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SUMMARY

While knowledge of protein-protein interactions
(PPIs) is critical for understanding virus-host relation-
ships, limitations on the scalability of high-throughput
methods have hampered their identification beyond a
number of well-studied viruses. Here, we implement
an in silico computational framework (pathogen
host interactome prediction using structure similarity
[P-HIPSTer]) that employs structural information to
predict �282,000 pan viral-human PPIs with an
experimental validation rate of �76%. In addition to
rediscovering known biology, P-HIPSTer has yielded
a series of new findings: the discovery of shared and
unique machinery employed across human-infecting
viruses, a likely role for ZIKV-ESR1 interactions in
modulating viral replication, the identification of
PPIs that discriminate between human papilloma vi-
ruses (HPVs) with high and low oncogenic potential,
and a structure-enabled history of evolutionary selec-
tive pressure imposed on the human proteome.
Further, P-HIPSTer enables discovery of previously
unappreciated cellular circuits that act on human-in-
fecting viruses and provides insight into experimen-
tally intractable viruses.
INTRODUCTION

While viruses employ a complex network of protein-protein inter-

actions (PPIs) to coopt cellular processes—such as endocytosis,

transcription and capping, nuclear transport, protein translation,

and secretion—host cells respond by initiating a complex tran-

scriptional program targeted at activating innate anti-viral de-

fenses that control viral replication and activate the adaptive

immune system. In this regard, knowledge of virus-host PPIs is

critical for understanding the precise series of events that control

cellular responses to infection as well as mediate viral replicative
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cycles. Yet, our knowledge of the machinery that mediates

and controls the interaction between virus and host remains

exceedingly sparse. Considerable effort involving a multitude

of methods (including yeast two-hybrid assays and affinity puri-

fication) has been invested in delineating physical interactions

between viral and human proteins (Nicod et al., 2017). These

approaches have yielded critical insights into virus-human rela-

tionships, identification of key mediators of immunity, and dis-

covery of cellular factors that control viral replication. However,

limitations on scalability have hampered identification of PPIs

en masse. Indeed, although a modest collection of PPIs exists

for a handful of well-studied viruses, virtually nothing beyond

genome sequence is known for the great majority of the

�1,000 human infecting viruses that have been identified and

whose public health importance is unquestionable.

Here, we report a systematic interrogation of PPIs predicted

for a compiled a set of 1,001 fully sequenced human infecting

viruses represented by 12,237 proteins from virus-host DB, a

repository of viral genomes and curated host information (Mihara

et al., 2016). Based on an adaptation of the extensively validated

PrePPI algorithm (predicting protein-protein interactions) (Gar-

zón et al., 2016; Zhang et al., 2012), P-HIPSTer (pathogen-host

interactome prediction using structure similarity) exploits protein

structural information, taken from the Protein Data Bank (PDB)

and homology modeling, to predict viral-host PPIs by account-

ing for both domain-domain and peptide-domain interactions

(Figure 1A).

The P-HIPSTer database, comprised of�282,000 PPIs, repre-

sents a comprehensive catalog of virus-human PPIs that spans

the Baltimore classification system and is a major expansion

on previously available or reported pathogen-host interactions.

We have subjected in silico P-HIPSTer predictions to extensive

statistical and empirical validation and demonstrate its ability

to rediscover viral-human PPIs and cellular determinants of viral

replication identified by orthogonal approaches and genome-

wide screens. We report five applications of P-HIPSTer that

highlight both its ability to capture known biology and to provide

biological insights not available from existing tools (Figure 1C).

These include: (1) validation and analysis of Zika virus (ZIKV)-hu-

manPPIs and discovery of estrogen receptor 1 (ESR1) as amajor
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Figure 1. P-HIPSTer Enables Human-Virus

Interactome Mapping and Interrogation

(A) P-HIPSTer uses protein structure homology

modeling to evaluate viral-human PPIsmediated by

domain-domain or peptide domain contacts.

(B) Empirical validation by coIP of 65 predicted viral-

human PPIs. Positive and negative interactions are

shown in yellow and purple, respectively. TP, true

positive rate; TN, true negative rate.

(C) Posterior analyses leveraging P-HIPSTer hu-

man-virus protein interactome.

See also Figure S1 and Tables S1 and S2.
rheostat of viral replication; (2) analysis of human papilloma virus

(HPV) determinants of oncogenicity and development of an inter-

action-based classifier of high and low risk viruses that may be

deployed in clinical settings; (3) identification of cellular path-

ways coopted across the human virome, many of which were

not previously recognized; (4) identification of evolutionary and

functional relationships across viral families and nucleic acid

types that add a new layer of biological complexity to the

Baltimore Classification System; and (5) discovery of selection
Ce
imposed by viruses on the human-primate

lineage. P-HIPSTer provides a unique tool

both for structure-based functional inter-

rogation of viral proteins and for the gener-

ation of testable hypotheses that have the

potential to uncover new biology. More-

over, as will be shown, the unprecedented

scale of the P-HIPSTer database provides

a framework for discovering shared and

unique cellular pathways across 1,001 vi-

ruses representing 28 viral families known

to infect humans.

RESULTS

TheP-HIPSTer Algorithm, Database,
and Validation
P-HIPSTer uses three sources of evidence

to predict whether two proteins interact

(Figure 1A). Briefly, an integrated likelihood

ratio (LR) for a given PPI is based on: (1) LR

that two structured domains interact based

on evaluation of a model derived from a

known complex comprised of their ‘‘struc-

tural neighbors,’’ that is, proteins with

similar three dimensional folds; (2) LR that

an unstructured peptide will bind to a given

structured domain based on known bind-

ing motifs in the peptide sequence; and

(3) LR based on evidence that multiple

structural neighbors of a query protein

interact with a target protein. The three

LRs are then combined to yield a final LR

score representing the probability that a

candidate pair of proteins form a complex.
We applied the P-HIPSTer algorithm to 12,237 viral proteins

from 1,001 viruses spanning all viral families known to infect

humans and 20,113 human proteins (Figure S1A; Table S1). Of

the 12,237 viral proteins interrogated, we compiled structural

information for 7,593 (62%) represented by a total of 799 exper-

imentally determined structures from the PDB and 109,888 ho-

mology models. We generated multiple models per viral protein

to account for possible conformational heterogeneity and vari-

able modes of protein binding. The structural coverage ranges
ll 178, 1526–1541, September 5, 2019 1527



Table 1. Evaluation of the Overlap between High-Throughput Methods and P-HIPSTer

Dataset Technique Virus

PPIs/RNAi ‘‘Hits’’

Considered by P-HIPSTer Predicted PPIs Overlap

Shah et al., 2018 AP-MS DENV2 190 181 4 (9 3 10�2)

Batra et al., 2018 AP-MS EBOV 170 209 3 (0.26)

Calderwood et al., 2007 Y2H EBV 111 956 12 (7 3 10�3)

Ramage et al., 2015 AP-MS HCV 134 170 1 (0.68)

Germain et al., 2014 AP-MS HCV 98 170 6 (1.9 3 10�4)

de Chassey et al., 2008 Y2H + literature HCV 481 170 21 (6.8 3 10�10)

Union of Ramage, Germain,

de Chassey

Multiple HCV 606 170 25 (6.4 3 10�11)

Jäger et al., 2011 AP-MS HIV 422 509 33 (1.3 3 10�8)

PPI-DBs Multiple Influenza A 326 132 11 (1.1 3 10�5)

Uetz et al., 2006 Y2H KSHV 13 937 4 (2 3 10�2)

Davis et al., 2015 AP-MS KSHV 555 937 40 (5 3 10�3)

Shah et al., 2018 AP-MS ZIKV 189a 89a 0 (0.42)

Scaturro et al., 2018 AP-LC-MS ZIKV 383 97 3 (0.28)

Ma et al., 2017 CRISPR/Cas9 EBV 142 956 14 (8.1 3 10�3)

Tripathi et al., 2015 RNAi Influenza A 846 469 56 (2.4 3 10�12)

Jäger et al., 2011 RNAi HIV 1,031 509 38 (9 3 10�3)

The number of viral-interacting human proteins or RNA ‘‘hits’’ correspond to those reported in the original publication and considered in the P-HIPSTer

dataset. The set of influenza A PPIs were obtained from publicly available databases.
aPPIs involving ZIKV capsid, NS3, or NS5 proteins.
from 73% in (+)single-stranded RNA (ssRNA) viruses to 33% in

double-stranded DNA (dsDNA)-RT (retro-transcribing) viruses

(Figures S1B and S1C) and represents a significant expansion

on the limited knowledgebase for viral protein structures.

The PrePPI algorithm, on which P-HIPSTer is based, com-

bines structural and non-structural clues to yield a final LR for

PPIs within a given genome. For PrePPI, a physical interaction

was found to occur with high confidence when the final LR

R600 and the combined structural evidence yielded an LR

R100. Because P-HIPSTer is based entirely on structural evi-

dence, we empirically tested the extent to which an LR cutoff

of 100 is evidence for a true physical interaction. Sixty-five pair-

wise predictions spanning LR values from 1 to 1,106 were tested

by co-immunoprecipitation (coIP). Of the 34 predictions with an

LR >100, 26 were confirmed to be positive (Figures 1B and S2;

Table S2). Additionally, of the 31 predictions with LR <100,

only 7 were positive. These data correspond to a true positive

rate of 79%and a true negative rate of 77%, similar to results ob-

tained with the original PrePPI algorithm (Zhang et al., 2012).

Furthermore, they provide a striking validation of the P-HIPSTer

algorithm and indicate that an LR cutoff of 100, is indeed reason-

able in identifying true direct interactions.

Of the 245,122,781 potential viral-human PPIs, P-HIPSTer re-

ports LR values for 99,639,431 (Table S1). Of these, 282,528

(�0.1%) predictions have an LR R100 (data are available for

detailed browsing at http://phipster.org). These are mediated

primarily through interactions between structured domains

(64.1%) and involve 7,463 viral proteins from 990 viruses and

5,749 human proteins. The majority (76.8%) of predicted viral-

human PPIs mediated by domain-domain contacts are based

on experimentally solved interaction complexes that do not
1528 Cell 178, 1526–1541, September 5, 2019
involve a viral protein. On average, 38 and 285PPIs are predicted

per viral protein and virus, respectively, with variability due to

proteome size and structural coverage (Table S1). By compari-

son, structure-informed predictions from the PrePPI pipeline

identify an average of �6 interactions among proteins in the hu-

man proteome, in line with observations that viral proteins tend

to mediate a greater number of interactions than human proteins

(Garamszegi et al., 2013).

We compared P-HIPSTer predictions with results from high-

throughput experimental approaches, yeast two-hybrid, and

mass-spectrometry (Table 1). While the extent of overlap is

modest, in most cases it is statistically significant and compara-

ble to that found between different studies carried out on the

same virus. As noted by others, limited overlap between inde-

pendent experimental mapping of PPIs has been common and

largely attributed to fundamental differences in experimental

and statistical approaches that can influence rates of false-pos-

itives and false-negatives (Luck et al., 2017; Shah et al., 2018;

von Mering et al., 2002). This, at least in part, may explain why

P-HIPSTer results overlap well with some high-throughput

studies and not with others.

We also compared P-HIPSTer predictions to results obtained

from genome-wide loss-of-function screens used to identify

cellular modulators of viral replication. The overlap between

P-HIPSTer predictions and cellular factors for EBV (Ma et al.,

2017), HIV (Jäger et al., 2011), and influenza (Tripathi et al.,

2015) previously identified as ‘‘hits’’ in genome-wide screens

were found to be highly significant (p = 8.1 3 10�3, 9 3 10�3,

and 2.4 3 10�12, respectively; Table 1). Importantly, while over-

lap between independent RNAi screens has been relatively poor

(largely attributed to disparities in cell types and assays used to

http://phipster.org


determine phenotypic consequences of knockdown), functional

analysis on ‘‘hits’’ has demonstrated high concordance at an

ontological and pathway level. Indeed, integrating virus-host

PPIs together with pathway analysis of independent RNAi

screens enables discovery of critical host factors that modulate

viral replication (Tripathi et al., 2015). Because P-HIPSTer lever-

ages structural homology to generate high-confidence predic-

tions for viral-host PPIs, it captures interactions independently

of cell type or assay used and can therefore be leveraged to

explore and discover previously unappreciated circuitry that

controls virus-human relationships.

Novel Mediators of Zika Virus Infection
Zika virus (ZIKV), an arthropod borne Flavivirus, has raised major

health alarms due to devastating complications associated with

infection, including Guillain-Barre syndrome and birth defects

like microcephaly as well as spontaneous abortion and stillbirth

(Musso and Gubler, 2016). Recent concerted experimental ef-

forts have mapped ZIKV-human PPIs and identified cellular fac-

tors that mediate immune function and regulate viral replication

(Grant et al., 2016; Li et al., 2016; Musso and Gubler, 2016; Sca-

turro et al., 2018; Shah et al., 2018; Tang et al., 2016; Wu et al.,

2016). We leveraged P-HIPSTer predictions to augment these

advances and identified 159 ZIKV-human PPIs, involving six viral

and 97 human proteins, at an LRR100 (Figure 2). While the ma-

jority of these were not identified through previous experimental

efforts, they are consistent with observations and functions

associated with ZIKV infection (Grant et al., 2016; Li et al.,

2016; Wu et al., 2016). Specifically, we find that the predicted

ZIKV interactome is enriched for: (1) genes expressed in fetal

brain cortex (p = 1.16 3 10�3); (2) genes known to be part of

the transcriptional program in response to ZIKV infection in em-

bryonic mouse brains (p = 1.2 3 10�3); and (3) immune-related

pathways like antigen processing-cross presentation, interferon

(IFN)-g signaling, and nuclear factor kB (NF-kB) signaling (Fig-

ure 2B). We experimentally confirmed 12 (of 16 tested interac-

tions) novel ZIKV-human interactions and modeled the interac-

tion mode for 7 of them (Figure 2C). The prediction and

validation of interactions not previously observed through tradi-

tional experimental efforts underscores the sparsity of relation-

ships reported in the literature, the susceptibility of such ap-

proaches to incomplete mapping of PPIs, and the value of

combining experimental techniques (like MS and Y2H) with

computational predictions provided by P-HIPSTer.

