�
xRj�1 �

�
1

tRBj

w

Kd +w
+

1

tRUj

Kd

Kd +w

�
xRj; j = 2; :::;N

dm

dt
=

�
fB

w

Kd +w
+ fU

Kd

Kd +w

�
xA � m

tm

(Equation 18)

tIB, tAB and tRBj denote, respectively, the lifetimes of the inactive, active and the j-th refractory promoter states with TF bound;

tIU, tAU and tRUj are their TF-free counterparts. fB and fU are the transcription initiation rates for the TF-bound and TF-free active pro-

moter states, respectively. If a TF regulates a given step, the corresponding TF-bound and TF-free lifetimes of this state will be

different, otherwise they will be identical. We consider three basic regulatory modes for the TF, modulating the transcription initiation

rate, the lifetime of the inactive promoter state, or the lifetime of the active promoter state.

First, when a TF controls the transcription initiation rate, we have fB = f and fU = 3AMf, whereas tIB = tIU = tI, tAB = tAU = tA and

tRBj = tRUj = tRj. In this regulatory mode, the TF modulates the burst amplitude (AM). We obtain

dxA
dt

=
1

tI

 
1� xA �

XN
j = 1

xRj

!
� 1

tA
xA

dxR1
dt

=
1

tA
xA � 1

tR1
xR1

dxRj
dt

=
1

tRj�1

xRj�1 � 1

tRj
xRj; j = 2;.;N

dm

dt
= f

3AMKd +w

Kd +w
xA � m

tm

(Equation 19)
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The mRNA level at steady state is m = vAMtm, with the transcription rate

vAM = f
tA

tI + tA +
PN
j = 1

tRj

3AMKd +w

Kd +w
(Equation 20)

If 0% 3AM < 1, vAM will be an increasing function ofw, and the TF serves as an activator. If 3AM > 1, vAM will decrease withw, and the

TF acts as a repressor. The difference between the basal (w = 0) and maximum/minimum (w / N) transcription rate yields the

dynamic range of transcriptional control:

DAM = f
tA

tI + tA +
PN
j = 1

tRj

j1� 3AMj (Equation 21)

The operating point is the transcription factor concentration at which the transcription rate is halfway between basal and maximal,

yielding

UAM =Kd: (Equation 22)

Second, a TF controlling the lifetime of the inactive promoter statemodulates burst frequency (FM). We take tIB = tI and tIU = tI/ 3FM,

as well as fB = fU = f, tAB = tAU = tA and tRBj = tRUj = tRj. We get

dxA
dt

=
1

tFM

3FMKd +w

Kd +w

 
1� xA �

XN
j =1

xRj

!
� 1

tA
xA

dxR1
dt

=
1

tA
xA � 1

tR1
xR1

dxRj
dt

=
1

tRj�1

xRj�1 � 1

tRj
xRj; j = 2 to N

dm

dt
= fxA � m

tm

(Equation 23)

The steady-state transcription rate is

vFM = f
tA

tI + tA +
PN

j = 1tRj

3FMKd +w

Kd

tI + 3FM

�
tA +

PN
j = 1tRj

�
tI + tA +

PN
j =1tRj

+w

; (Equation 24)

with the dynamic range

DFM = f
tA

tI + tA +
PN
j = 1

tRj

j1� 3FMjtI

tI + 3FM

 
tA +

PN
j =1

tRj

!: (Equation 25)

Again, these expressions allow for the TF to act either as an activator (0 % 3FM < 1) or as a repressor ( 3FM > 1). In any case, the

operating point of the FM model is:

UFM =Kd

tI + 3FM

 
tA +

PN
j = 1

tRj

!

tI + tA +
PN
j = 1

tRj

; 3FMs1 (Equation 26)

The kinetics of the promoter-state transitions determine how sensitively the gene responds to the TF. If 0 % 3FM < 1, the TF

accelerates the transition from the inactive state into the transcriptionally active state and hence acts as an activator. Then we

have UFM < Kd: the responsiveness of a gene to a TF modulating burst frequency is not limited by the TF affinity. If 3FM > 1, binding

of the TF slows the transition into the active state, hence the TF acts as a repressor. Then UFM > Kd.
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Burst frequency modulation could also be achieved by a TF controlling the lifetime of a refractory promoter state. Equations 23–26

theory carry over to this case in a straightforward manner, simply by swapping tI and tRj. We will include this case in the model infer-

ence from data (see below).

Finally, a TF modulating the lifetime of the active gene state modulates burst duration (DM). We take tAB = tA and tAU = 3DMtA. For

the other parameters we assume fB = fU = f, tIB = tIU = tI and tRBj = tRUj = tRj. The dynamics of the DM model are governed by:

dxA
dt

=
1

tI

 
1� xA �

XN
j = 1

xRj

!
� 1

tA

Kd= 3DM +w

Kd +w
xA

dxR1
dt

=
1

tA

Kd= 3DM +w

Kd +w
xA � 1

tR1
xR1

dxRj
dt

=
1

tRj�1

xRj�1 � 1

tRj
xRj; j = 2 to N

dm

dt
= fxA � m

tm

(Equation 27)

The steady-state transcription rate, the dynamic range and the operating point in DM model are, respectively:

vDM = f
tA

tA + tI +
PN
j = 1

tRj

Kd +w

Kd

tA +

 
tI +

PN
j = 1

tRj

!,
3DM

tA + tI +
PN
j = 1

tRj

+w

(Equation 28)
DDM = f
tA

tI + tA +
PN
j =1

tRj

j1� 1= 3DMj
 
tI +

PN
j = 1

tRj

!

tA +

 
tI +

PN
j = 1

tRj

!,
3DM

(Equation 29)
UDM =Kd

tA +

 
tI +

PN
j =1

tRj

!,
3DM

tA + tI +
PN
j =1

tRj

; 3DMs1 (Equation 30)

For 0% 3DM < 1, the TF is an activator because it inhibits the transition of the active gene state into the refractory state(s). Then we

have UDM > Kd. For 3DM > 1, the TF destabilizes the active state and hence acts as a repressor, with UDM < Kd.

