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Network biologists attempt to extract meaningful relationships among genes or their products
from very noisy data. We argue that what we categorize as noisy data may sometimes reflect
noisy biology and therefore may shield a hidden meaning about how networks evolve and how
matter is organized in the cell. We present practical solutions, based on existing evolutionary
and biophysical concepts, through which our understanding of cell biology can be enormously
enriched.
The spandrels of San Marco is an architectural analogy that

Stephen J. Gould and Richard C. Lewontin used to explain

the fundamental flaw in systematically ascribing individual traits

of an organism to adaptation rather than to a possible coinci-

dental evolution of some other characteristic (Gould and Lew-

ontin, 1979). More than three decades on, such adaptationist

tendencies remain common to the interpretation of biological

data and no less in network biology. The intrinsically beautiful

and elegant structure embedded in interpretations, such as

functional modularity, can mask important details and under-

standing of what the data tell us about the organization and

evolution of networks. With the accelerating accumulation of

data gathered at all layers of the cell, it is useful to return to

first principles and ask precisely what we measure and what

assumptions we make when analyzing the large-scale data

that populate networks. The recent debate around ENCODE

regarding how much of the human genome is functional is a

clear example of why we need to address these issues (Doolit-

tle, 2013; Graur et al., 2013; Maher, 2012). Interpretations of

gene function in a project like ENCODE requires the integration

of a number of different types of large- and small-scale exper-

imental data (Gerstein et al., 2012). To discuss all of the issues

involved in interpreting these different types of data is beyond

the scope of this Perspective. Instead, we take a fresh look

at the raw details of one type of data, protein-protein interac-

tions (PPI), and we ask what the experiments upon which

they are based measure and take an alternative approach to

their interpretation.

PPIs constitute the physical link among gene products and

thus provide us with essential clues to how biological pro-

cesses are organized and integrated in cells and organisms

(Babu et al., 2012; Gerstein et al., 2012; Havugimana et al.,

2012; Zhang et al., 2012). PPI networks are, however, largely

difficult to interpret functionally and appear to be both poorly
conserved across organisms and immensely large. Statistical

strategies for interpreting large data sets have aided greatly in

our attempts to understand PPI networks and continue to

advance (Collins et al., 2007), but for nonspecialists, results of

such analyses are abstractions of the physical results that

can obscure hidden and important details about how PPIs are

organized. As sometimes happens in science, the object of

interest becomes the abstract representation itself and not

the underlying data. Here, we discuss key problems that may

hinder clear understanding of PPIs, PPI networks, and their

evolutionary history, and we propose solutions for each of

these problems (Box 1).

Problem 1: When Is an Interaction Not an Interaction?
We begin by asking how, at an essential level, large-scale PPI

data are interpreted (Figures 1A and 1B). For the sake of brevity,

we discuss the results of PPI screens for the model eukaryote

budding yeast, Saccharomyces cerevisiae, for which there is

the greatest amount of data available (Gavin et al., 2002, 2006;

Ho et al., 2002; Ito et al., 2000; Krogan et al., 2006; Tarassov

et al., 2008; Uetz et al., 2000; Yu et al., 2008). The reader may

be surprised to learn that large-scale PPI detection methods

do not necessarily detect direct interactions between proteins.

Three families of methods have produced the bulk of large-scale

PPIs, including first those based on affinity purification followed

by mass spectroscopy (AP-MS). This approach provides evi-

dence, largely of stable complexes that can survive conditions

of cell lysis and purification (Babu et al., 2012; Gavin et al.,

2002, 2006; Ho et al., 2002; Krogan et al., 2006; Zhang et al.,

2012). Yeast two-hybrid (Y2H) methods are performed in vivo

and may yield direct, binary information albeit in an unnatural

compartment for most proteins (the nucleus), and proteins are

typically expressed under nonnative promoters (Ito et al., 2000;

Uetz et al., 2000; Yu et al., 2008). Finally, protein-fragment
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Box 1. Solutions for Common Problems in Interpreting Protein
Interaction Data

Problem 1: Different methods produce different types of data.

Solution 1: Different data need to be conceptualized and assessed

differently, and models of reference (ideal PPIs) need to reflect the

breadth of methods used to probe PPIs and to reflect the biological

diversity of PPIs as well. Reference PPIs should thus be tailored for

each method.

Problem 2: PPIs often appear as having a poor functional relevance.

Solution 2: This observation has a biological explanation—promiscu-

ity. A substantial number of PPIs that we observe serve no discernible

function in the cell. Key cellular and chemical parameters, namely pro-

tein abundance, complex stoichiometry, and interaction conservation

need to be taken into account to single out functional interactions

and understand the biology behind networks.