We combined predicted ZIKV-human PPIs along with known

human PPIs from IntAct into a single protein interaction network

and identified 9 topological modules: four modules composed of

proteins predicted to interact with >1 viral protein, and 5modules

defined by cellular proteins with only a single ZIKV protein part-

ner (Figure 2B; Table S3). Modules predicted to interact with >1

viral protein are enriched for functions associated with

apoptosis, embryonic lethality, cell-cycle, abnormal neuron pro-

liferation, and conjunctivitis—consistent with known biological

pathways and phenotypes associated with ZIKV infection (Li

et al., 2016; Musso and Gubler, 2016; Scaturro et al., 2018;

Shah et al., 2018; Tang et al., 2016). In addition to recapitulating

known biology, we find that the NS3 sub-network is enriched

for regulators of peptidase activity—suggesting that they play
a critical role in NS3 function. Modules specific to ZIKV envelope

(Env) or capsid (C) are associated with immune-related path-

ways. While the data implicate capsid in modulating Toll-like re-

ceptor and RIG-I mediated signaling, two important modes of

pattern recognition that play indispensable roles in innate immu-

nity and initiate cellular responses to ZIKV infection (Hamel et al.,

2015), Env function is associated with T cell responses (Fig-

ure 2B)—ones that are critical for control of, and long term pro-

tection from, ZIKV infection (Lima et al., 2017).

We selected six cellular factors with validated ZIKV-human

PPIs (Figure 3; Table S2) for experimental interrogation through

gain and loss-of-function (Figure 3). We observe that while over-

expression of human amyloid b precursor APP results in a

modest (yet significant) 2-fold enhancement of ZIKV replication,

it dramatically affects cellular response to IFNb stimulation (Fig-

ure 3A). While priming of cells with IFNb normally induces a

refractory state (resulting in a 10-fold reduction in viral titers),

priming with IFNb has no effect on cells exogenously expressing

APP. APP is a known partner of Musashi-1 (MSI1), a cellular pro-

tein recently shown to regulate ZIKV replication through interac-

tion with the viral genome and repression of genes involved in

neural stem cell function (Chavali et al., 2017). This suggests a

potential role for the experimentally confirmed PPIs between

APP and ZIKV C and NS3 in modulating MSI1-mediated control

of viral replication and cellular responsiveness to IFNb.

In contrast to APP, we find that while SFN (14-3-3s) overex-

pression results in �10-fold increase in viral titers, it potenti-

ates cells to IFNb priming and enhances the cellular antiviral

state (Figure 3A). 14-3-3ε, which is related to SFN, has recently

been shown to regulate RIG-I localization (Liu et al., 2012) and

to be a target of dengue virus NS3 protein—an interaction that

antagonizes RIG-I signaling and results in enhanced viral repli-

cation (Chan and Gack, 2016). Similarly, SFN and 14-3-3ε have

also been shown to inhibit Toll-like receptor (TLR)-mediated

sensing of viral RNA (Butt et al., 2014), and 14-3-3z was

demonstrated to interact with STAT3 and promote down-

stream signaling (Han et al., 2015). Our findings suggest a

broader role for this protein family in controlling innate immune

responses to viral infection and implicate SFN in regulating

both cell-intrinsic antiviral programs, as well as those induced

by IFNb.

The most dramatic impact on viral replication resulted from

overexpression of ESR1, which led to �2,000-fold reduction in

ZIKV replication (Figure 3A). Conversely, small interfering RNA

(siRNA) knockdown of ESR1 (that resulted in 70% depletion of

ESR1 mRNA) potentiated ZIKV replication as measured by

both viral titer and viral mRNA in infected cells (Figures 3B and

3C). Although the precise molecular process through which

ESR1 regulates ZIKV replication is yet to be defined, the discov-

ery that FDA-approved selective estrogen receptor modulators

to inhibit Ebola virus replication (Johansen et al., 2013) suggests

a broader role for this hormone in modulating viral replicative

potentials. Moreover, recent epidemiological data suggest

different ZIKV incidence rates between men and women as

well as pregnant verses non-pregnant women (Lozier et al.,

2016). While potential explanations include exposure to Aedes

mosquitoes, increased severity of symptoms in women versus

men, reporting biases, and sexual transmission, our findings
Cell 178, 1526–1541, September 5, 2019 1529
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Figure 2. Discovery of Novel ZIKV-Human Protein Interactions

(A) Combining P-HIPSTer predictions with known human PPIs followed by topological analysis identifies connectivity-based modules that are subjected to

functional interrogation.

(B) ZIKV-human PPI network with enriched biological pathways and phenotypes for each topological module.

(C) Interaction models and experimental validation for 7 predicted ZIKV-human PPIs (blue and red models correspond to human and viral proteins, respectively).

See also Figure S2 and Table S3.
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Figure 3. Functional Interrogation of ZIKV Cellular Partners and Identification of ESR1 as an Inhibitor of Viral Replication
(A) Effect of overexpressing cellular factors on ZIKV infection in 293T cells with or without IFNb priming. Stars indicate significant difference in viral titer

(determined by focus forming assay) or cellular response to IFNb.

(B and C) Effect of ESR1 knockdown (siRNA) on ZIKV replication. (B) Focus forming assay (red staining indicates ZIKV foci). (C) qPCR of ZIKV mRNA, data

representative of 3 independent experiments. *p < 0.05; **p < 0.0001. EV, empty vector.

See also Figure S2 and Tables S2 and S3.
reveal an additional point of viral vulnerability that may be lever-

aged for therapeutic targeting of the estrogen pathway. In short,

functional interrogation of experimentally validated ZIKV-inter-

acting human proteins reveals novel roles for three human pro-

teins (APP, SFN, and ESR1) in modulating viral replication and/

or cellular responsiveness to IFNb. Thus, P-HIPSTer predictions

for a virus of interest can be leveraged to uncover novel PPIs,

identify interactions underlying clinical phenotypes of viral infec-

tion, expose regulators that control inflammatory responses and

viral replication, as well as identify targets with wide therapeutic

potential.

Classifying HPVs Based on PPIs
HPVs, non-enveloped dsDNA viruses that preferentially infect

epithelial tissues, can cause lesions with various degrees of

severity. HPVs encode two sets of proteins defined by their

temporal expression during the viral replicative cycle: (1) late

proteins (L1–L2) form the icosahedral capsid; and (2) early pro-

teins (E1–E7) serve regulatory functions including replication

control (E1 and E2), cell-cycle regulation, immune evasion,

and virus release (E4–E7). E6 and E7 are transcriptionally regu-

lated by E2 and have been implicated in dictating viral oncoge-

nicity (Doorbar et al., 2012). Low-risk (LR) HPVs have been

linked primarily with benign warts while high-risk (HR) HPVs

can lead to neoplasias and carcinomas like cervical cancer

(Cubie, 2013). HR and LR oncogenic classifications have

largely relied on epidemiologic and phylogenetic information

which is essential for prevention planning and screening pro-

grams (Muñoz et al., 2003). While vaccines against HPV exist,

they have no therapeutic value against existing infections and

must therefore be administered before individuals are infected.

So, identification of viable therapeutic targets is critical and

delineating cellular proteins that are differentially targeted by

HR and LR HPVs can be particularly useful in identifying circuits

that mediate disease.

We applied a supervised feature selection method, using PPIs

with LRR100 as input, to five LR-HPVs and five HR-HPVs asso-

ciated with cervical cancer with the goal of identifying PPIs that

discriminate HR and LR infections (Figure 4; Table S4). Evalua-
tion of the Bayesian classifier by 5-fold and leave-one-out

cross-validation yielded an accuracy of 90% in predicting cervi-

cal cancer risk for a given HPV and resolved ten human proteins

whose interactions differentiate LR- and HR-HPVs (Figure 4B).

HR-HPVs E7 and E2 proteins have a propensity to interact with

CCNB1, SMAD3, PCNA, HNRNPM, and HNRNPDL (group I)

while LR-HPVs E1 and E2 proteins preferentially interact with

LIRB1, TERF1, FUBP1, BRDT, and TK1 (group II). In both cases,

LR-values clearly distinguish HR- and LR-HPVs.

We also identified 18 proteins that interact with both HR-HPVs

and LR-HPVs (group III), 10 of which have been shown to have

direct roles in the HPV life cycle (Buitrago-Pérez et al., 2009;

Collier et al., 1998; Dietrich-Goetz et al., 1997; Grinstein et al.,

2002; Kajitani and Schwartz, 2015; Katzenellenbogen et al.,

2010). Among these, P-HIPSTer recapitulates previously re-

ported interactions between HPVs and RB1, RBL1, RBL2, and

p53 (Buitrago-Pérez et al., 2009). Indeed, p53 and RB family

members play well-accepted roles in HPV oncogenesis. The re-

sults discussed below suggest that the interaction of viral pro-

teins with group I and II proteins may modulate the established

roles of group III proteins in determining HPV oncogenic

potentials.

Multiple lines of evidence connect group I proteins, including

CCNB1, SMAD3, and PCNA, with an augmented risk of cervical

intraepithelial neoplasia (CIN) and cervical cancer (Cho et al.,

2006; Lee et al., 2002; Tjalma et al., 2001). CCNB1, predicted

to preferentially interact with E7 protein of HR-HPVs (Table

S4), plays an important pro-mitotic role by promoting the G2/M

transition (Takizawa and Morgan, 2000)—elevated levels have

been demonstrated in multiple cancers, including cervical can-

cer (Cho et al., 2006). While previous reports illustrate that E7

promotes mitosis and cellular proliferation through interactions

with cellular B-Myb-MuvB (Pang et al., 2014), our results suggest

that, in addition, E7-CCNB1 interaction may contribute to fulfill-

ing its pro-mitotic role. In agreement with previous reports, we

also identify SMAD3, a signal transducer and transcriptional

modulator of transforming growth factor b (TGF-b) signaling

that promotes tumor suppression, as a partner of E7. HR-

HPV16 E7 has been shown to interfere with TGF-b induced cell
Cell 178, 1526–1541, September 5, 2019 1531
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Figure 4. P-HIPSTer-Derived Bayesian

Network Classifier Discriminates High- and

Low-Risk HPVs

(A) Machine learning on P-HIPSTer interactomes for

HR and LR HPVs (highlighted in B with red and blue

rectangles, respectively) is used to identify features

associated with viral oncogenic potential.

(B) Hierarchical clustering of alpha HPVs based on a

constellation of 10 viral-host PPIs (5 associated with

HR, 5 associated with LR; group I and group II,

respectively) discriminates HR and LR HPVs. Group

III describes 18 viral-host PPIs shared across alpha

HPVs. Dark and open circles denote binding profiles

(LR R100, dark circle; LR <100, open circle). Human

proteins with known roles during HPV infection are

highlighted in red.

See also Table S4.
growth by binding SMAD3 and blocking its transcriptional activ-

ity (Lee et al., 2002), our results extend this regulatory potential to

E7 proteins of other HR-HPVs. Indeed, recent reports suggest

that E7 may modulate oncogenic potential of HPV’s (Mirabello

et al., 2017; White andMunger, 2017). Thus, P-HIPSTer provides

a basis for further understanding the role of E7 in carcinogenesis

and points to additional layers of regulation through which HPVs

modulate viral replication and initiation of oncogenic states in in-

fected tissues.
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In addition to CCNB1 and SMAD3, we

identified PCNA as a cellular partner of

HR-HPV E2 protein but not LR-HPVs

(Table S4). Expression of PCNA has been

associated with HR-HPV and is correlated

with increasing grade of CIN and cervical

cancer (Branca et al., 2007; Eissenberg

et al., 1997; Kelman, 1997; Tjalma et al.,

2001). The large difference in LRs observed

for this interaction resides in the peptide-

domain interaction, where E2 sequences

from HR-HPVs match the peptide motif of

an ELM class while the E2 LR-HPVs do

not (Table S4). During HPV infection, viral

proteins recruit DNA polymerases and

members of the DNA replication machin-

ery, including PCNA, to trigger viral replica-

tion (Berg and Stenlund, 1997; Chojnacki

and Melendy, 2018; Fuss and Linn, 2002;

Melendy et al., 1995; Mohr et al., 1990).

Indeed, HPV is known to indirectly regulate

the activity of PCNA through an interaction

between viral E7 and human p21 protein

(Funk et al., 1997). While the precise

mode of action remains to be elucidated,

our results suggest that the E2-PCNA inter-

action contributes to HPV-mediatedmodu-

lation of genome replication and initiation

of oncogenic states.

The remaining 2 human proteins preferen-

tially targeted by HR-HPVs are HNRNPM
and HNRNPDL (via viral E2 protein). In addition to acting as a

transcriptional repressor of viral E6 and E7 proteins, E2 contrib-

utes to RNA processing and metabolism (Kajitani and Schwartz,

2015). Notably, HNRNPM and HNRNPDL belong to the hnRNP

family that participates in various aspects of RNA metabolism

including alternative splicing, mRNA stabilization, and regulation

of transcription and translation (Geuens et al., 2016), and their

expression is associated with various cancer types (including

cervical carcinoma for HNRPNDL) (Chen et al., 2014; Sun



et al., 2017; Tsuchiya et al., 1998). While the role for HNRNPM, a

component of the spliceosome complex, remains to be deter-

mined, HNRPNDL has been implicated in inhibiting the produc-

tion of HPV-16-spliced L1 (HPVmajor capsid protein) mRNA and

promoting immune system evasion and establishment of long-

term persistent infections with enhanced risk of carcinogenesis

(Li et al., 2013).

Group II proteins point to unappreciated biological processes

underlying HPV pathogenesis. While none are known to play a

direct role in the HPV life cycle, changes in TK1 and FUBP1

expression have been associated with cervical cancer (Bui-

trago-Pérez et al., 2009; Chen et al., 2013; Pyeon et al., 2007).