Equations 26 and 30 suggest a general rule for the location of the operating point. If a TF accelerates the transcriptional bursting

cycle, then U < Kd: The gene will be more sensitive to accelerating TFs than in the thermodynamic case (equilibrium binding and AM

models, whereU = Kd). Conversely, if the TF puts a brake on the bursting cycle,U > Kd: The gene will be less sensitive to braking TFs

than in the thermodynamic case. This is indeed true. Consider the average times for the completion of the TF-bound bursting cycle

and the TF-free bursting cycle Tbound and Tfree, respectively. For example, for FM (Equation 23), we have Tbound = tI + tA +
PN

j =1tRj and

Tfree = tI= 3FM + tA +
PN

j = 1tRj. Let Rbound,i and Rfree,i denote the fraction of time spent in gene state i in the TF-bound cycle and the

TF-free cycle, respectively. For example, for FM, the fractional times spent in the inactive state are Rbound,I = tI/Tbound and

Rfree,I = tI/( 3FMTfree). With these notations, we get the following general expression for the operating point:

Ui =
Rbound;i

Rfree;i

Kd; (Equation 31)

where i denotes the state in the bursting cycle whose lifetime is controlled by the TF (specifically, i = I for FM and i = A for DM). Besides

FM and DM, this equation also holds for AM, as here Rbound,A = Rfree,A –– the TF does not affect cycle duration. Equation 31 shows in

general terms that thermodynamic behavior (U = Kd) is obtained when the TF does not regulate the duration of the bursting cycle but

rather the initiation rate from the active state, while both cycle-accelerating and braking TFs have operating points that deviate from

the thermodynamic behavior: Accelerators haveU < Kd and brakes haveU > Kd. These arguments are true regardless of whether the

TF functions as an activator or a repressor.
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Combinations of FM, AM and DM Mediated by a Transcriptional Activator

Next, we derive two special models that will be used in the analysis of the experimental data, the random telegraph model (no

refractory state) and the refractory-cycling model with a single refractory state. At the same time, we generalize to account for all

possible modes of TF function simultaneously as we do not know a priori which modes play a role in the data, considering an acti-

vating TF. For simplicity, we assume the basal transcription rates in the absence of TF to be zero for AM and FM.

To write the general random telegraphmodel, we introduce three binary integers, aFM, aDM and aAM, that are 1 when the respective

mode of regulation is present and zero otherwise:

dxA
dt

=
1

tI

�
1� aFM

Kd

Kd +w

�
ð1� xAÞ � 1

tA

�
1� aDM

w

Kd +w

�
xA

dm

dt
= f

�
1� aAM

Kd

Kd +w

�
xA � m

tm

(Equation 32)

Note that the activating TF acts to decrease the lifetime of the inactive state (if aFM = 1) but increase the lifetime of the active state

(if aDM = 1).

Similarly, we write the refractory-cycling model with the four binary integers, bFM,I (FM via activating the I/ A transition), bFM,R (FM

via activating the R / I transition), bDM and bAM:

dxA
dt

=
1

tI

�
1� bFM;I

Kd

Kd +w

�
ð1� xA � xRÞ � 1

tA

�
1� bDM

w

Kd +w

�
xA

dxR
dt

=
1

tA

�
1� bDM

w

Kd +w

�
xA � 1

tR

�
1� bFM;R

Kd

Kd +w

�
xR

dm

dt
= f

�
1� bAM

Kd

Kd +w

�
xA � m

tm
;

(Equation 33)

again with bi = 1 when the respective mode of regulation is present and zero otherwise.

If the TF modulates a single transcription step, the gene regulatory function has the similar form to the Michaelis-Menten equation

(see the analytical expressions for the operating point and dynamic range in Table S1). Of note, with multiple regulatory functions of

the TF the gene-regulatory functions contain higher powers of its concentration and hencemay be sigmoidal. As an example, we give

the steady state expression for the transcription rate in the refractory-cycling model with combined AM and FM:

vFM�AM = f
tAw

2

ðtA + tI + tRÞw2 + ðtA + 2tI + tRÞKdw+ tIK2
d

: (Equation 34)

Speed of the Transcriptional Response

Next, we examine how rapidly a gene responds to a step elevation on TF activity. We consider the response time tresponse, defined as

the time at which the mRNA is halfway between basal level and steady state.

For equilibrium-binding and AM models, the mRNA response to a TF step from 0 to w has the form

mAMðtÞ=mAMðNÞ�1� e�t=tm
�

(Equation 35)

for all AM models (Equations 32 and 33) as well as the equilibrium-binding model (Equation 15). Here mAM(N) denotes the steady-

state mRNA level that is eventually reached, where

mAMðNÞ=

8>>>>><
>>>>>:

tm~fðwÞ Equilibrium-binding model

tm~fðwÞ tA
tA + tI

Random telegraph model

tm~fðwÞ tA
tA + tI + tR

Refractory-cycling model

(Equation 36)

and ~fðwÞ= fw=ðKd +wÞ is the TF dependent transcription initiation rate. Although different models show different mRNA steady state,

they all share the same response time:

tAMresponse = tm ln 2 (Equation 37)

implying that speed of gene induction is limited by a parameter unrelated to transcription itself, namely the lifetime of mRNA.