Problem 3: Proteins do not always follow rules of organization

commonly depicted as molecular modules.

Solution 3: An open mind with a combination of the two above-

mentioned points. Models of how PPIs are organized should be ex-

tracted from the data rather than imposed on the data.
complementation assays (PCA) are in the middle; they do not

provide unambiguous evidence of direct binary PPI but rather

provide an indication of spatial proximity between two proteins.

An advantage of this method is that proteins are expressed at

endogenous levels and within relevant cellular compartments

in living cells (Tarassov et al., 2008).

Importantly, applications of criteria to access one type of data

can be wholly misleading if applied to another. For instance, a

gold standard such as reference protein complexes would

include many interactions within complexes that cannot be

captured by PCA or Y2H because the proteins are not physically

close or in contact. Thus, different standards should be used to

assess different data sets.

Solution 1: Always Compare the Comparable
Admittedly, false-positives and biases derived from experi-

mental errors must be eliminated statistically—for instance,

based on their reproducibility (Mellacheruvu et al., 2013). How-

ever, care should be taken to choose appropriate reference

PPIs for each particular experimental approach, and ideally,

these methods should use information that is orthogonal and

based on as many different methods as possible to the PPI

detection approach. This would allow for correct assessment

of the reliability of the data without biases toward one method

or another. A better understanding and consideration of the

methods used and their shortcomings may also help explain

why so many interactions are not detected. In turn, such under-

standing could help raise the confidence that a lack of interaction

in the data reflects the genuine absence of an interaction in the

cell. For instance, some reporters may destabilize the fusion pro-

teins and make interactions impossible to see or may hinder

binding interfaces. Some proteins may be unable to work in a

particular cell compartment where the reporter is reconstituted.

Some screening methodsmay have a high rate of failure at some

point in their procedure. In all cases, better controls on the

experimental procedures (e.g., measurement of reproducibility)

and of molecular constructs (e.g., confirmation of expression
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of fusion proteins) may alleviate these shortcomings. Further-

more, the lack of overlap among the current data sets may be

relevant to amore fundamental question than those based solely

on the reproducibility of a given technique (Bader and Hogue,

2002; vonMering et al., 2002). This question relates to the incom-

pleteness of our current model of the interactome. If current

methods fail to uncover the same relationships among proteins,

we expect that many more relationships may have been missed

and thus that new technological developments are needed. For

instance, approaches that would allow single-cell analysis of in-

teractions based on fluorescent or luminescent reporters or

approaches that would allow resolving spatiotemporal depen-

dencies of PPIs could help fill the current gap.

Regardless of how data might be validated, an important

question is: what are we measuring? In other words, do we un-

derstand why a given signal from a given experiment maximizes

our ability to predict biologically meaningful PPIs (Balaji et al.,

2008; Jensen and Bork, 2008; Wodak et al., 2013)? As we

describe below, to answer this question, we must first consider

how PPIs have evolved.

Problem 2: Measurable Does Not Mean Functional
In the past few years, we and others havemade several observa-

tions suggesting that many PPIs, regardless of whether they are

reproducible by different techniques, could have no function in

the cell (Landry et al., 2009; Levy et al., 2009). What do we

mean by a nonfunctional PPI? From an evolutionary perspective,

wemean that such PPIs appeared as the product of evolutionary

processes but were not selected for imparting any benefit to the

organism in which they arose (or later on) during evolution.

Accordingly, such PPIs are not currently maintained by purifying

selection. Consequently, disruption of a nonfunctional PPI is not

expected to result in any biochemical or phenotypic deleterious

consequence. It is also important to distinguish nonfunctional

from nonspecific interactions. We usually think of nonspecific in-

teractions as those that arise from, for instance, binding between

hydrophobic surfaces of proteins. A nonfunctional interaction,

however, could have the hallmarks of a specific interaction,

including stereospecificity and shape complementarity, but

again, the interaction may impart no beneficial functional conse-

quences to either of the two proteins. This is a difficult idea to

fathom, but not without precedent. As Gould and Lewontin

(1979) argued, not all features of a biological system have

evolved because they provide a favorable function to the organ-

ism, and the same argument applies to molecular phenotypes.

For instance, we know that transcription factors bind to hun-

dreds of sites in a genome, but few are involved in regulating

gene expression (Biggin, 2011; Euskirchen and Snyder, 2004;

Hahn et al., 2003). Formal predictions of nonfunctional transcrip-

tion factor binding have been explored, and we have extended

the same analyses to PPIs (Hahn et al., 2003; Levy et al.,

2009). For one type of PPI, that of protein kinases with their sub-

strates, we estimate that nonfunctional PPIs may compose

higher than 50% of observables (Landry et al., 2009). Following

these studies, investigators have used evolutionary and struc-

tural information as a means of prioritizing posttranslational

modifications for functional studies, for instance for modifica-

tions that regulate PPIs (Beltrao et al., 2012).