The relative sparsity in prior knowledge likely reflects the fact

that LR-HPVs are far less studied than HR-HPVs. Our results

invite new studies into group I and II proteins in cancer progres-

sion and underline the importance of evaluating host factors in

the context of both LR- and HR-HPV.

Having established the Bayesian classifier on five known HR-

HPVs and five known LR-HPVs, we clustered the remaining 28

HPVs based on predicted PPIs with the 10 human proteins in

groups I and II. The resulting dendrogram discretizes HR-HPVs

and LR-HPVs into two branches that are supported by known

biology (Figure 4B). Of the seven HPVs that co-cluster with

HR-HPVs, four have been described as potentially carcinogenic

(HPV-53, HPV-69, HPV-82, HPV-97) (Cubie, 2013; IARC, 2019),

two (HPV-68a and HPV-68b) are subtypes of high risk HPV-68,

and one (HPV-62), although considered to be a LR-HPV, is

commonly found in neoplastic tissue, is detected in coinfection

with HR-HPVs, and is among the most prevalent LR-HPVs found

in women with abnormal cervical cytology or cervical cancer

(Artaza-Irigaray et al., 2017). Of the 21 HPVs that cluster with

LR-HPVs, only one has been described as potentially carcino-

genic (HPV-67) (IARC, 2019).

The classifier presented here is orthogonal to the standard one

based on sequence alone and can be used in parallel when new

viruses are discovered. However, in addition to providing a

demonstration of P-HIPSTer performance, the results identify

previously unappreciated PPIs that discriminate between HR-

and LR-HPVs. To our knowledge, this has not been accom-

plished previously and offers a new perspective on HPV patho-

genesis, oncogenic potential, and cellular factors that may serve

as viable therapeutic targets.

Cellular Pathways Coopted by Viruses
Beyond utilizing P-HIPSTer to gain insights into specific viruses

of interest, its comprehensive nature also offers a unique oppor-

tunity to illuminate a broad picture of viral infection and identify

features that are shared across human viruses. For example,

Gene Ontology (GO) analysis across the 5,749 cellular factors

predicted as viral-interacting proteins indicates significant over-

representation of biological processes related to signal trans-

duction, immune response, and viral infection (Figures S3A

and S3B). We also identified 173 human proteins, predicted to

interact with at least 100 viruses, enriched for processes related

to immunity, virus infection, and functions known to be important

during viral replication (e.g., regulation of cell cycle and mem-

brane organization), providing insights into cellular processes

broadly relevant for virus-human dynamics (Figures S3C and
S3D). In agreement with recent findings (Chen and Xia, 2019),

we find that these proteins are also enriched for virally implicated

genetic diseases. The identification of pan-viral factors that

converge around common cellular pathways is made possible

both by the comprehensive nature of the P-HIPSTer database

and by the large number of interactions detected by structural

homology.

In addition to the standard analysis used to identify overrepre-

sented biological themes and ontologically related gene groups,

we previously demonstrated that gene set enrichment analysis

(GSEA) (Subramanian et al., 2005) can be used to provide func-

tional annotation of a given protein based on the functions of its

predicted binding partners (Garzón et al., 2016). We applied this

analysis to the LR-based rank-order of all predictions for a given

viral protein and represented the pathways and functions tar-

geted by a given virus as the union of enrichments across its pro-

teins (Figure S4). This exposed 190 pathways that are recurrently

targeted by DNA, RNA, and RT viruses, 92 of which are associ-

ated with regulation of cellular metabolism and point to specific

metabolic processes underpinning viral requirements during

infection (Table S5). For example, glucose metabolism and fatty

acid synthesis are universally targeted across viruses, reflecting

the requirement for increased membrane production necessary

for viral packaging, vesicular transport, and protein production

and the need for energy through glycolysis and beta-oxidation

of fatty acids (González Plaza et al., 2016). We also find that

the majority glycan-related metabolic pathways are targeted

by viruses across all nucleic acid types (Table S5), reflecting their

central roles in immune evasion (through modulation of adaptive

immune responses to infected cells) and supporting pathogen

recognition by antibodies (Raman et al., 2016).

Underscoring the universal role that Jak-Stat, NF-kB, and

type-I IFN-dependent pathways play in initiating innate immune

responses to infection, we find that they too are recurrently tar-

geted across all viruses (Figure S4B; Table S5). This is further

emphasized by the observation that among the 173 human pro-

teins predicted to interact withR100 viruses, 55 contain a sushi

domain—known to be involved in the complement cascade,

innate immune cell trafficking and viral entry, and endocytosis

(Figure S3D) (Ley, 2003; Tanner et al., 1988). Moreover, targeting

of complement pathway and complement and coagulation cas-

cades is enriched among RNA and DNA viruses. Yet, while vi-

ruses converge around response-initiating pathways and share

metabolic requirements for infection, replication, and pathogen-

esis, they have diversified in their targeting of other arms of the

immune system (only 16 out of 182 immune related pathways

are commonly targeted by all viruses). For example, poxviruses

widely target immune-related pathways, while noroviruses

specialize in targeting innate immune and type I IFN responses

but do not widely interact with proteins involved in nucleic acid

sensing. Conversely, our results indicate that members of other

viral families have diversified in their targeting immune system

components. For example, flaviviruses utilize one of two distinct

strategies in targeting immune related pathways; while the

majority of flaviviruses (including dengue, Zika and West Nile

viruses) interact with pathways involved in T cell differentiation,

DAP12-mediated natural killer (NK) cell responses, and RIG-I/

MDA5 signaling, hepaciviruses target eicosanoid ligand binding
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receptors and IL-23 signaling (Figure S4B). These observations

invite questions about the selective pressures that gave rise to

such diversification in adaptive strategies within a family of

related viruses. Furthermore, these data highlight the power of

P-HIPSTer to capture general and specialized strategies em-

ployed by viruses to rewire cellular responses to infection and

to uncover principles that govern human-virus relationships

that were otherwise hidden or missing from other PPI discovery

methods.

Reconstructing Functional and Evolutionary
Relationships across Human-Infecting Viruses
In addition to providing insight into shared and unique strategies

exploited by human viruses, knowledge of PPIs informs about

functional and evolutionary relationships that cannot be dis-

cerned through sequence alone. For instance, sequence and

structural comparison of viral proteins illustrates that while

sequence homology occurs between proteins from viruses of

the same nucleic acid type, high structural similarity is often

found for protein pairs belonging to viruses of different nucleic

acid types (Figure S5). We employed an unsupervised clustering

strategy (where viruses are described by their set of enriched

biological pathways, given their corresponding set of predicted

viral-human PPIs) to uncover functional relationships that are

masked by sequence divergence (Figure 5A). We identified eight

distinct clusters, each representing a unique constellation of

pathways targeted by member viruses (Figure 5; Table S6)—

revealing novel insights into shared and unique infection strate-

gies employed across virus families.

Three clusters are dominated by viruses belonging to one of

three families (cluster 1: Picornaviridae, cluster 5: Caliciviridae,

cluster 8: Poxviridae), suggesting specialized infection strategies

that distinguish them from other human viruses. Poxviruses

are characterized by pathways related to signaling, immunity,

transcription, and cell growth. In particular, we observe that

Poxviridae family members target interleukin-10 (IL-10), an

anti-inflammatory cytokine that regulates immune responses to

mitigate tissue damage and is known to bemodulated by viruses

to evade immunity (Ouyang et al., 2014) (Figure 5B; Table S6).

While several poxviruses have been shown to encode an IL-10

ortholog (Ouyang et al., 2014), we find that this family of viruses

recursively target the IL-10 pathway at multiple levels of regula-

tion including production and downstream signaling, reflecting a

particular importance of this pathway during infection.

P-HIPSTer can also help contextualize findings from mouse

model systems and when considering experimentally intractable

viruses or viruses for which not much more than genome

sequence is known (Karst et al., 2014). Noroviruses (Caliciviridae

family) have emerged as human pathogens of significant public

health import. These viruses do not replicate well in vitro and

much of what is known about them comes from studies of related

mouse caliciviruses, resulting in limited understanding of cell fac-

tors that are involved in human infection (Wobus et al., 2006). As

(+)ssRNA viruses, noroviruses regulatemRNA translationmachin-

ery to facilitate viral replication andmodulate translation of certain

host mRNAs, including interferon stimulated genes (ISG) (Emmott

et al., 2017). We find that in addition to pathways related to immu-

nity and regulation of the cellular extracellular matrix, all biological
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pathways related tomRNA processing are enrichedwithin norovi-

ruses (cluster 5) (Figure 5B; Table S6), suggesting a pervasive and

systematic cooption of cellular machinery involved in RNA meta-

bolism by this family of viruses.

Clusters 2, 4, 6, and 7 bring together viruses from different fam-

ilies and Baltimore categories. Strategies employed by viruses

within these clusters appear to have converged around biological

pathways of shared importance during infection (by interacting

either with the same host proteins or with host proteins of the

same pathway). A similar observation, albeit at smaller scale,

was describedwhen clustering viral proteins based on their prote-

omic profiling and network proximities of interacting partners

(Pichlmair et al., 2012). Cluster 7, which contains all Ebola and

measles viruses, and evolutionarily distant viruses, converges on

a variety of pathways related to signaling, immunity, apoptosis,

and cell growth (Table S6). Of these, Rho GTPase signaling (p =

5.1 3 10�36), regulates actin and microtubule dynamics and bio-

logical processes like phagocytosis, cellular transport, and intra-

cellular communication, by linking membrane receptors to the

actin cytoskeleton (Van den Broeke et al., 2014) (Figure 5). While

Rho GTPases facilitate Ebola virus entry through macropinocyto-

sis, measles virus interferes with this pathway to perturb T cell

function and long-term T cell-mediated immunity (Müller et al.,

2006; Quinn et al., 2009). Our observations extend a role of Rho

GTPase signaling to other members of this cluster and illustrate

that although some viruses converge around particular cellular

pathways, utilization of such machinery is dependent on cellular

context and viral requirements for their replicative cycle.

We also find functional divergence among some viral families.

For example, flaviviruses appear in multiple clusters, including

clusters 2, 4, and 6. Viruses in cluster 2 converge around path-

ways related to transcriptional and translational regulation (e.g.,

‘‘transport of mature transcript to cytoplasm’’ and ‘‘mRNA

capping’’). While Zika virus falls into cluster 2, phylogenetically

related dengue viruses fall into cluster 4, where signaling and im-

mune-related pathways are among the most enriched pathways

(e.g., ‘‘immune response IFN a/b signaling’’). Instead, viruses in

cluster 6 (e.g., Japanese encephalitis virus) are enriched for a

different set of immune pathways, cell growth, and apoptosis-

related pathways. In short, clustering viruses based on pathway

enrichments derived from P-HIPSTer inferred PPIs enables dis-

covery of convergent functional relationships between unrelated

viruses anddivergent relationshipswithin viral families.Moreover,

clusters that bring together disparate viruses demonstrate that

while sequence divergence precludes any possibility of using

traditionalmethods to gobeyond ontological classification, struc-

ture-basedPPIs affordedbyP-HIPSTer add a level of cross-strat-

ification to virus taxonomy by identifying functional relationships

that are otherwise masked. Finally, the data open the possibility

of discovering molecular processes that underlie pathological

states and clinical outcomes across unrelated viral infections.

History of Selection Imposed by Viruses
In the context of viral infection, as with other pathogens, there

exists an ‘‘arms race’’ between the virus and infected cells—

signs of which can be found in genomes of both virus and

host. We interrogated genetic divergence among primates as a

proxy for the selection pressures imposed by viruses on the
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Figure 5. P-HIPSTer Reveals Functional and Evolutionary Relationships across the Human Virome

(A) Strategy to cluster viruses, described by their set of enriched pathways.

(B) Dendrogram of 568 viruses clustered based on their enriched pathways. Inner color ring specifies Baltimore category; outer ring specifies viral family for each

virus. Schematic representations of the interleukin 10 (IL-10; enriched in Cluster 8), RhoGTPase signaling (enriched in cluster 7), and RNAmetabolism (enriched in

cluster 5) pathways. Pathway components predicted to be targeted by viruses within each cluster are highlighted in blue.

See also Figures S3, S4, and S5 and Tables S5 and S6.
human proteome (Figure 6). As noted by many others (Busta-

mante et al., 2005; Daugherty and Malik, 2012; Hughes et al.,

2003), the primate lineage is dominated by purifying selection.
We found that proteins predicted to interact with viral proteins

display significantly lower DN/DS values (average of 0.23 versus

0.31; Wilcoxon tests: p < 0.0001, W > 106) than non-interacting
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Figure 6. P-HIPSTer Reveals History of Selection Imposed by Human Viruses

(A) Evolutionary tree derived from 12 whole genome primate sequences.

(B) DN/DS values for each of 14,974 aligned genes were plotted across human-virus interacting and non-interacting proteins. Listed in the inset are virus-

interacting proteins with DN/DS values >1. Shown are functional enrichments (p < 0.05 and FDR < 20%) for interacting (dark circle) and non-interacting (light

circle) proteins with DN/DS > 1. Red dot denotes p value that did not pass FDR correction. Stars indicate Wilcoxon p < 0.0001, W > 106.

See also Table S7.
proteins. The observation suggests that virus-interacting pro-

teins are under stronger purifying selection than non-interacting

ones. This observation is in agreement with previous results

using orthologous, albeit smaller, datasets (Enard et al., 2016;

Halehalli and Nagarajaram, 2015). We also find that proteins

with the lowest DN/DS values (5th percentile) that are predicted

to interact with viruses are enriched for regulators of gene

expression, chromatin modification, and cell cycle, in addition

to modulators of innate and adaptive immune responses (Table

S7). Although such increased conservation may reflect an

over-representation of essential genes targeted by viruses, it

points to critical proteins at the interface of viral-human interac-

tions that span millions of years of primate evolution.