In practice, there may be further contributions to the response time from transcription initiation (including changes in chromatin

structure), elongation and splicing of the transcript (which do not enter Equation 37 because of simplifying assumptions in the model,

such as rapid binding equilibrium for the TF and fast recruitment of RNAP). mRNA lifetime is often greater than these contributions

and will then dominate the response time, so that Equation 37 holds approximately. For example, in a human cell line, the median

mRNA lifetime is 9 h (Schwanhausser et al., 2011), compared with an estimated elongation time of 10-20 min for a human gene of
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median length (24 kbp) and a typical delay of 10-30 min when mRNA appears in the cytoplasm of mammalian cells after the start of

transcription (Ben-Ari et al., 2010).

For the FM telegraph model, we find the following mRNA response:

mFM�TGðtÞ=mFM�TGðNÞ

2
641� tm

tm � tBðwÞe
� t

tm +
tBðwÞ

tm � tBðwÞe
� t

tB ðwÞ

3
75 (Equation 38)

As the TF controls the rate of the I / A transition, we define the following TF-dependent lifetime of the inactive state

~tIðwÞ= tI
Kd +w

w
(Equation 39)

Then, in Equation 38, we have the steady-state mRNA level:

mFM�TGðNÞ= tmf
tA

tA + ~tIðwÞ (Equation 40)

and the TF-dependent time constant:

tBðwÞ= tA~tIðwÞ
tA + ~tIðwÞ (Equation 41)

The telegraph DM model yields:

mDM�TGðtÞ=mDM�TGðNÞ

8><
>:1� tItm

½~tAðwÞ+ tI�ðtm � tIÞe
� t

tm +
t2I

½~tAðwÞ+ tI�ðtm � tIÞe
� t
tI

9>=
>; (Equation 42)

where we similarly introduce the TF-dependent lifetime of the active state:

~tAðwÞ= tA
Kd +w

Kd

(Equation 43)

yielding the steady state level

mDM�TGðNÞ= tmf
~tAðwÞ

~tAðwÞ+ tI
(Equation 44)

For both solutions (Equations 38 and 42), the mRNA level increases monotonically with time (which can be shown analytically be

demonstrating that time derivatives are always larger than zero). The response is, in general, slower than the mRNA turnover due to

the time delay in dynamic transitions between promoter states. Fast promoter switching could accelerate gene induction, but the

speed is still limited by the lifetime of mRNA.

From amathematical viewpoint, the telegraphmodel uses only one degree of freedom to describe gene induction, which inevitably

gives rise to monotonic transcription response. The refractory-cycling model adds another degree of freedom (the occupancy of the

refractory state). As we will see below, this allows for a transcriptional overshoot when the I / A transition is regulated. The gene

activity first rises abruptly upon promoter activation, then decreases due to refractoriness, and finally relaxes to the steady state.

The FM refractory-cyclingmodel can be solved for the gene-induction dynamics, but the analytical expressions are not intuitive. As

described in the main text, an overshoot of transcription rate is a typical behavior in this model. We now present a simple model of

how overshooting transcription rate affects the mRNA response time. To this end, we approximate the promoter activity by a step

function (see Figure S3):

dm

dt
= vðtÞ � m

tm

vðtÞ=
(
vT 0%t%T

vS tRT

(Equation 45)

where vT is the population-level transcription initiation rate in the transient phase of promoter activity, and vS the rate at steady state

(both proportional to the fraction of promoters in the active state). T denotes the duration of the transient phase. Then

mðtÞ=

8>>>>>><
>>>>>>:

vTtm

�
1� e� t

tm

�
0%t<T

vStm � vTtme
� t

tm + tmðvT � vSÞe�t�T
tm tRT

(Equation 46)
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If the mRNA lifetime is sufficiently long, mRNA levels will not overshoot but approach the steady state monotonically (Figure S3). In

this informative case, the usual definition of response time remainsmeaningful. As the analytical solution consists of two (continuous)

branches, we need to consider two cases: mRNA reaches half its steady-state level (i) on the first branch (t < T) or (ii) on the second

branch (t R T). The critical condition setting apart these two cases is when mRNA attains half its steady state exactly at T:

mðTÞ= 1

2
vStm (Equation 47)

defining the critical duration of the overshooting transient relative to mRNA lifetime as

T� = tm ln
2

2� vS=vT
(Equation 48)

The respective response times are:

tresponse =

8>>><
>>>:

tm ln
2

2� vS=vT
TRT� ðcase iÞ

tm ln
2� 2ð1� vS=vTÞeT=tm

vS=vT
T<T� ðcase iiÞ

(Equation 49)

In the first case the response time can be arbitrarily fast as the transcriptional overshoot becomes larger; we have

lim
vS=vT/0

tresponse = 0 if TRT�. In the telegraph model, increasing the rate of transcription would not speed up the response because

the steady state would also increase.

Model Selection and Parameter Inference

To confront our theory with experimental data, we utilized the light-controlled transcription system in Neurospora crassa. The White

Collar Complex (WCC) is themain photoreceptor andGATA type transcriptional activator in response to blue light. This systemallows

us to quantify, at the population level, the dynamics of the transcriptional activator binding, mRNA production and activity of lucif-

erase reporter for light-controlled genes using single light pulse (LP) and double LPs with varied inter-LP intervals and light intensities

(Cesbron et al., 2015). We systematically enumerated all possible models that combine different bursting modes (telegraph or refrac-

tory-cycling) and distinct WCC modulation manners (AM, DM and FM) and fitted them to multiple sets of time-resolved data for two

key WCC target genes, frequency (frq) and vivid (vvd).

The data-driven model for light-controlled transcription in Neurospora crassa consists of three modules: (1) light-controlled WCC

activation and inactivation, (2) promoter-state transitions and (3) transcriptional output (i.e. mRNA and luciferase reporter), as shown

in Figure S5A.

In the first module,WCChas threemain states: dark, light and phosphorylation. The dark formWCCprevails in the absence of light,

and is produced at a constant rate. Dark formWCC senses light (via the LOV domain) and switches to the light form, with a rate that is

proportional to the light intensity. The light form WCC is then deactivated via phosphorylation. Dark and phosphorylated forms are

degraded (degradation of the light formwas also considered in themodel but the turnover rate was consistently fit as zero). The equa-

tions governing the kinetics of WCC inactivation-activation are:

dwD

dt
= v � 1

twd

wD � kwasðtÞwD

dwL

dt
= kwawDsðtÞ � 1

tphos
wL

dwP

dt
=

1

tphos
wL � 1

twp

wP

(Equation 50)

where v and twd are the production rate and mean lifetime of dark form WCC, respectively. kwas(t) is the rate constant for WCC tran-

siting from dark to light form, where s(t) is the time-dependent light signal. tphos is the characteristic time for WCC phosphorylation (or

the mean lifetime of the unphosphorylated light form WCC). twp is the mean lifetime of the phosphorylated WCC.

In the second module of promoter-state transition, we will consider both random telegraph and refractory-cycling models. Both

light form and phosphorylated WCC are assumed to bind to their regulatory sites on the DNA – light responsive elements (LRE) –

with the same Kd, but only the bound light-form WCC acts in transcription. Hence the promoter activity in the telegraph model is:

dxA
dt

=
1

tI
ð1� aFMFÞð1� xAÞ � 1

tA
½1� aDMð1� FÞ�xA (Equation 51)

and the refractory-cycling model reads:

dxA
dt

=
1

tI

�
1� bFM;IF

�ð1� xA � xRÞ � 1

tA
½1� bDMð1�FÞ�xA

dxR
dt

=
1

tA
½1� bDMð1� FÞ�xA � 1

tR

�
1� bFM;RF

�
xR

(Equation 52)
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where

F=
Kd +wP

Kd +wL +wP

(Equation 53)

The third module of the models describes the dynamics of endogenous (frq and vvd) mRNA and luciferase reporter mRNA as well

as luciferase protein:

dm

dt
= v0 + kmð1� bAMFÞxA � 1

tm
m

dmL

dt
= v0L + kmLð1� bAMFÞxA � 1

tmL

mL

dl

dt
= kLmL � 1

tL
l

(Equation 54)

wherem andmL denote the concentrations of genomic mRNA and luciferase mRNA, respectively, and I that of the luciferase protein.

In the dark, frq and vvd showbasal transcription activity notmediated by LRE, which ismodeled by a constantmRNAproduction rate,

v0 for genomicmRNA and v0L for luciferasemRNA. The transcription initiation rate of an active promoter is km for genomicmRNA, and

kmL for luciferase mRNA. The mean lifetime of endogenous mRNA tm is gene specific, whereas the lifetime of luciferase mRNA tmL is

the same for distinct promoters. The luciferase protein is synthesized with rate constant kL, and its mean lifetime is tL.

Quantitative RT-PCR quantifies the relative level of mRNA, but not the absolute mRNA concentration. In addition, the luciferase

activity also requires a scaling factor to link the experimental readout to the actual protein concentration. To compare these data

directly with the models, we divided both sides of Equation 54 by the corresponding basal levels in the absence of light stimulus

(wL = wP = 0) for genomic mRNA, luciferase mRNA and luciferase protein:

mD = tm½v0 + kmð1� bAMÞxAD�
mLD = tmL½v0L + kmLð1� bAMÞxAD�

lD = kLtLmLD

(Equation 55)

where xAD is the level of active promoter in the dark. Then Equation 54 becomes:

dM

dt
=

1

tm

	
1+ f

ð1� bAMFÞxA � ð1� bAMÞxAD
1+ fð1� bAMÞxAD

�M



dML

dt
=

1

tmL

	
1+ hf

ð1� bAMFÞxA � ð1� bAMÞxAD
1+ hfð1� bAMÞxAD

�ML



dL

dt
=
1

tL
ðML � LÞ

(Equation 56)

whereM =m/mD,ML =mL/mLD and L = l/lD. The genomicmRNA production rate is f = km/v0, and the luciferasemRNA production rate

is hf, where h=
kmL

v0L
=
km
v0

. These two rates reflect fold change in transcription rate.

While Equation 56 contains all possible models, most models actually have a simpler form since the bursting kinetics shuts down

without active WCC (in the dark). Examples are shown in Figure S1: T1 and T3 – T7 for telegraph model, R1 – R2 and R4 – R15 for

refractory-cycling model. These models are described by:

dM

dt
=

1

tm
½1+ fð1� bAMFÞxA �M�

dML

dt
=

1

tmL

½1+ hfð1� bAMFÞxA �ML�

dL

dt
=
1

tL
ðML � LÞ

(Equation 57)

Two models in Figure S1, T2 and R3, still show slow promoter transitions even in the absence of active WCC:

dM

dt
=

1

tm

	
1+ f

xA � xAD
1+ fxAD

�M



dML

dt
=

1

tmL

	
1+ hf

xA � xAD
1+ hfxAD

�ML



dL

dt
=
1

tL
ðML � LÞ:

(Equation 58)
e9 Cell Systems 6, 409–423.e1–e11, April 25, 2018



The binary factors ai and bi allow us to enumerate all possible models with distinct TF actions (AM, FM and DM). For the telegraph

model, the TF can in principle control one or combinations of the 3 bursting parameters (tI, tA and f), therefore the number of all

possible models is 23 – 1 = 7, where we exclude the model without any TF action. The refractory-cycling model generates

24 – 1 = 15 regulation modes. Taken together, for a single gene, there are potentially 7 + 15 = 22 models; and for two co-regulated

genes (by WCC) frq and vvd, the total number of models is 222 = 484.