Positively selected genes are of particular interest, as they

represent key adaptive sweeps that have been shaped by envi-

ronmental pressures, including those imposed by viruses. Anal-

ysis of the 45 virus-interacting proteins under positive selection

(with mean DN/DS values >1) reveals that they are highly en-

riched for functions and diseases related to viral infection, as

well as adaptive and innate immune responses (Figure 6B)—a

similar relationship was recently described (Chen and Xia,

2019). Reflecting their central role in initiating and mediating re-

sponses to a variety of pathogens, regulators of immunity are

also enriched among the 329 positively selected genes not pre-

dicted to interact with viruses. However, these genes are over-

represented by functions and diseases related to bacterial,

fungal, and parasitic infection, demonstrating that P-HIPSTer

can distinguish among proteins that do and do not interact

with viral proteomes and have functions associated with viral

infection. Notably, TRIM5, previously identified as a host restric-

tion factor for HIV that determines human versus macaque sus-

ceptibility (Sawyer et al., 2005), is among the 45 positively

selected genes targeted by viruses. As noted by others (Barreiro

and Quintana-Murci, 2010), genome-wide scans for molecular
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‘‘footprints’’ of natural selection imposed by infections would

benefit greatly from integrative approaches that combine ge-

netics, epidemiology, immunological phenotyping, and knowl-

edge of key pathogen-host molecular interactions. Therefore,

while the notion that human genetics has been shaped by path-

ogens is not new, P-HIPSTer data extend the list of human pro-

teins shaped by their interactions with viruses and highlight its

ability to capture evolutionary histories that have determined

pathogen and disease susceptibility. Thus, adding to the toolbox

of resources used to investigate evolutionary pressures imposed

on the human genome and to interrogate evolutionary relation-

ships between humans and their virome.

DISCUSSION

As viruses exploit host cell through molecular interactions

involving diverse molecules including nucleic acids, lipids,

sugars, and proteins, their study has resulted in the discovery

of many fundamental aspects of cell biology. The work pre-

sented here represents the largest initiative to model and map

cross-species protein-protein interactome, and as such, should

serve as a valuable resource for studying viral replication strate-

gies, evolutionary and functional relationships, and history of hu-

man adaptation. Furthermore, this compendium may accelerate

the discovery of drugs with potential pan-viral effects by target-

ing host pathways coopted across multiple viruses. By providing

structural models for the majority of viral proteins included in the

study, andmodels for interactionsmediated by them, P-HIPSTer

invites in-depth exploration of interfacial residues, examination

of the structure space utilized by viruses, and an analysis of

the evolutionary constraints imposed on viral protein functions.

To facilitate convenient access to P-HIPSTer derived interac-

tions, we have made the results available through an interactive

webserver that enables both searchable queries and data



download (http://phipster.org). Specifically, the database in-

cludes: all interactions with LR R100 (representing 282,528

PPIs between 12,237 viral and 20,113 human proteins), structure

models for all modeled viral proteins, structure models for pre-

dicted complexes with a domain-based LR R100, and naviga-

tional links to external databases. In addition, annotations for all

viral proteins are provided based on known functions of structure

neighbors and sequence homologs as well as functional analysis

of P-HIPSTer-predicted interaction partners. In total, the reposi-

tory provides over 100,000 atomic models corresponding to

�7,600 viral proteins from 970 viruses. Finally, as the structural in-

formation in the PDB continues to grow and provides critical sour-

ces of evidence for PPI predictions, the P-HIPSTer database will

undergo annual updates. Because it relies on homology-modeling

based on experimentally determined crystal structures, as the

number anddiversity of solved structures increases, sowill P-HIP-

STer’s predictive power and scope. While some human infecting

viruses and viral strainsmay bemissing from the current compen-

dium, PPI discovery and structural analysis for individual viruses of

interest are possible upon request.

P-HIPSTer, like PrePPI and other high-throughput computa-

tional and experimental methods, is ultimately intended to

generate testable hypotheses. The reliability of predictions

contained in the database can be assessed in a number of

ways. Along with in silico recapitulation of results obtained by

orthogonal methods, and true positive and true negative rates

above 75%, the applications discussed above demonstrate

that P-HIPSTer yields predictions that either rediscover known

biology or point to PPIs that are consistent with the expected

effects of viral infection. Moreover, even in cases of well-studied

viruses like ZIKV that have been subject to repeated experi-

mental efforts to comprehensively identify viral-human PPIs,

P-HIPSTer led to discovery and validation of novel and function-

ally relevant interactions, including ESR1 that we demonstrate to

have a critical role in modulating ZIKV replication.

While P-HIPSTer rediscovers multiple previously identified

interactions between viral and cellular proteins, others are not

reported with an LRR100. For example, HPV PPIs including E7-

URB4andE6-MAML1werenot identified.However, there isnoev-

idence to suggest that these interactions are direct. Indeed,

methods like affinity purification and chromatography, coIP, and

fluorescence microscopy, used to identify these interactions and

others, often do not discriminate between direct and indirect inter-

actions. Because P-HIPSTer identifies direct interactions, these

examples highlight the orthogonal and complimentary nature of

theapproach inmapping theextendednetworkof cellularpartners

and complexes of viral proteins. Similarly, some false-positive P-

HIPSTer predictions, notably HPV E7-p53 (known experimentally

not to occur), will inevitably arise. Nevertheless, the high validation

rate along with the discoveries highlighted in each of our applica-

tions of the pipeline engender confidence in P-HIPSTer reliability.

Although P-HIPSTer is orthogonal to traditional experimental

methods of identifying PPIs, it offers several key benefits. First,

while high-throughput methods can be influenced by experi-

mental settings and generally fail to provide information about

the nature of an interaction, P-HIPSTer provides context inde-

pendent evidence of a direct physical interaction. Moreover,

access to structure models for all interactions with a domain-
domain LR R100 (85,175 in total) offers the ability, not available

by other methods, to experimentally probe each prediction with

site-directed mutants. Moreover, such models are extremely

useful in generating functional hypotheses and interpreting ge-

netic data on susceptibility to viral infection. While the current

sparsity of data on human genetic diversity does not provide

the statistical power to analyze differential selection pressure

on interfacial versus non-interfacial residues, the proliferation

of genome sequencing projects may soon make such an inquiry

tractable. Second, P-HIPSTer exploits the fact that protein struc-

ture is far better conserved than sequence and provides new

functional annotations for �7,600 viral proteins—representing

a massive expansion on incomplete annotations provided by

current computational tools that rely on sequence identity.

Most importantly, the new findings described in this work

demonstrate the facility with which P-HIPSTer’s comprehensive

nature enables fundamentally new biological discoveries and in-

sights that could not have been realized with existing resources.

P-HIPSTer’s scalability is an important step toward the goal of

defining all pathogen-host interactions across any and all species.

Indeed, future developments will include exploration of endoge-

nous retroviruses, eukaryotic and bacterial pathogens of humans

and agricultural crops and livestock, as well as bacterial viruses

that are part of the human enteric microbiome. In addition, efforts

to leverage whole-genome sequencing together with P-HIPSTer

predictions may systematically map the landscape of human ge-

netic variation with endemic viral infection across geographic re-

gions and inform on adaptive costs incurred during human evolu-

tion. Integration of P-HIPSTer data with other large-scale

experimentalmapping of pathogen-host interactionswill augment

and accelerate discovery of basic cell-biological machinery and

targeted interrogation of both experimentally tractable and intrac-

table viruses. Finally, affordable gene synthesis pipelines, coupled

with tunable expression systems and low input profiling of cellular

transcriptional states,may beused to bridgePPIs and reconstruct

signaling pathways modulated by viral proteins of interest.
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Buitrago-Pérez, A., Garaulet, G., Vázquez-Carballo, A., Paramio, J.M., and

Garcı́a-Escudero, R. (2009). Molecular Signature of HPV-Induced Carcinogen-

esis: pRb, p53 and Gene Expression Profiling. Curr. Genomics 10, 26–34.

Bustamante, C.D., Fledel-Alon, A., Williamson, S., Nielsen, R., Hubisz, M.T.,

Glanowski, S., Tanenbaum, D.M., White, T.J., Sninsky, J.J., Hernandez,

R.D., et al. (2005). Natural selection on protein-coding genes in the human

genome. Nature 437, 1153–1157.

Butt, A.Q., Ahmed, S., Maratha, A., andMiggin, S.M. (2014). Retraction. J. Biol.

Chem. 289, 25474.

Calderwood, M.A., Venkatesan, K., Xing, L., Chase, M.R., Vazquez, A., Holth-

aus, A.M., Ewence, A.E., Li, N., Hirozane-Kishikawa, T., Hill, D.E., et al. (2007).

Epstein-Barr virus and virus human protein interaction maps. Proc. Natl. Acad.

Sci. USA 104, 7606–7611.

Capella-Gutiérrez, S., Silla-Martı́nez, J.M., and Gabaldón, T. (2009). trimAl: a

tool for automated alignment trimming in large-scale phylogenetic analyses.

Bioinformatics 25, 1972–1973.

Chan, Y.K., and Gack, M.U. (2016). A phosphomimetic-based mechanism of

dengue virus to antagonize innate immunity. Nat. Immunol. 17, 523–530.

Chavali, P.L., Stojic, L., Meredith, L.W., Joseph, N., Nahorski, M.S., Sanford,

T.J., Sweeney, T.R., Krishna, B.A., Hosmillo, M., Firth, A.E., et al. (2017). Neu-

rodevelopmental protein Musashi-1 interacts with the Zika genome and pro-

motes viral replication. Science 357, 83–88.

Chen, Y.F., and Xia, Y. (2019). Convergent perturbation of the human domain-

resolved interactome by viruses and mutations inducing similar disease phe-

notypes. PLoS Comput. Biol. 15, e1006762.

Chen, G., He, C., Li, L., Lin, A., Zheng, X., He, E., and Skog, S. (2013). Nuclear

TK1 expression is an independent prognostic factor for survival in pre-malig-

nant and malignant lesions of the cervix. BMC Cancer 13, 249.

Chen, S., Zhang, J., Duan, L., Zhang, Y., Li, C., Liu, D., Ouyang, C., Lu, F., and

Liu, X. (2014). Identification of HnRNP M as a novel biomarker for colorectal

carcinoma by quantitative proteomics. Am. J. Physiol. Gastrointest. Liver

Physiol. 306, G394–G403.

Chen,T.S., Petrey,D.,Garzon, J.I., andHonig, B. (2015). Predicting peptide-medi-

ated interactions on a genome-wide scale. PLoS Comput. Biol. 11, e1004248.

https://doi.org/10.1016/j.cell.2019.08.005
https://doi.org/10.1016/j.cell.2019.08.005
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref1
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref1
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref2
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref2
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref3
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref3
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref3
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref4
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref4
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref4
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref4
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref4
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref5
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref5
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref5
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref6
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref6
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref7
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref7
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref8
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref8
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref9
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref9
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref9
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref143
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref143
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref143
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref143
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref10
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref10
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref10
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref11
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref11
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref11
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref11
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref12
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref12
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref13
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref13
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref13
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref14
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref14
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref14
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref14
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref14
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref14
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref15
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref15
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref15
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref15
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref16
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref16
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref16
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref17
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref17
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref17
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref18
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref18
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref18
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref18
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref19
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref19
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref144
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref144
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref144
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref144
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref20
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref20
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref20
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref21
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref21
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref22
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref22
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref22
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref22
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref23
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref23
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref23
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref24
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref24
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref24
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref25
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref25
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref25
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref25
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref26
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref26


Cho, N.H., Kang, S., Hong, S., An, H.J., Choi, Y.H., Jeong, G.B., and Choi, H.K.

(2006). Elevation of cyclin B1, active cdc2, and HuR in cervical neoplasia with

human papillomavirus type 18 infection. Cancer Lett. 232, 170–178.

Chojnacki, M., and Melendy, T. (2018). The human papillomavirus DNA heli-

case E1 binds, stimulates, and confers processivity to cellular DNA polymer-

ase epsilon. Nucleic Acids Res. 46, 229–241.

Collier, B., Goobar-Larsson, L., Sokolowski, M., and Schwartz, S. (1998).

Translational inhibition in vitro of human papillomavirus type 16 L2 mRNA

mediated through interaction with heterogenous ribonucleoprotein K and

poly(rC)-binding proteins 1 and 2. J. Biol. Chem. 273, 22648–22656.

Cubie, H.A. (2013). Diseases associated with human papillomavirus infection.

Virology 445, 21–34.

Daugherty, M.D., and Malik, H.S. (2012). Rules of engagement: molecular in-

sights from host-virus arms races. Annu. Rev. Genet. 46, 677–700.

Davis, Z.H., Verschueren, E., Jang, G.M., Kleffman, K., Johnson, J.R., Park, J.,

Von Dollen, J., Maher, M.C., Johnson, T., Newton, W., et al. (2015). Global

mapping of herpesvirus-host protein complexes reveals a transcription strat-

egy for late genes. Mol. Cell 57, 349–360.

de Chassey, B., Meyniel-Schicklin, L., Aublin-Gex, A., Navratil, V., Chantier, T.,

André, P., and Lotteau, V. (2013). Structure homology and interaction redun-

dancy for discovering virus-host protein interactions. EMBO Rep. 14, 938–944.

de Chassey, B., Navratil, V., Tafforeau, L., Hiet, M.S., Aublin-Gex, A., Agaugue,

S., Meiffren, G., Pradezynski, F., Faria, B.F., Chantier, T., et al. (2008). Hepatitis

C virus infection protein network. Mol. Syst. Biol. 4, 230.

Dietrich-Goetz, W., Kennedy, I.M., Levins, B., Stanley, M.A., and Clements, J.B.

(1997). A cellular 65-kDa protein recognizes the negative regulatory element of

human papillomavirus late mRNA. Proc. Natl. Acad. Sci. USA 94, 163–168.

Dinkel, H., Van Roey, K., Michael, S., Davey, N.E., Weatheritt, R.J., Born, D.,
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Schewe, C., Schwabe, M., Hauptmann, S., et al. (2002). Nucleolin as activator

of human papillomavirus type 18 oncogene transcription in cervical cancer.