All 484 models were fitted to a comprehensive dataset for frq an vvd, including kinetics of WCC occupancy, genomic mRNA and

luciferase reporter under various light stimulus conditions (Figures 3D–3G). The optimization was performed using the trust-region

method to search for the local minimum of the negative log likelihood. To find the global minimum, the initial parameter values

were chosen by Latin hypercube sampling (1000 samples for each model). The tasks above were performed using Data2Ddynamic

(D2D) framework, aMatlab-based open source package (Raue et al., 2015). We ranked all models by the standard Akaike information

criterion (AIC), which penalizes the goodness of fit (log likelihood) by the number of free parameters. As the parameters counts be-

tweenmodels vary comparatively little, the result of themodel selection is dominated by the goodness of fit. Indeed,model ranking by

likelihood values yields the same results as by AIC (Figure S5B). Four bestmodels were selected, and their common features were: (1)

both frq and vvd are refractory; (2) the WCC modulates the burst frequency for both genes.

There are 29 independent parameters in the model for frq and vvd promoters (details see Table S2). The 95% confidence intervals

of these parameters were calculated by using the profile likelihood, as implemented in D2D. Most (27 out of 29) parameters are iden-

tifiable (upper and lower confidence bounds); 2 parameters, the mean lifetime of inactive frq promoter tfrqI and the mean lifetime of

genomic vvd mRNA tvvdm , have upper informative bounds (Figure S6, Table S2).

Inference of Transcription Dynamics from Luciferase Time Series

Our theory predicts overshooting mRNA dynamics as a hallmark of transcriptional refractoriness. To test this prediction, we inferred

the mRNA dynamics from unstable luciferase (lucPEST) signals of frq and vvd under constant low light. We fitted the time-resolved

luciferase activity using cubic splines, and use the optimized spline and its time derivative to infer the mRNA dynamics based on

the following equation:

dL

dt
=
1

tL
ðm� LÞ (Equation 59)

wherem and L are the levels of luciferase mRNA and protein, respectively; tL is the mean lifetime of the luciferase protein. ThemRNA

level can be obtained by rearranging the above equation:

m= tL
dL

dt
+ L (Equation 60)

The half-life time of the luciferase used here (lucPEST) is �25 min (Cesbron et al., 2013), which gives the value for tL = 25/ln2 z
36 min. To avoid the spurious overshoot arising from the cubic spline itself, we constrained the spline to be monotonic. This is a con-

servative assumption, as the luciferase reporter may indeed overshoot due to its short lifetime.

To test the robustness of the inference on the overshooting kinetics, we took another approach that directly parameterize the

mRNA kinetics (rather than the protein level) using a mechanistic model. We used a simple model similar to the one introduced in

the section for the response speed of the refractory-cyclingmodel. For computational convenience, we chose a smooth step function

to mimic the promoter activity (Figure S7). Three parameters define the step function: the transient level of active promoter vT, the

time duration of the transient phase T and the promoter level at steady state vS:

p=

�
vT 0%t<T
vS tRT

(Equation 61)

The kinetics of luciferase mRNA and protein are governed by the following equations:

dm

dt
=

1

tm
ð1+ fp�mÞ

dL

dt
=
1

tL
ðm� LÞ:

(Equation 62)

We fixed the value of the lifetime of the luciferase protein tL, and the transcription rate constants f for frq and vvd (taking the values

in Table S2). Fitting this model to the same luciferase data used in the previous method yielded again the overshooting dynamics of

both frq and vvd transcription responses, suggesting that these two promoters are intrinsically refractory.

A Model for Chromatin Looping between Enhancer and Promoter

In this section, we extend the refractory-cycling model to link the promoter activation (I / A transition) to dynamic promoter-

enhancer interaction via chromatin looping. The gene activation step I/ A in the original models is more finely resolved into a chro-

matin looping step that brings enhancer-bound TF in contact with the gene promoter, followed by promoter activation from the

looped configuration (Figure 6A). Specifically, the inactive promoter occurs in two states, unlooped and looped, with lifetimes

tunlooped and tlooped, respectively. Loop formation is considered a dynamic and reversible process (Fukaya et al., 2016; Bartman

et al., 2016). The looped state, with bound activator (WCC), can either switch back to the unlooped state, or undergo an irreversible
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transition that activates the promoter for transcription. The kinetics of the latter process are characterized by a new, promoter-spe-

cific, time constant tO. While in the original model, the population-level gene activation rate is

gene activation rate=
1

tI
(Equation 63)

this rate becomes in the extended model

gene activation rate=
1

to

tlooped
tlooped + tunlooped

(Equation 64)

where
tlooped

tlooped + tunlooped
is the fraction of the looped promoter state, considering rapid and reversible looping.

Comparing this expression with Equation 63, we obtain:

tI = to
tlooped + tunlooped

tlooped
(Equation 65)

This relation expresses the lifetime of the inactive gene state in the previous models in terms of chromatin looping rates and pro-

moter-specific activation from the looped state. It has been reported that the DNA spendsmuchmore time in the unlooped state than

in the looped state (Chen et al., 2014), so we simplify the above equation using tunlooped[tlooped:

tI = to

�
1+

tunlooped
tlooped

�
xto

tunlooped
tlooped

(Equation 66)

The probability of the two sites on chromatin meeting via looping is quantified, using polymer theory, by jM, the relative concen-

tration of one site with respect to the other. jM can naturally be linked to the above equation via:

tunlooped
tlooped

= c�1j�1
M ðLÞ (Equation 67)

where c is a scaling factor that, for our purposes, can be absorbed into the parameter tO, yielding

tI =gj�1
M (Equation 68)

where g = tO/c. Therefore, the gene activation time tI is determined by the promoter-specific factor g and factor jM, which depends on

looping distance. The dependence of jM on the genomic distance between two sites on the same chromatin L (unit: bp) has been

measured (Ringrose et al., 1999) and is well described by the following equation from polymer theory

jMðL;PÞ= 1:253 105

P3

�
4P

L3 104

�3
2

exp

�
� 510P2

6:25L2 + 50P2

�
(Equation 69)

where P is the persistent length of the chromatin (in nm), L is the distance in bp, and jM is in mol/l. As nucleosome repeat length is the

major determinant of chromatin persistence (Ringrose et al., 1999), we adjusted P from the average value measured in human cells

(27 nm), with a repeat length of �200 bp, to Neurospora chromatin with a repeat length of �170 bp, yielding P=
170

200
327x23nm.

Moreover, we have previously estimated tI for theWCC target genes frq and vvd, using the original, simpler models. Themeasured

chromatin looping data together with the inferred tI values fix the values of g for the two genes (Equation 68). Thus the extension of the

theory does not introduce new unknown parameters. Instead, it provides a mechanistic interpretation of the gene activation rate that

can be tested experimentally by changing promoter-LRE distance (L) and swapping promoters to change tO. We have used this

theory to predict the dose-response curves for luciferase reporter expression driven by frq or vvd promoters and LREs at different

distances. The prediction confidence bands (95%) of the dose-response curves are estimated by calculating the prediction profile

likelihood using the D2D package (Kreutz et al., 2012; Raue et al., 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

Pairwise tests were performed using two-sample t-test (built-in function in Matlab) for WCC occupancy (by ChIP-PCR, n = 3) and

mRNA level (by RT-PCR, n = 3) under different light intensities (Figure 5E), with significance defined as *, p < 0.05.
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Figure S1. Model schemes of transcriptional regulation, Related to Figure 1. (A) 
Generic model of transcriptional regulation via modulation of the transcriptional 
bursting cycle with inactive (I), active (A) and potentially multiple refractory states 
(R1, R2, …). (B) A transcription factor modulates (in an all-or-none manner) a single or 
multiple steps in refractory-cycling model (denoted by R) and telegraph model 
(denoted by T).  
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Figure S2. Dynamic dose-response follows steady-state dose-response, 
Related to Figure 2. (A) Simulations of transcription dynamics of genes with small τI 
(left panel) and large τI (right panel) under different TF concentrations. The dose-
response can be quantified by transcription outputs at steady state (B) as well as 
transient state (C). Frequency-modulated refractory cycling model was used for 
simulation. The parameter values are based on the best fit for frq and vvd in Table 
S2.  
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Figure S3. Simplified method for analytical solution of transcription response 
time with overshooting promoter activity, Related to Figure 2 and STAR 
Methods. VT and VS are the constant transcription rates in the transient and steady-
state phases of the promoter activity, respectively, and T is the duration of the 
overshoot.  
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Figure S4. Transcriptional response to the duration of transcription factor 
activity, Related to Figure 2. The transcription factor is applied (simulated) at a 
fixed concentration with varying durations: 1, 10 and 60 minutes as well as constant 
(top row). Responses of refractory-cycling model (red) and random telegraph model 
(blue) are compared in two scenarios. In the first scenario, both models share the 
same steady-state mRNA level (middle row, τI

telegraph = τI
refractory-cycling + τR

refractory-cycling, 
with the same τA). In the second scenario, the two models show the same initial 
promoter activation rate (τI

telegraph = τI
refractory-cycling, with the same τA) but differ in steady 

state (bottom row). The parameters used for the simulation are those inferred for frq 
(Table S2). 
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Figure S5. Data-driven modeling of WCC target genes, Related to Figure 3. (A) 
Basic model schemes of transcriptional regulation by light-controlled WCC. (B) 
Model ranking by likelihood.  
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Figure S6. Identifiability of inferred parameters by profile likelihood analysis, 
Related to Figure 3. Details of the parameters see Table S2. 
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Figure S7. Overshoot in mRNA dynamics under constant light, Related to 
Figure 4 and STAR Methods. (A) Dynamics of frq and vvd mRNA induced by 
constant high light intensity, quantified by RNA-seq (one experiment per time point). 
(B) Inference of mRNA kinetics from luciferase reporter under constant low light 
intensities (n = 4) using a model-assisted method. Data are presented as mean ± 
SEM. 
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Table S1. Theory predictions on transcriptional regulation at steady state, Related to Figure 2.
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FM: burst frequency modulation; DM: burst duration modulation; AM: burst amplitude modulation. EB:

equilibrium-binding model; TG: telegraph model; RC: refractory-cycling model; RC(⌧
I

): refractory-cycling

model with TF modulating the I ! A transition; RC(⌧
R

): refractory-cycling model with TF modulating the

R ! I transition.
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Table S2. Parameter inference for frq and vvd , Related to Figure 5.