J. Exp. Med. 196, 1067–1078.

Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to

estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704.

Halehalli, R.R., and Nagarajaram, H.A. (2015). Molecular principles of human

virus protein-protein interactions. Bioinformatics 31, 1025–1033.

Hall, M.A. (1999). Correlation-based Feature Selection for Machine Learning.

PhD thesis (The University of Waikato).

Hallast, P., Maisano Delser, P., Batini, C., Zadik, D., Rocchi, M., Schempp, W.,

Tyler-Smith, C., and Jobling, M.A. (2016). Great ape Y Chromosome and mito-

chondrial DNA phylogenies reflect subspecies structure and patterns of mat-

ing and dispersal. Genome Res. 26, 427–439.

Hamel, R., Dejarnac, O., Wichit, S., Ekchariyawat, P., Neyret, A., Luplertlop, N.,

Perera-Lecoin, M., Surasombatpattana, P., Talignani, L., Thomas, F., et al.

(2015).Biologyof ZikaVirus Infection inHumanSkinCells. J. Virol.89, 8880–8896.

Han, X., Han, Y., Jiao, H., and Jie, Y. (2015). 14-3-3z regulates immune response

through Stat3 signaling in oral squamous cell carcinoma.Mol. Cells 38, 112–121.

Hu, S., Du, M.Q., Park, S.M., Alcivar, A., Qu, L., Gupta, S., Tang, J., Baens, M.,

Ye, H., Lee, T.H., et al. (2006). cIAP2 is a ubiquitin protein ligase for BCL10 and

is dysregulated in mucosa-associated lymphoid tissue lymphomas. J. Clin.

Invest. 116, 174–181.

Huang, W., Sherman, B.T., and Lempicki, R.A. (2009a). Bioinformatics enrich-

ment tools: paths toward the comprehensive functional analysis of large gene

lists. Nucleic Acids Res. 37, 1–13.

Huang, W., Sherman, B.T., and Lempicki, R.A. (2009b). Systematic and inte-

grative analysis of large gene lists using DAVID bioinformatics resources.

Nat. Protoc. 4, 44–57.

Hughes, A.L., Packer, B., Welch, R., Bergen, A.W., Chanock, S.J., and Yeager,

M. (2003). Widespread purifying selection at polymorphic sites in human

protein-coding loci. Proc. Natl. Acad. Sci. USA 100, 15754–15757.

Hulo, C., de Castro, E., Masson, P., Bougueleret, L., Bairoch, A., Xenarios, I.,

and Le Mercier, P. (2011). ViralZone: a knowledge resource to understand

virus diversity. Nucleic Acids Res. 39, D576–D582.

Hulsen, T., de Vlieg, J., and Alkema, W. (2008). BioVenn - a web application for

the comparison and visualization of biological lists using area-proportional

Venn diagrams. BMC Genomics 9, 488.
Cell 178, 1526–1541, September 5, 2019 1539

http://refhub.elsevier.com/S0092-8674(19)30893-1/sref27
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref27
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref27
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref28
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref28
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref28
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref29
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref29
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref29
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref29
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref30
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref30
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref31
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref31
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref145
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref145
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref145
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref145
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref32
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref32
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref32
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref146
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref146
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref146
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref33
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref33
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref33
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref34
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref34
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref34
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref34
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref35
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref35
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref35
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref35
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref36
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref36
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref36
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref37
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref37
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref37
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref37
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref38
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref38
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref38
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref38
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref38
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref39
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref39
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref40
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref40
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref41
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref41
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref41
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref41
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref42
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref42
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref42
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref42
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref42
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref43
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref43
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref43
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref43
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref44
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref44
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref44
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref45
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref45
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref45
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref46
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref46
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref46
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref47
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref47
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref47
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref147
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref147
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref147
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref147
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref147
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref48
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref48
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref49
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref49
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref49
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref50
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref50
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref50
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref50
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref51
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref51
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref51
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref51
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref52
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref52
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref53
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref53
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref54
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref54
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref55
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref55
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref55
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref55
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref56
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref56
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref56
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref57
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref57
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref58
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref58
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref58
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref58
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref59
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref59
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref59
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref60
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref60
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref60
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref61
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref61
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref61
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref62
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref62
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref62
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref63
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref63
http://refhub.elsevier.com/S0092-8674(19)30893-1/sref63


IARC. (2019). Agents Classified by the IARC Monographs, Volumes 1–124,

https://monographs.iarc.fr/agents-classified-by-the-iarc/.
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Löytynoja, A. (2014). Phylogeny-aware alignment with PRANK. Methods Mol.

Biol. 1079, 155–170.
1540 Cell 178, 1526–1541, September 5, 2019
Lozier, M., Adams, L., Febo, M.F., Torres-Aponte, J., Bello-Pagan, M., Ryff,

K.R., Munoz-Jordan, J., Garcia, M., Rivera, A., Read, J.S., et al. (2016). Inci-

dence of Zika Virus Disease by Age and Sex - Puerto Rico, November 1,

2015-October 20, 2016. MMWR Morb. Mortal. Wkly. Rep. 65, 1219–1223.

Luck, K., Sheynkman, G.M., Zhang, I., and Vidal, M. (2017). Proteome-Scale

Human Interactomics. Trends Biochem. Sci. 42, 342–354.

Ma, Y., Walsh, M.J., Bernhardt, K., Ashbaugh, C.W., Trudeau, S.J., Ashbaugh,

I.Y., Jiang, S., Jiang, C., Zhao, B., Root, D.E., et al. (2017). CRISPR/Cas9

Screens Reveal Epstein-Barr Virus-TransformedBCell Host Dependency Fac-

tors. Cell Host Microbe 21, 580–591.

Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C.J., Lu, S., Chitsaz, F.,

Derbyshire, M.K., Geer, R.C., Gonzales, N.R., et al. (2017). CDD/SPARCLE:

functional classification of proteins via subfamily domain architectures. Nu-

cleic Acids Res. 45 (D1), D200–D203.

Melendy, T., Sedman, J., and Stenlund, A. (1995). Cellular factors required for

papillomavirus DNA replication. J. Virol. 69, 7857–7867.

Mihara, T., Nishimura, Y., Shimizu, Y., Nishiyama, H., Yoshikawa, G., Uehara,

H., Hingamp, P., Goto, S., and Ogata, H. (2016). Linking Virus Genomes with

Host Taxonomy. Viruses 8, 66.

Mirabello, L., Yeager, M., Yu, K., Clifford, G.M., Xiao, Y., Zhu, B., Cullen, M.,

Boland, J.F., Wentzensen, N., Nelson, C.W., et al. (2017). HPV16 E7 Genetic

Conservation Is Critical to Carcinogenesis. Cell 170, 1164–1174.

Mohr, I.J., Clark, R., Sun, S., Androphy, E.J.,MacPherson, P., andBotchan,M.R.

(1990). Targeting the E1 replication protein to the papillomavirus origin of replica-

tion by complex formation with the E2 transactivator. Science 250, 1694–1699.

Müller, N., Avota, E., Schneider-Schaulies, J., Harms, H., Krohne, G., and

Schneider-Schaulies, S. (2006). Measles virus contact with T cells impedes

cytoskeletal remodeling associated with spreading, polarization, and CD3

clustering. Traffic 7, 849–858.
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STAR+METHODS
KEY RESOURCE TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-flavivirus D1-4G2-4-15 EMD millipore Cat#MAB10216; RRID: AB_827205

Goat anti-mouse IgG HRP-conjugated antibody R&D Systems Cat#HAF007; RRID: AB_357234

rabbit polyclonal anti-HA antibody Sigma-Aldrich Cat#H6908; RRID: AB_260070

rabbit anti-FLAG antibody Cell Signaling Technology Cat#2368; RRID: AB_2217020

anti-V5-HRP antibody Life Technologies Cat#R961-25; RRID:AB_2556565

c-Myc polyclonal antibody Santa Cruz Biotechnology Cat#SC-40; RRID:AB_627268

Goat anti-rabbit HRP-conjugated secondary

antibody

Thermo Scientific Cat#PI31460

Bacterial and Virus Strains

Zika virus MR-766 BEI Resources Cat#NR-50065

Chemicals, Peptides, and Recombinant Proteins

Human IFNb 1a PBL Assay Science Cat#11410-2

Critical Commercial Assays

VIP peroxidase substrate Vector Laboratories Cat#SK-4600

TransIT-LT1 Reagent Mirus Cat#MIR2300

Lipofectamine RNAiMAX Transfection Reagent Invitrogen, Life Technologies Cat#13778-030

High Capacity cDNA Reverse Transcription Kit Applied Biosystems Cat#43-688-14

iTaq Universal SYBR Green Supermix Bio-Rad Laboratories Cat#1725121

protein G magnetic beads, SureBeads Bio-Rad Laboratories Cat#1614023

SuperSignal West Femto Maximum Sensitivity

Substrate

Thermo Scientific Cat#PI34096

Deposited Data

Protein modeling, prediction of PPIs, functional

annotation

P-HIPSTer http://phipster.org/

Evolutionary analyses Github https://github.com/RabadanLab/palmer

Experimental Models: Cell Lines

293T cells ATCC Cat#CRL-3216

Vero cells ATCC Cat#CCL-81

Human breast adenocarcinoma cells (MCF-7) ATCC Cat#HTB-22

Oligonucleotides

siRNA targeting human ESR1 SMARTpool Dharmacon Cat#L-003401-00-0005

AllStars Negative Control siRNA QIAGEN Cat#SI03650318

AllStars Hs Cell Death siRNA QIAGEN Cat#SI04381048

Recombinant DNA

Plasmid: Human AMBP The CCSB Human ORFeome collection 8.1 #Cat13590

Plasmid: Human BIRC2 The CCSB Human ORFeome collection 8.1 #Cat200

Plasmid: Human BRCA1 (2100 nt) The CCSB Human ORFeome collection 8.1 #Cat14613

Plasmid: Human BRCA1 (4065 nt) The CCSB Human ORFeome collection 8.1 #Cat55703

Plasmid: Human DOCK5 The CCSB Human ORFeome collection 8.1 #Cat13488

Plasmid: Human ESR1 The CCSB Human ORFeome collection 8.1 #Cat56919

Plasmid: Human ING2 The CCSB Human ORFeome collection 8.1 #Cat12445

Plasmid: Human ISG15 The CCSB Human ORFeome collection 8.1 #Cat6045

Plasmid: Human RABGGTA The CCSB Human ORFeome collection 8.1 #Cat3713

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Plasmid: Human SFN The CCSB Human ORFeome collection 8.1 #Cat2433

Plasmid: Human SPINT2 The CCSB Human ORFeome collection 8.1 #Cat550

Plasmid: Human STAC2 The CCSB Human ORFeome collection 8.1 #Cat55919

Plasmid: Human STAT3 The CCSB Human ORFeome collection 8.1 #Cat7727

Plasmid: Human STK32A The CCSB Human ORFeome collection 8.1 #Cat7425

Plasmid: Human TP53 The CCSB Human ORFeome collection 8.1 #Cat3774

Plasmid: Human VARS The CCSB Human ORFeome collection 8.1 #Cat6043

Plasmid: Human VAV1 The CCSB Human ORFeome collection 8.1 #Cat6612

Plasmid: Human VCAM1 The CCSB Human ORFeome collection 8.1 #Cat14543

Plasmid: Human SPINLW1 (EPPIN) The CCSB Human ORFeome collection 8.1 #Cat11827

Plasmid: Human ABL1 pDONR223-ABL1 William Hahn & David Root; Johannessen

et al., 2010

Addgene 23939

Plasmid: Human APP pLX304-APP The CCSB Human ORFeome collection 8.1 Cat#8905

Plasmid: Human BIRC3 3xMyc-cIAP2/pRK5 Xiaolu Yang; Hu et al., 2006 Addgene 27973

Plasmid: Human CUL1 pcDNA3-myc3-CUL1 Yue Xiong; Ohta et al., 1999 Addgene 19896

Plasmid: HCV NS5A pCMV-Tag1-NS5A Xin Wang; Budhu et al., 2007 Addgene 17646

Plasmid: HSV-1 UL13 HSV-1 UL13 Robert Kalejta; Kuny et al., 2010 Addgene 26697

Plasmid: HIV-1 Nef (HIV1gp9) pCI NL4-3

Nef-HA-WT

Warner Greene Addgene 24162

Plasmid: ZIKV MR-766 Capsid pLV_Zika_

Cv_Flag

Vaithi Arumugaswami; unpublished Addgene 79628

Plasmid: ZIKV MR-766 NS3 pLV_Zika_

NS3_Flag

Vaithi Arumugaswami; unpublished Addgene 79635

Plasmid:ZIKV MR-766 NS5 pLV_Zika_

NS5_Flag

Vaithi Arumugaswami; unpublished Addgene 79639

Ska Yang and Honig, 2000a http://honig.c2b2.columbia.edu/ska

CD-HIT Li and Godzik, 2006 http://weizhongli-lab.org/cd-hit/

EMBOSS Rice et al., 2000 http://emboss.sourceforge.net/

PrePPI Zhang et al., 2012 http://honig.c2b2.columbia.edu/preppi

Software and Algorithms

BLAST Altschul et al., 1990 https://blast.ncbi.nlm.nih.gov/Blast.cgi

HHblits Remmert et al., 2011 https://github.com/soedinglab/hh-suite

NEST Petrey et al., 2003 http://honig.c2b2.columbia.edu/nest

IUPred Dosztányi et al., 2005 http://iupred.elte.hu/

DAVID Huang et al., 2009b https://david.ncifcrf.gov/

GSEA Subramanian et al., 2005 http://software.broadinstitute.org/gsea/

index.jsp

PathCards Belinky et al., 2015 https://pathcards.genecards.org/

BioVenn Hulsen et al., 2008 http://www.biovenn.nl/

R R Development Core Team, 2016 https://www.r-project.org/

Gplots package Warnes et al., 2016 https://cran.r-project.org/web/packages/

gplots/index.html

iTOL Letunic and Bork, 2016 https://itol.embl.de/

Weka Frank et al., 2016 https://www.cs.waikato.ac.nz/�ml/weka/

Biomart Kasprzyk, 2011 http://useast.ensembl.org/biomart/martview/

47aaecf5a2236f19252cc3c2ae91e094

Cytoscape Shannon et al., 2003 https://cytoscape.org/

MCODE Bader and Hogue, 2003 http://baderlab.org/Software/MCODE

geneAnalytics Ben-Ari Fuchs et al., 2016 https://geneanalytics.genecards.org/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Prism GraphPad https://www.graphpad.com/