Parameter Description Value Confidence interval

⌧frq
I

Minimum mean lifetime of inactive frq promoter 0.017 min (0 0.095] min

⌧vvd
I

Minimum mean lifetime of inactive vvd promoter 1.7 min [1.1 3.1] min

⌧frq
R

Mean lifetime of refractory frq promoter 46.1 min [35.7 60.8] min

⌧vvd
R

Mean lifetime of refractory vvd promoter 33.4 min [15.4 65.0] min

⌧frq
A

Mean lifetime of active frq promoter 13.8 min [10.5 16.9] min

⌧vvd
A

Mean lifetime of active vvd promoter 17.2 min [14.4 20.0] min

Kfrq
d

Dissociation constant of WCC from frq LRE 3548.1 au [2437.8 4602.6] au

Kvvd
d

Dissociation constant of WCC from vvd LRE 2243.9 au [1510.1 3020.0] au

ffrq
Transcription initiation rate of frq promoter 18.5 min�1 [16.1 22.4] min�1

fvvd
Transcription initiation rate of vvd promoter 424.6 min�1 [306.9 669.9] min�1

⌧frq
m

Mean lifetime of frq mRNA 4.8 min [2.2 7.9] min

⌧vvd
m

Mean lifetime of vvd mRNA 0.017 min (0 1.3] min

v
wa

Rate constant of WCC activation by light 0.16 min�1µE�1 [0.14 0.18] min�1µE�1

⌧
phos

Mean lifetime of light form WCC 9.5 min [8.2 11.0] min

⌧
wp

Mean lifetime of phosphorylated WCC 38.0 min [31.0 47.0] min

⌧
L

Mean lifetime of stable luciferase protein 635.3 min [550.8 739.6] min

⌧
mL

Mean lifetime of luciferase mRNA 19.7 min [17.1 22.6] min

⌘ Factor for luciferase mRNA production rate 2.1 [1.8 2.4]

�frq
wcc

Estimated error of WCC occupancy at frq LRE 2.1 au [1.5 2.9] au

�vvd
wcc

Estimated error of WCC occupancy at vvd LRE 2.5 au [1.9 3.6] au

�frq
mrna

Estimated error of frq mRNA 0.58 au [0.43 0.82] au

�vvd
mrna

Estimated error of vvd mRNA 10.1 au [7.1 14.8] au

�frq
L

Estimated error of frq luciferase 0.19 au [0.17 0.21] au

�vvd
L

Estimated error of vvd luciferase 0.65 au [0.59 0.73] au

�frq
Lres

Estimated error of frq luciferase (dose-response) 0.12 au [0.11 0.13] au

�vvd
Lres

Estimated error of vvd luciferase (dose-response) 0.98 au [0.88 1.1] au

cfrq
Lres

Scaling factor of frq luciferase (dose-response) 1.06 [1.01 1.11]

cvvd
Lres

Scaling factor of vvd luciferase (dose-response) 1.69 [1.64 1.74]

s
wcc

Scaling factor of WCC occupancy 0.004 au [0.003 0.006] au

⌧frq
o

Promoter open time for frq (derived from ⌧frq
I

) 0.16 au (0.16 0.90] au

⌧vvd
o

Promoter open time for vvd (derived from ⌧vvd
I

) 2.30 au [1.5 4.2] au
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Table S3. Sequence of the frq∆LRE promoter, Related to Figure 6. 
Mutagenized nucleotides are bolded and underlined. 
 