Prank Löytynoja, 2014 http://wasabiapp.org/software/prank/

TrimA1 Capella-Gutierrez et al., 2009 http://trimal.cgenomics.org/

PhyML Guindon and Gascuel, 2003 http://www.atgc-montpellier.fr/phyml/

PAML Yang, 2007 http://abacus.gene.ucl.ac.uk/software/

paml.html

Other

Database: virus-hostDB Mihara et al., 2016 https://www.genome.jp/virushostdb

Database: NCBI NCBI Resource Coordinators, 2017 https://www.ncbi.nlm.nih.gov/

Database: Uniprot Altschul et al., 1990 https://www.uniprot.org/

Database: Conserved

Domain Database

Marchler-Bauer et al., 2017 https://www.ncbi.nlm.nih.gov/cdd/

Database: PDB Berman et al., 2000 http://www.rcsb.org/

Database: PepX Vanhee et al., 2010 http://www.switchlab.org/

bioinformatics/pepx

Database: ELM Dinkel et al., 2014 http://elm.eu.org/

Database: Intact Kerrien et al., 2012 https://www.ebi.ac.uk/intact/

Database: Pfam Finn et al., 2016 https://pfam.xfam.org/

Database: PISA Krissinel and Henrick, 2007 http://www.ebi.ac.uk/pdbe/pisa/
See Table S8 for a description of viral and human plasmids utilized in this work as well as primers employed for Co-immunopre-

cipitation assays.

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents may be directed to, and will be fulfilled by the corresponding author Sagi D. Shapira

(ss4197@cumc.columbia.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines, virus strains
293T, Vero and MCF7 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM; GIBCO, Life Technologies) supple-

mented with 10% fetal bovine serum (FBS; Hyclone Laboratories) and 1% penicillin and streptomycin (GIBCO, Life Technologies)

at 37�C and 5%CO2. All cells lines have been authenticated by ATCC. Additionally, each cell line was inspected throughmicroscopy

for morphology and growth characteristics. Cell lines were tested for mycoplasma contamination and found to be negative. MCF7

cells are female cells as described by ATCC. Zika virus (ZIKV), MR 766 strain obtained from BEI Resources was kindly provided by

Dr. Vincent Racaniello (Columbia University Medical Center), was amplified once on Vero cells. Virus titer was determined by

focus-forming assay on Vero cells.

METHOD DETAILS

Assembly of viral protein and human protein dataset
We compiled a viral protein dataset containing 12,237 viral proteins corresponding to 1,001 completely sequenced human viruses

from virus-hostDB (Mihara et al., 2016) as of October, 2016 (Table S1; https://www.genome.jp/virushostdb). Originally, the dataset

contained 12,520 viral proteins and 1,028 human viruses. The dataset wasmanually curated by cross-referencing viral taxonomy IDs

to other viral databases and viruses with poorly annotated genomes (viruses with < 4 proteins and a genomic coverage < 80%) and

viruses wrongly annotated as human viruses were discarded (Federhen, 2012; Hulo et al., 2011; Pickett et al., 2012). Information for

each virus (nucleic type, taxonomic classification, taxonomic identifier) and viral protein (protein database identifiers, description and

amino acid sequence) was retrieved from virus-hostDB (Mihara et al., 2016). Additionally, proteins annotated as polyproteins in virus-

hostDB were parsed into individual proteins, whenever possible, using the annotation of proteins and mature peptides as described

in the NCBI protein database (NCBI Resource Coordinators, 2017). We assigned Uniprot accession codes (ACs) to viral proteins by

Blasting each protein sequence against the Uniprot database (Altschul et al., 1990; Apweiler et al., 2004) considering only those hits
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with maximum E-value of 10�20, a minimum alignment coverage of 70% of the shortest sequence aligned and a minimum sequence

identity of 90%. The human protein dataset contains 20,113 non-immunoglobulin human proteins obtained from the Uniprot data-

base as described by Garzon et. al (Apweiler et al., 2004; Garzón et al., 2016).

Protein modeling, structural neighbor search
The P-HIPSTer (Pathogen-Host Interactome Prediction using STructurE similaRity) algorithm enables systematic interrogation of

pan-human virus interactions by exploiting both sequence- and structure-based information from atomic structures taken from

the PDB, and from homology models, to account for both domain-domain and peptide-domain interactions. Three-dimensional

models for full-length viral proteins and protein domains, as defined by the Conserved Domain Database (Marchler-Bauer et al.,

2017), are either taken directly from the PDB (Berman et al., 2000) or built by homology modeling. The homology pipeline described

in Garzón et al. (2016) was adapted to model large polyproteins and to account for potential conformational variability whenever

possible by considering multiple templates for homology modeling rather than only considering the best scoring template. Template

search is performed in three steps where each step is run only if the preceding step reports no templates. Templates are identified

based on the significance of the sequence alignment between the query protein and the matching protein structure, requiring an

E-value < 10�12 and some additional criteria imposed at each step. The first step runs one iteration of Blast (Altschul et al., 1990)

against the PDB database and identifies the set of non-overlapping templates (matching different segments of the query protein

sequence) with the lowest E-value. Overlapping templates with higher E-values are also considered formodeling only if their E-values

are < 10�12 and lie within 10�10 of the E-value reported for the best hit found in that particular protein segment. The second and third

step runs HHblits (Remmert et al., 2011) and five iterations of Blast (Altschul et al., 1990) respectively against the PDB database,

identifying templates in a similar manner with the exception that overlapping templates with higher E-values are considered only if

their E-values are < 10�12 and lie within 10�2 of the E-value reported for the best hit found in that particular protein segment. Atomic

models were built with NEST (Petrey et al., 2003; Xiang and Honig, 2001) based on the alignments provided either by Blast or by

HHblits. Homology modeling of human proteins was carried out as described by Garzón et al. (2016). In modeling the set of viral pro-

teins used in this study, we found that the greatest structural coverage was obtained for proteomes of (+)ssRNA and (-)ssRNA viruses

may reflect the tendency of their proteomes to have fewer disordered regions (Figure S1C), or the overrepresentation of viral proteins

from RNA viruses in the PDB (that serve as templates for structural modeling; 4,791, 3,104 and 2,638 viral proteins from RNA, DNA

and RT viruses respectively as of April, 2017).

The structure of the protein complexes used as templates for interaction models are defined by i) PDB ‘biounit’, likely representing

the biological relevant quaternary structure for interacting proteins; ii) the PISA database of predicted biounits (Krissinel and Henrick,

2007) and; iii) the PDB file (Garzón et al., 2016). In order to identify structurally similar proteins, a structural neighbor search is carried

out for each human and viral protein or domain (either taken directly from the PDB or modeled by homology) against the PDB data-

base with Ska (Petrey et al., 2003; Yang and Honig, 2000b) using a Protein Structural Distance (PSD) % 0.6.

Disorder prediction and structural coverage
The fraction of disordered residues and the structural coverage for each Baltimore category (Baltimore, 1971) is calculated at the

residue level for each corresponding virus. Disorder prediction is calculated with IUPred (Dosztányi et al., 2005), where each residue

is predicted as disordered if its IUPred score is > 0.5. For each virus within a Baltimore category we calculate the fraction of residues

predicted as disordered. Similarly, we define structural coverage for each virus as the fraction of residues within a virus present in an

X-ray structure or homology model.

Structural comparison of viral proteins
All-against-all structural comparison of atomic structures (either modeled or derived from the PDB), corresponding to viral capsid

proteins or to a subset of viral proteins with low pairwise sequence identity, was performed using Ska (Yang and Honig, 2000b).

Structural similarity between viral capsids has been used to infer functional and evolutionary relationships where genomic similarities

are no longer observable (Abrescia et al., 2012). Here, we extend the same principle to a subset of viral capsids whose structure are

modeled by homology. Similarly, structural comparison of viral proteins with low pairwise sequence identity permit us to identify po-

tential functional relationships between pairs of viral proteins that are not detectable using sequence alone. A low sequence similarity

subset was assembled at 40% sequence identity with CD-HIT (Li and Godzik, 2006). Considering that most viral proteins are

described by several protein structures (corresponding to either the full sequence or domains and additionally modeled using

multiple templates), we define the structural distance between two proteins as the shortest distance reported between any two

protein structures, where each structure corresponds to one of the two proteins. We use both the protein structural distance

(PSD) and the structural alignment score (SAS) to measure distance between any two atomic structures (Subbiah et al., 1993;

Yang and Honig, 2000a). PSD reflects local and/or global structural similarity and can capture structural relationships and functional

relationships involving only a small number of secondary structure elements (> 3). SAS, on the other hand, takes into account the

length of the alignment and better reflects global structural similarity. By combining both PSD and SAS we expect to capture

both local and global structural relationships between pairs of proteins. Two atomic structures are considered structurally similar

when their PSD is % 0.6 and their SAS is % 3.5 Å: while the PSD cutoff of 0.6 indicates that there is good structural similarity

over at least part of both structures, an SAS cutoff of 3.5 Å better reflects a global similarity (Budowski-Tal et al., 2010; Zhang
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et al., 2012). Pairwise sequence identities described in Figure S5 were computed with the Needleman-Wunsch algorithm imple-

mented in the EMBOSS package (Rice et al., 2000).

Bayesian network to predict viral-human PPIs
P-HIPSTER adapts the Bayesian network underlying the PrePPI (Garzón et al., 2016; Zhang et al., 2012) algorithm and reports a likeli-

hood ratio (LR) of the interaction between any pathogen and host protein using three separate structure-based evidences Ex: i) the

structural modeling evidence (Edom) evaluates the potential direct interaction between two query proteins through their folded do-

mains (Zhang et al., 2012); ii) the protein-peptide evidence (Epep) evaluates the likelihood of a PPI through an unstructured domain

and a folded domain (Chen et al., 2015); iii) the partner redundancy evidence (Eredu) infers a likelihood of a PPI based on the number of

structural neighbors of one query protein known to interact with the remaining query protein (de Chassey et al., 2013; Garzón et al.,

2016). Edom evaluates the potential interaction between two folded protein domains based on four criteria (Zhang et al., 2012): i) SIM:

the average structural similarity of the query domain pair to the interacting subunits in an interaction template (an experimentally

solved protein complex involving two proteins); ii) SIZ: the number of interacting residue pairs in the interaction template that are

structurally aligned to residue pairs in the query domains after structural superposition; iii) COV: the fraction of interacting residue

pairs in the interaction template that are structurally aligned to residue pairs in the query domains after structural superposition

and; iv) OS: same as SIZ, with the additional condition that each residue in the interacting pair aligns to a residue predicted to be

interfacial in the query domains. Epep (Chen et al., 2015) reports the maximum LR assessing the potential interaction between an

unstructured domain and a folded domain in two independent evidences: i) PepX predicts peptide-domain interactions based on

experimentally determined complexes (Vanhee et al., 2010) using both structural and sequence similarity; ii) PepELM predicts pep-

tide-domain interactions based on the Eukaryotic Linear Motif (ELM) database (Dinkel et al., 2014), by identifying a PFAM sequence

signature in one query protein and a motif sequence signature in the remaining query protein, both mapping to the same ELM class.

Eredu does not necessary imply a direct physical interaction between query proteins but it is used to further support the predictions

reported by Edom and/or Epep. This evidence combines knowledge on PPIs extracted from PPI databases with structural similarity: a

Likelihood Ratio (LR) of the interaction between two proteins A and B is assigned based on the number of structural neighbors of A

known to interact with B, or viceversa, and the number of structural neighbors of A and B that are known to interact (Garzón

et al., 2016).

Training was carried out on the yeast interactome (Garzón et al., 2016). The scores for each evidence E are partitioned into n bins

b1, b2, .bn. A likelihood ratio LREx

bi
is assigned to each bin. LREx

bi
corresponds to the percentage of protein pairs in a positive gold

standard dataset of PPIs in yeast with a score for Ex in bin bi divided by the percentage of protein pairs in the negative gold standard

dataset of PPIs in yeast with a score forEx in the same bin bi. Details regarding the Bayesian network training and the calculation of LR

scores associated to each evidence have been described (Chen et al., 2015; Garzón et al., 2016; Zhang et al., 2012). P-HIPSTer in-

tegrates the LR scores obtained from each structural evidence Ex with a Naive Bayes approach. Since Edom and Epep evidences can

be considered as mutually exclusive, we only consider the maximum LR reported by either of them:

LRP�HIPSTer = max
�
LREdom ; LREpep

�
3 LREredu (1)
Overall statistics of the set of predictions (number of predicted PP
Is per viral protein, per virus and per host proteins) are computed

using only instances for which LRP-HIPSTer is equal or higher than an LR threshold of 100 (7,463 viral proteins, 990 viruses and 5,749

human proteins).

Functional enrichment analysis
We used DAVID to identify the set of biological pathways and molecular functions enriched within the subset of the human proteome

predicted to interact with human viruses with an LRP-HIPSTer R 100 (Huang et al., 2009a, 2009b). We used two different subsets: i) a

set of 5,749 human proteins predicted to interact with at least one human virus with an LRP-HIPSTer R 100 and; ii) a set of 173 human

proteins predicted to interact withR 100 human viruses with an LRP-HIPSTer R 100. We corrected the background of the enrichment

analysis for the 20,113 non-immunoglobulin human proteins considered by P-HIPSTer in this study.

Similar to previous work, we use the ranked list of predicted human interactors for a given viral protein to identify the biological

pathways enriched (Garzón et al., 2016). Enrichment of gene sets for viral proteins are computed with GSEA software from mSigDB

(Subramanian et al., 2005). For each viral protein, a ranked list of predicted interacting human proteins is constructed based on the

LRP-HIPSTer. In order to account for background and potential technical bias, we subtracted the corresponding average LR derived

from the predicted PrePPI human interactome to the LRP-HIPSTer (Garzón et al., 2016). Enrichmentwas calculated considering only the

rank order (classic mode). Gene sets were derived from PathCards (Belinky et al., 2015) and considered enriched if the reported

q-value was < 0.01. In order to collect the set of enriched pathways for any given virus, we computed the union of enriched gene

sets (q-value < 0.01) of the corresponding viral proteins.

Common and unique pathways within viral groups
The discovery of common and unique pathways predicted to be targeted by DNA, RNA and RT viruses is carried out using a two-step

procedure where first themost relevant pathways are selected for each viral category (DNA, RNAor RT) and then the overlap between
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the different categories (defined by their set of relevant pathways) is computed. Out of the 1,001 human viruses considered in our

dataset, we excluded 148 viruses with low protein structural coverage (> 50% of their residues were not successfully modeled).

In order to reduce potential bias by larger viral families within a category we consider a pathway relevant for a particular category

whenever it is found enriched (q-val < 0.01) in at least of 50% of the viruses within a viral family in at least 50% of the viral families.

Venn diagrams describing the overlap between different nucleic acid type viral groups were computed with BioVenn and manually

edited for visualization purposes (Hulsen et al., 2008). The set pathways within each region of the Venn diagram were manually clas-

sified into 26 different categories: apoptosis, cell adhesion, cell cycle, cell differentiation, cell growth, cell organization, cellular traf-

ficking, development, disease, DNA, drug, extracellular matrix, immune, lipid, metabolism, microRNA, mRNA processing, pathogen,

protein processing, RNA, signaling, transcription, translation, transport, viral and/or other. The significance of each category found

within the different regions of the Venn diagram was assessed with a permutation test.

Clustering viruses based on GSEA
In order to avoid potential clustering errors due to technical noise (e.g., unrelated viruses with only few modeled proteins can cluster

together leading to wrong conclusions) we applied a stringent filter where we only consider 568 human viruses with: i) annotated

mature viral proteins where R 50% of their proteins and their residues can be modeled and; ii) a number of viral proteins that is

consistent with other viruses within the same genus or family (removing viruses with polyproteins not annotated as such; e.g., nor-

oviruses with three viral proteins while themajority of noroviruses have eight viral proteins). For each virus, we calculated the union of

enriched biological pathways with a q-value < 0.01 using the set of enriched pathways of the corresponding viral proteins. A pairwise

distance matrix (568x568) using the Jaccard distance (intersection over the union) was computed and used as input for clustering

using R and the heatmap.2 function within gplots package (distance metric: euclidean, method: complete) (R Development Core

Team, 2016; Warnes et al., 2016). Clusters were delimited after cutting the dendrogram at a specific height. Biological pathways

significantly overrepresented within clusters were identified using a hypergeometric clustering with Bonferroni correction using as

background the relative abundance of each biological pathway within the set of 568 human viruses. Dendrogram was formatted

for visualization purposes using iTOL (Letunic and Bork, 2016).

Analysis of ZIKA interactome
ZIKV interacting human orthologs

We assembled a set of 690mouse genes whose expression significantly changes in the brain of embryonic mice upon ZIKV infection

(Li et al., 2016; Wu et al., 2016). Using this mouse gene set, we identified a set of 502 human ortholog genes, considered in our human

dataset, with OrthoRetriever and the Ensembl BioMart version 77 (Kasprzyk, 2011). Significance of the overlap between the set of 97

human proteins predicted to interact with ZIKV proteins at an LRP-HIPSTer R 100 and the set of 502 human orthologs was carried out

with a hypergeometric test.

Protein interaction network analysis

In order to build the Protein Interaction Network (PIN) between ZIKV and human proteins we considered only the predicted viral-

human PPIs with an LR R 100. We retrieved known protein interactions between the human proteins predicted to interact with

ZIKV using the Intact database (Kerrien et al., 2012). The final interaction network combines both predicted viral-human PPIs and

known human PPIs. Visualization of the network was carried out with cytoscape (Shannon et al., 2003). We clustered human proteins

within the network based solely on their connectivity. First, we applied the MCODE plugin (Bader and Hogue, 2003) to find clusters of

densely interconnected human proteins denoting potential functional modules or parts of pathways (include loops: no; degree cutoff:

2; haircut: no; fluff: no; node score: 0.4; kcore: 2; max depth: 100). Second, non-clustered proteins were grouped together according

to their connectivity with ZIKV proteins. Enrichment analysis for each cluster was carried out with geneAnalytics (Ben-Ari Fuchs et al.,

2016), only the fivemost enriched GObiological processes and phenotype sets were considered (minimum FDR corrected P value%

0.0001). Bar plots were drawn with GraphPad Prism (Software).

Cells and virus

293T cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM; GIBCO, Life Technologies) supplemented with 10%

fetal bovine serum (FBS; Hyclone Laboratories) and 1% penicillin and streptomycin (GIBCO, Life Technologies) at 37�C and 5%

CO2. Zika virus (ZIKV), MR 766 strain obtained from BEI Resources was kindly provided by Dr. Vincent Racaniello (Columbia Univer-

sity Medical Center), was amplified once on Vero cells. Virus titer was determined by focus-forming assay on Vero cells.

Focus-forming assay

Vero cells were seeded into 24-well tissue culture plates at concentration of 80,000 cells/well. Serial 10-fold dilutions of each sample

were prepared and added (in duplicates) to cell monolayers. Following 1hr incubation at 37�C, a semi-solid overlay containing 0.8%

methylcellulose (Sigma-Aldrich), 3% fetal bovine serum, 1%Penicillin-Streptomycin in DMEMwas added and plates were incubated

at 37�C and 5% CO2 for 48 hr. The semisolid overlay was then removed, cells were washed 3 times with PBS, and fixed with an

acetone and methanol (1:1) solution for 30 min at �20�C. Cells were then subjected to immunohistochemical staining with mouse

anti-flavivirus D1-4G2-4-15 antibody (EMD Millipore), incubated overnight at room temperature, followed by mouse IgG HRP-con-

jugated antibody (R&D Systems) for 1hr. This was followed by incubation with vector VIP peroxidase substrate (Vector Laboratories)

until color developed. The number of foci was determined and used to calculate virus titers expressed as FFU/ml.
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Gain of function

293T cells were seeded on to 12-well tissue culture plates at concentration of 150,000 cells per well for 24hr and transfected with

0.5 mg of plasmids encoding indicated proteins (ORFeome collection 8.1) as indicated using TransIT-LT1 Reagent (Mirus) according

to manufacturer’s instructions. IFNb (PBL Interferon Source) priming was achieved by pretreatment at concentration of 1U/mL for

18hr prior virus infection. Cells were infected with ZIKV at multiplicity of infection (MOI) of 1 40hr post-transfection. Following a

1hr incubation at 37�C, cell monolayers were washed to remove unbound virus and incubated at 37�C and 5% CO2 for 48hr. The

cell supernatants was then harvested and virus was quantitated by focus-forming assay.

siRNA Transfection

Human breast adenocarcinoma cells (MCF-7) were seeded into 48-well tissue culture plates at concentration of 25,000 cells per well

and transfected (in quadruplicates) with 50nM (final concentration) siRNAs duplexes using Lipofectamine RNAiMAX Transfection

Reagent (Invitrogen, Life Technologies) according the manufacturer’s instructions. The following siRNA were used: human ESR1

(SMARTpool, Dharmacon); AllStars Negative Control (QIAGEN) and AllStars Hs Cell Death (QIAGEN). 72hr post-transfection, cells

were incubated with ZIKV (MOI of 1) for 1hr at 37�C. Cell monolayers were then washed to remove unbound virus and incubated

at 37�C and 5% CO2 for 48hr. Cell supernatants were harvested for virus quantification by focus-forming assay and cells were lysed

with QIAzol reagent (QIAGEN) for real-time quantitative PCR (qPCR) analysis.

Real-time quantitative PCR

Cell samples were resuspended in QIAzol (QIAGEN) and total RNA was extracted following manufacturing instructions. cDNA was

synthesized by using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Real-time quantitative PCR (qPCR) was

performed by using iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories) in the CFX96 real-time PCR system (Bio-Rad

Laboratories). The sequences of the primer pairs were the following:

GAPDH: 50-ACCACAGTCCATGCCATCAC-30 and 50-TCCACCACCCTGTTGCTGTA-30;
ESR1: 50- GGGAAGTATGGCTATGGAATCTG-30 and 50-TGGCTGGACACATATAGTCGTT-30; ZIKV: 50- CCGCTGCCCAACACA

AG-30 and 50- CCACTAACGTTCTTTTGCAGACAT-30.

Gene expression was calculated based on Ct values by using the formula 2̂ - [Ct (target gene) - Ct (GAPDH)].

Classification of Human Papillomaviruses (HPVs)
LR-HPVs and HR-HPVs in dataset

Classification of HPVs into low risk cervical cancer and high risk cervical cancer was obtained from the literature (Cubie, 2013; IARC,

2019; Muñoz et al., 2003). Using this classification, we identified HR-HPVs and LR-HPVs in our dataset. HR-HPVs: HPV-16, HPV-18,

HPV-39, HPV-59, HPV-68; LR-HPVs: HPV-6, HPV43, HPV-54, HPV-72, HPV-81.

HPV-interacting human proteins (Groups I and II):

A human protein is considered to preferentially bind viral proteins in a particular HPV category (LR-HPV or HR-HPV) whenever it is

predicted to interact with viral proteins in at least half of HPVs in one category and less than half of HPVs in the remaining category,

providing that the difference between number of interacting viruses in each category is at least half of the average category size:

bc1Rnc1=2 (2)
bc2 <nc2=2 (3)
bc1 �bc2R

�
nc1 + nc2

2

�

2
(4)

where bc1 is the number of viruses in class A (e.g., HR-HPV) with viral proteins predicted to bind a human protein, nc1 is the number

of viruses in class A, bc2 is the number of viruses in class B (e.g., LR-HPV) with viral proteins predicted to bind the same human pro-

teins, nc2 is the number of viruses in class B. A human protein is considered to preferentially bind oneHPV category whenever it meets

all three criteria described above.

HPV-interacting human proteins (Group III):

In order to identify the set of human proteins predicted to preferentially bind HPV viral proteins, we assessed the significance of the

interaction with HR-HPVs and LR-HPVs viral proteins with a hypergeometric test using as background the entire predicted viral-

human interactome. Only those human proteins predicted to interact with viral proteins in both HR-HPVs and LR-HPVs with a

P value < 0.05 are considered as HPV-specific interacting proteins. Additionally, we included p53, which is predicted to interact

with viral proteins from both LR and HR HPVs (3/5 and 4/5 respectively) highlighting the accepted role of this human protein in

the life cycle of both LR- and HR HPVs (Li and Coffino, 1996; Pietsch and Murphy, 2008).

Bayesian network

A Bayesian network was trained using Weka (Frank et al., 2016). Training was carried out using the five HR-HPVs and five LR-HPVs.

Each virus is described by the set of predicted interactions with the 10 human proteins, that were previously identified (see above),
e7 Cell 178, 1526–1541.e1–e10, September 5, 2019



using a binary code (1 if the human protein is predicted to interact with at least one of the corresponding viral proteins in a virus with an

LRP-HIPSTer R 100, 0 otherwise). Evaluation of the network was carried out by five-fold and leave-one-out cross-validation. Addition-

ally, we also trained a Bayesian network classifier, where we applied an automatic and supervised feature selection method prior to

training in order to ensure that the considered features highly correlate with the class (LR-HPV or HR-HPV) while having a low inter-

correlation between them (Hall, 1999). Automatic selection of features reported the interactions with 8 human proteins, which were

previously identified as proteins preferentially binding either HR-HPVs or LR-HPVs with the method described above. The additional

two features (human proteins predicted to preferentially bind either HR- or LR-HPVs) not considered by the automatic supervised

feature selection method (HNRNPM and TERF1) were redundant and did not contribute further to the performance of the classifier

(which does not mean that the interaction with these human proteins are not biologically meaningful). As expected, five-fold and

leave-one-out cross-validation of the Bayesian network trained considering only the interactions to eight human proteins reported

the same accuracy (9 out 10 viruses correctly classified as LR- or HR-HPV).

Clustering of HPVs

Each alpha-papillomavirus is described as a binary vector with 10 elements, each describing the predicted interaction with one of the

10 human proteins predicted to preferentially interact with viral proteins in HR-HPVs or LR-HPVs. Predicted interactions are

converted into a binary vector using an LR cutoff of 100 (1 if the human protein is predicted to interact with at least one of the

corresponding viral proteins in a virus with an LRP-HIPSTer R 100, 0 otherwise). Clustering was carried out in R using the heatmap.2

package (distance metric: Manhattan; clustering method: complete) (R Development Core Team, 2016; Warnes et al., 2016).

Evolutionary analysis on human genes
Dataset

Primate datasets of 15,332 human coding genes were downloaded from the Ensembl genome browser (https://useast.ensembl.org/

index.html) between August and November, 2017. The primate species included in the analyses were Gorilla gorilla, Homo sapiens,

Pan troglodytes, Pongo abelli, Nomascus leucogenys, Macaca mulatta, Papio Anubis, Chlorocebus sabaeus, Callithrix jacchus,

Carlito syrichta, Microcebus murinus and Otolemur garnettii. Only one sequence of each species was included. All datasets are

publicly available from GITHUB (https://github.com/RabadanLab/pamler). Each nucleotide dataset was aligned as amino acids

using Prank (Löytynoja, 2014), in order to preserve the correct frame, and then reconverted to nucleotides. The resulting alignment

was then refined, by trimming regions of poor homology along the alignment with TrimAl (‘‘gappyout’’ settings) (Capella-Gutiérrez

et al., 2009).