gatccgggatagcagagaacctcaatctccacacaagaaatgtctggcctggcactcgtctagcccctgtttcttg
gagggccaacgtatcgagctaacaagttatatccgcgcaagaagatgacgtcataccacgaccgttaagactat
cgtcttggcaccacgaatgaaaaagggtctggacctggccaggcgcggctggccacagctgttttcaggtgaca
ggggcgcagtaccagttgaggagcacctgcgcacgctgtcgagagcgaactgttgcccgtactttgttctagcac
ctgaaagttacagggaccatcgcgggtgctcgcaactgcgctttgggactttccacttacactagtagtgtcaacg
acggacgtttccaaattttgatctctcttgattttcgacatgtttccatcgttcatgactccccgtgtttctcccaagtaaa
tgctgacaaaaccaaactgcgaaactaagtctgtctcagtatctcttagagatgaggagacggcatcgagatcag
acggcaggtggttgggaatggcttgtcacacatcagtcaacattacctctctctctacgtactctagcatttgcacaa
agtctcctttgatatgcccagaaaatctgcagctatagcggatggctgagaagcggatgtttgtcagggtcaacatg
aacttgtactgcatgaattccacttgctgcccttcatcagatccaaacctcaatacctagcatgacggacaactgga
gaaaccgcgaaaaacaggtaccgtcctgtacgatgtgagagaaacaaacctggtgcgccagccgaataagctt
tctttatgtttgttgctgaaaacagaagaatacttggcgatacctgccgacatggtggtctgaatctcaccaccacca
aaaacacaagggctcgcggtcttccgcaggatctcgaatctgttaaaaatgcgagctctccaccaccaccacca
ccaccaccacagagtccatactgtacagccccagggcacacacgtacctatcatgattatgcaaaaccgttaaa
acccttgaaattcgtggagcatttcaacaggtgacaattaagggttcaactccgccgctcgccaaatgcaatatgta
ggtaggggttttccatgtggaaccatggtcgcacgtcggggtactttcagggttcgtaggtcatgtactctgcgcaa
accgttttgtgaaggcattttgggaacacgcaagttggtcgggttgccgtgactcccccttgactttttcgtgggtga
ggccattcaagtcaagctcgtacccacatccccacaggttccagagtttggccggacaaccagtacgggtgccc
gaggcgtcctgatgccgctgcaagaccgatgacgctgcaaaattgagatctggaggctcaagatactttcggtcg
aagccccaccgccgcgacctcctgtgccacctttccgccaggctgttgtggaaagtcactgcagcgcaccccct
ttgcgagcaatgacgttagaagatgtgggacgttgctcgataggcccaccccgcgtggcgtcaaagtggagccg
cccacaatcctgagcgcagcctgtgatcctgataaccgacaagatgggtgcgaatggaggcattttggggccag
caactgcgctcggagtttccgtccctcacatttttccttggattgcttgcgagtcaggcgcacgtgctctctcgctcg
gtcattgattgatgcggattgccggcgaccatgctgattgattgattgattatgctttggagcgaaccatccggattgt
gctaggtagtgtaagggatttccagacgaggttatgaccgttgcgacgggcggggttgcgttgaaaatctggttac
gaggtcgtcgctcctggttcagagttgccaaagagtgtgagaggccaagtgagctgctggtaggtaggaaactg
cattcatgaggtggagacgacaagcacagatttagacttacccacaacaccatagcaatacatggtgggttaaga
ggatttcaaattttatcgagccgggcggggtgaacaaagcgattcaaggtgttcctggcctctaacaaagaacac
ctgcgctctcttcaccgggcgccgacattgtcggccctgtacgatggctttttggcagaaacatgagggaaaaaa
ccggtcaattggggagatgaagggcgagagctgctggtcatctcctcagcattttgtcgtgagggctttgcggttcg
gacaaagtgagaatcaagttggggaggttgatggatggggagcgggcctacaagtatctcttgatcctctgggga
ccggacgacggctggccaattagacggccgtcgcagaggaccctgaacttttcgatccgctgcaacccctgga
acctgggcagtgatgaggatcggggcgattcctgtgcatctgtgggaaagtgagcaagagagcacgacgcgtg
cctctattcgcaaccaacgtaagtatgtgctccggtccagtcccctcgtcccctcctggccctccctcccctttcca
cgccggccccagtctgaatctttacacactccattgcaaaaacggcattggatgaaattatttcgattacccaaact
acacagaaacacacccgcacccgcactcacctgaccgcccgcaaacacacttcgatccggaattcgattgtcg
atgcggccgc 



 

Table S4. Primers used for frq and vvd hybrid lucPEST constructs, Related to 
Figure 6. 
 

Primer name Primer sequence 5’-3’ 
frq-frqLRE -0.5 lucPEST_fwd aaagcatgcgcgctctcttcaccgggc 

frq-frqLRE -0.5 lucPEST_rev aaaggcgcgccatcgacaatcgaattccggatc 

frq-frqLRE -1.1 lucPEST_fwd aaagcatgccaatgacgttagaagatgtgggacg 

frq-frqLRE -1.1 lucPEST_rev aaaggcgcgccatcgacaatcgaattccggatc 

vvd-frqLRE -1.6 lucPEST_fwd aaagcatgcagaaagtgtcccccaagttcgc 

vvd-frqLRE -1.6 lucPEST_rev aaaggcgcgccggtgctggttatgagacagtgtgttg 

vvd-frqLRE -1.0 lucPEST_fwd aaagcatgcagacggggcacatgatggg 

vvd-frqLRE -1.0 lucPEST_rev aaaggcgcgccggtgctggttatgagacagtgtgttg 

vvd-frqLRE-0.4 lucPEST_fwd aaagcatgcgcatcccaaacacccctgg 

vvd-frqLRE-0.4 lucPEST_rev aaaggcgcgccggtgctggttatgagacagtgtgttg 

vvd-frqLRE -0.2 lucPEST_fwd aaagcatgcaacctcatagcctttcttcctttgc 

vvd-frqLRE -0.2 lucPEST_rev aaaggcgcgccggtgctggttatgagacagtgtgttg 

vvd-frqCorePromTSS lucPEST_fwd aaagcatgccgcaaccaacgtaagtatgtgctc 

vvd-frqCorePromTSS lucPEST_rev aaagcggccgcaaagattcagactggggccg 

Mut-SphI-into-vvd-lucPEST_fwd atctcgatcgacggcatgccggcgctcaatcccaa 

Mut-SphI-into-vvd-lucPEST_rev ttgggattgagcgccggcatgccgtcgatcgagat 

 
  



 

Table S5. Primers and probes used for qRT-PCR and ChIP-qPCR, Related to 
Figure 6. 
 

Primer name 

Forward primer sequence 5’-3’ 
Reverse primer sequence 5’-3’ 
TaqMan probe sequence 5’-3’ or Roche UPL probe  
Description 

frq_orf 
 

ttgtaatgaaaggtgtccgaaggt 
ggaggaagaagcggaaaacg 
acctcccaatctccgaactcgcctg 
frq mRNA 

vvd_orf acgtcatgcgctctgattctg 
aaaagcttccgaggcgtaca 
cgacctgaagcaaaaagacacgcca 
vvd mRNA 

28S_rRNA gaacaacagggattgcccta 
ggactcagaaggtgcctcac 
tgaaatctggcttcggcccg 
normalisation of mRNA and ChIP 

frq_LRE tctcttgctcactttcccacag  
gcagaggaccctgaacttttc 
ccgctcgatcccctggaacctg  
ChIP-PCR (WC-2 ChIP) 
 

vvd_LRE tggatggcagtgtagaatgg  
gtccctcgatggtttagcag 
ctgcgatcggtcagcatcgc 
ChIP-PCR (WC-2 ChIP) 
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