Evolutionary analyses

A phylogenetic tree depicting the evolutionary relationships of the aforementioned primate species was built, using a topology re-

ported previously in the literature (Hallast et al., 2016; Rogers and Gibbs, 2014). Given that sequences from all these 12 species

were not necessarily present in a given gene, the original tree was pruned, thus retaining only the taxa for which there was a sequence

available. Then, for each gene, the branch lengths of the primate tree were inferred with PhyML (Guindon and Gascuel, 2003) under

the GTR + GAMMA (4 CAT) model, retaining the original tree topology.

The different genes analyzed were classified as ‘‘interacting’’ or ‘‘not-interacting,’’ according to the LR values inferred (using an

LRPHIPSTER of 100). In order to assess the selective constraints in human proteins associated with the interaction with viral proteins,

we performed site model analyses with codeml as implemented in PAML (Yang, 2007). Under the codon frequency model F3x4

(which estimates codon frequencies empirically), two different evolutionary models were compared bymeans of likelihood ratio tests

(2 degrees of freedom): M7 (selective pressure of sites distributed according to a beta distribution, without positive selection) andM8

(selective pressure distributed according to a beta distribution, with the presence of positively selected sites). Significant evidence of

selection was considered if p < 0.05, after False Discovery Rate correction. This model also allowed us infer the mean DN/DS of each

gene. DN/DS values of Interacting (3,373) and not-interacting (11,601) genes were compared by means of Wilcoxon tests (2-tail).

Functional enrichment analyses

Enrichment analysis on human proteins with DN/DS > 1 and DN/DS < 1 (5th percentile) was carried out with DAVID (Huang et al.,

2009a, 2009b). Enriched pathways were selected based on the nominal p value (< 0.05) and the False Discovery Rate correction

(FDR < 20%). For each DN/DS subset, enrichments were carried out separately on: i) proteins predicted to interact with viral proteins

with an LRPHIPSTER R 100 and; ii) proteins not predicted to interact with viral proteins with viral proteins with an LRPHIPSTER R 100.

Co-immunoprecipitation
293T cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM; GIBCO, Life Technologies) supplemented with 10%

fetal bovine serum (FBS; Hyclone Laboratories) and 1% penicillin and streptomycin (GIBCO, Life Technologies) at 37�C and 5%

CO2. Plasmids expressing the human proteins AMBP, BIRC2, BRCA1, DOCK5, ESR1, ING2, ISG15, RABGGTA, SFN, SPINT2,

STAC2, STAT3, STK32A, TP53, VARS, VAV1, VCAM1, SPINLW1 (EPPIN) (ORFeome collection 8.1, Table S8), ABL1, APP, BIRC3,

CUL1 (Table S8) and plasmid expressing the virus proteins HCV NS5A, HSV-1 UL13, HIV-1 Nef, ZIKV C, NS3 and NS5 (Addgene,

Table S8) were used in this study. For co-immunoprecipitation (Co-IP), cells were seeded into 12-well tissue culture plates at

concentration of 300,000 cells per well for 24 hr and cotransfected with 0.5 mg of each plasmid expressing the human and virus

proteins using TransIT-LT1 Reagent (Mirus) (Figure S2). Single transfection with each plasmid were also performed to access indi-

vidual protein expression (Figure S2). Cells from each well were lysed 36 to 40 hr after transfection in 0.2 mL of RIPA buffer (50 mM
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Tris-HCl [pH 8.0]; 150mMNaCl; 0.1%SDS; 1%Triton X-100; 0.5%NaDeoxycholate and EDTA-free protease inhibitor) at 4�C for 2 hr

with constant agitation. Cell lysates were then sonicated for 2 min and centrifuged at 15,000 x g for 30 min at 4C� and pre-cleared for

1 hr at 4�Cwith protein Gmagnetic beads (SureBeads, Bio-Rad). The supernatant was then immunoprecipitated with 0.5 mg ofmono-

clonal anti-HA antibody (Sigma-Aldrich) or 1:50 dilution of rabbit anti-FLAG antibody (Cell Signaling Technology) and 30 mL of protein

G magnetic beads at 4�C overnight (O/N). The immunocomplex was then washed five times with 0.5 mL of RIPA buffer. Proteins

bound to the beads were resuspended in 20 mL of Laemmli sample buffer (Bio-Rad) containing 5% b-mercaptoethanol (Sigma-

Aldrich), boiled for 5 min at 95�C and then subjected to NuPAGE 4%–12% Bis-Tris Gel (Life Technologies) and transferred to

0.45 mm nitrocellulose membranes (Bio-Rad). Membranes were blocked with TBST containing 5% non-fat milk at room temperature

(RT) for 1 hr and incubated O/N at 4�C with the anti-V5-HRP antibody (Life Technologies) or c-Myc polyclonal antibody (Santa Cruz

Biotechnology) followed by the HRP-conjugated secondary antibody (Thermo Scientific) for 2 hr at RT. For detection, membranes

were incubated with SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Scientific) and imaging using ChemDoc

Touch Imaging System (Bio-Rad).

The following lines contains a description of the used plasmids:

i) The plasmid pDONR223-ABL1 was a gift from William Hahn & David Root, Addgene plasmid # 23939 (Johannessen et al.,

2010). This plasmid was cloned into pLX304 Destination vector using LR Recombination Reaction (Gateway Technology, Invi-

trogen) according manufacturer protocol.

ii) The APP gene was PCR amplified (attB1-APP_FOR 50GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACCATGCTGCCCGG

TTTGGCACTGCTCCT30 and attB2-APP_REV 50GGGGACCACTTTGTACAAGAAAGCTGGGTTCAGCATGAGCCATCGTGC

CTGGCC30) from the human ORFeome Collection 8.1 plasmid (ORF ID 8905) and the purified PCR product was cloned into

the pDONR223 vector using BP Recombination Reaction (Gateway Technology, Invitrogen) and further cloned into pLX304

Destination vector using LR Recombination Reaction (Gateway Technology, Invitrogen) according manufacturer protocol.

iii) The plasmid Flag-cIAP2/pRK5 was a gift from Xiaolu Yang, Addgene plasmid # 27973 (Hu et al., 2006). cIAP2 is a ubiquitin

protein ligase for BCL10 and is dysregulated in mucosa-associated lymphoid tissue lymphomas. The tag from this plasmid

was replaced with a 3xMyc tag generated by an assembly PCR protocol (https://primerize.stanford.edu). The following oligos

were used to generate the 3xMyc tag containing EcoRI and XbaI restriction sites at the 50 and 30, respectively: PAC 1 For

50 TCGATTGAATTCGCCGCCATGGAGCAGAAACTCATCTCTGAAGAAGATCTGGAACAAA 30; PAC 2 Rev 50 CCAGATCTTCT

TCTGAAATCAACTTTTGTTCCAGATCTTCTTCAGAGATGAGTTTCTGC 30;PAC 3 For 50 AGTTGATTTCAGAAGAAGATCTG

GAACAGAAGCTCATCTCTGAGGAAGATCTGGG 30; andPAC 4 Rev 50 TACTATGTTTCTAGAGGATCCCAGATCTTCCTCAGA

GATGAGCTT 30.
iv) The plasmid pcDNA3-myc3-CUL1 was a gift from Yue Xiong (Addgene plasmid # 19896) (Ohta et al., 1999).

v) The plasmid pCMV-Tag1-NS5A was a gift from Xin Wang (Addgene plasmid # 17646) (Budhu et al., 2007).

vi) The plasmid HSV-1 UL13 was a gift from Robert Kalejta (Addgene plasmid # 26697) (Kuny et al., 2010).

vii) The plasmid pCI NL4-3 Nef-HA-WT was a gift from Warner Greene (Addgene plasmid # 24162) (Geleziunas et al., 2001).

viii) The plasmid pLV_Zika_Cv_Flag was a gift from Vaithi Arumugaswami (Addgene plasmid # 79628): Unpublished.

ix) The plasmid pLV_Zika_NS3_Flag was a gift from Vaithi Arumugaswami (Addgene plasmid # 79635): Unpublished.

x) The plasmid pLV_Zika_NS5_Flag was a gift from Vaithi Arumugaswami (Addgene plasmid # 79639): Unpublished.
Webserver development
The P-HIPSTer (http://phipster.org) webserver base code is split into two distinct parts: a back-end, which comprises a rest API

written in the Django framework; and a front-end, which provides the user-interface to query this API, process the structured data

it returns, and display the results. The API layer communicates with a Postgres database. The font-end is coded in the javascript

framework Vue.js.; and was written as a single-page-application (SPA). It features the third party module NGL Viewer for molecular

visualization (Rose et al., 2018). We host the webserver on Amazon Web Services (AWS).

In addition to the set of predicted PPIs, the P-HIPSTer webserver provides, for each viral protein, sequence-, structure- and PPI-

based functional annotation, the corresponding Pfam (Finn et al., 2016) domains, a graphical representation of the predicted protein

interaction network, and a molecular viewer that allows to explore the structural models of viral and human proteins as well as the

predicted interaction complexes, whenever possible (the LRdom must be R 100).

Sequence-based annotation

We identify the set of homologs after Blasting the sequence of a viral protein against the Uniprot database, considering as homologs

only those hits with maximum E-value of 10�20, a minimum alignment coverage of 70% of the shortest sequence aligned and a

minimum sequence identity of 90% (Altschul et al., 1990; Apweiler et al., 2004). The webserver reports the union of GO terms

(Ashburner et al., 2000; The Gene Ontology Consortium, 2017) extracted from each homolog, ranked based on their frequency.

Structure-based annotation

A structural neighbor search is carried out for each viral protein or domain (either taken directly from the PDB or modeled by homol-

ogy) against the PDB database with Ska (Petrey et al., 2003; Yang and Honig, 2000b) using a Protein Structural Distance (PSD)% 0.6
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and a Structural Alignment Score (SAS)% 3.5 Å. The webserver reports the union of GO (Ashburner et al., 2000; The Gene Ontology

Consortium, 2017) and EC (Bairoch, 2000) terms extracted from each structural neighbor, ranked based on their frequency.

PPI-based annotation

See Functional enrichment analysis using Gene Set Enrichment Analysis (GSEA).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters, including the definition of center, dispersion and associated significance, are reported in the main text, Fig-

ures, Figure legends and Tables. We have applied hypergeometric test, permutation test andWilcoxon test to calculate significance.

Whenever appropriate, p values were adjusted for multiple comparisons. The section entitled ‘‘Method Details’’ describes the sta-

tistical analyses performed. Data are judged to be statistically significant when p < 0.05 in applied statistical analyses. In Figure 3,

asterisks denote statistical significant (*, p < 0.05; **, p < 0.0001).

DATA AND CODE AVAILABILITY

All data generated as part of this study is available at http://phipster.org and GITHUB (https://github.com/RabadanLab/pamler). In

addition, P-HIPSTer code is made available upon request.
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Supplemental Figures

Figure S1. Summary of Viral Families and Baltimore Categories Interrogated by P-HIPSTer and Homology Modeling Coverage across

Baltimore Categories, Related to Figure 1

a) Fully sequenced viruses infecting humans were downloaded from VirusHostDB (https://www.genome.jp/virushostdb/). For a complete list of viruses and

Baltimore category as well as Family membership, see Table S1. b) Fraction of modeled residues per virus within each Baltimore category; c) Fraction of

disordered residues per virus within each Baltimore category. Structure modeling was performed as described in methods. Center lines correspond to median

values and whiskers range from min to max.
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(legend on next page)



Figure S2. Empirical Validation of P-HIPSTer Predictions, Related to Figures 1 and 2

65 P-HIPSTer predictions spanning LR values between 1.2 and 1,106 were selected for co-IP. Briefly, 293T cells were transfected with relevant expression

plasmids and lysates were subjected to immunopre- cipitation with indicated antibodies followed by SDS-PAGE electrophoresis and immunoblotting. Shown are

representative gels. All experiments were performed at least 3 times to ensure reproducibility. For further details, please refer to STAR Methods. A complete

summary of validation experiments is available in Table S3.



Figure S3. P-HIPSTer Uncovers Viral Targeting of Infection-Related Pathways, Related to Figures 1 and 5

Enriched biological pathways (a) and molecular functions (b) within a set of 5,749 human proteins predicted to interact with human viruses. Enriched biological

pathways (c) and molecular functions (d) within a set of 173 human proteins predicted to interact with R 100 human viruses.



Figure S4. P-HIPSTer Uncovers Shared and Unique Machinery Employed across Viruses of Differing Nucleic Acid Type, Related to Figure 5

a) Venn diagram illustrating overlap of enriched biological pathways within each nucleic acid type (indicated are number of pathways within each region of the

Venn diagram). Shown are pathway categories that are over-represented (x axis denotes number of enriched pathways within each category). Categories that are

significantly enriched within each region of the Venn diagram are highlighted in light purple. b) Clustering of immune-related pathways and viruses based on

predicted pathway enrichment. Dark cells within the heatmap correspond to pathways enriched with q-value < 0.01. Highlighted are pathway classes and viral

families corresponding to co-clustered pathways and viruses.



Figure S5. Comparison of Structural and Sequence Similarity across Viral Protein Pairs, Related to Figure 5

a) Subset of viral proteins with low pairwise sequence identity (< 40%) where proteins in each pair corresponds to a virus from a different nucleic acid type: DNA/

RNA (Red), DNA/RT (Blue), RNA/RT (Green). b) Subset of viral proteins across all nucleic acid types with low pairwise sequence identity (< 40%). c) Viral capsid

proteins corresponding to viruses from the same viral family (Black) or different Baltimore categories (Blue). Vertical bars indicate threshold to consider a pair of

viral proteins as global structural neighbors (Structural Alignment Score SAS % 3.5A).
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