Figure 1. Challenges in Interpreting Protein-Protein Interaction Networks
(A) General outline of PPI network interpretation. Typical large-scale network observations produce raw data that are filtered to eliminate experimental errors and
biases. This incidentally also tends to produce networks with the properties of idealized PPIs. Previous data consisting of a set of experimentally verified in-
teractions judged to be irrefutable and a larger set of hypothetical noninteracting proteins are used to set a threshold for the experimental data signal (broken line).
The threshold typically maximizes the recovery of gold standard data (true positives, TP) while minimizing the recovery of interactions assumed impossible (false
positives, FP). A final PPI network is interpreted in a number of ways, including various types of clustering to reveal structural and functional organization. There is,
however, an equal or even larger subset of residual data that do not fit any desirable model of network organization.
(B) Different methods for detecting PPI capture different information. AP-MS captures associations of proteins without reference to which pairs are in direct
contact, Y2H captures mostly direct interactions, and PCA captures proteins that are spatially restrained to specific distances from each other.
(C) New, nonfunctional PPIs can be formed or broken through simple changes in expression or point mutations.
(D) Physicochemical, evolutionary, and dynamic properties of PPIs may help to distinguish functional from nonfunctional PPIs.
(E) Super-organizations of proteins (e.g., hydrogels) may have an important function but would not fit standard models of PPI network organization.
One might expect that nonfunctional interactions should be

eliminated by natural selection. This, however, is likely to occur

only if nonfunctional PPIs are deleterious to the cell and if the

appropriate mutational and population genetics requirements

are met (Figures 1C and 1D) (Fernández and Lynch, 2011; Levy

et al., 2009). A PPI could arise from point mutations (Grueninger

et al., 2008)—or perhaps even due to a change in expression

level (Gagnon-Arsenault et al., 2013) or subcellular localization

of one of the partners (Kuriyan and Eisenberg, 2007)—but have

no functional consequence. Furthermore, a particular PPI may

be an inevitable consequence of a function of another PPI in

which one of the partners is involved. What we observe then

may be a tradeoff between the specificity of PPIs and the ability

of proteins to perform specific functions (Pechmann et al., 2009).

Nonfunctional PPIs may appear to be an obstacle to our

understanding of how the cell works. We argue the opposite:

understanding nonfunctional PPIs provide a window into the

past, the present, and the future of evolving PPI networks. For

instance, the birth and death of PPIs may contribute to the evo-

lution of biochemical networks and to speciation of organisms

(Tawfik, 2010). What will be functional in the future is impossible

to predict. However, one could argue that nonfunctional interac-

tions may provide templates for the accumulation of beneficial

mutations in the future. Accordingly, the wandering of PPI net-

works in the nonfunctional space may allow cells to explore

configurations not directly available to beneficial mutations or
modify the functional space so as to affect the neutrality of future

mutations (Doolittle, 2013). Thus, on the one hand, nonfunctional

PPIs can be a source of annoyance to those trying to understand

PPI data, but on the other, they may represent a feature of

ongoing evolution of cellular networks (Levy et al., 2009, 2010;

Lynch, 2007a, 2007b; Zhang et al., 2008). Furthermore, func-

tional and nonfunctional PPIs can be separated based on simple

biophysical and evolutionary concepts.

Solution 2: Orthogonal Measures of Functionality
Chemical principles of PPI may provide important clues of func-

tionality (Figure 1D) (Schreiber and Keating, 2011). Existing PPI

data analyses implicitly test chemical parameters. For instance,

intensity or frequency of an observable can be thought of as

measuring the affinities or rates of association or dissociations

of complexes. Recently, we have demonstrated that the propor-

tion of protein phosphorylation on specific residues (or stoichi-

ometry) can provide meaningful predictions of their functionality

(Landry et al., 2009; Levy et al., 2012b). Whether this principle

applies to PPIs or other types of biomolecular interactions

remains to be explored but, if true, could provide strong evi-

dence of functionality. In addition, the thermodynamics of PPIs

could be even more useful to distinguishing functional versus

nonfunctional PPIs. For instance, it has been recently demon-

strated that functional transcription factor binding in a genome

could be distinguished from nonfunctional interactions by virtue
Cell 155, November 21, 2013 ª2013 Elsevier Inc. 985



that transcription factors exchange slower at functional sites,

where transcription occurs, than at sites where no transcription

is initiated (Lickwar et al., 2012). Similar conclusions have been

reached regarding the occupancy of transcription factors during

development (Fisher et al., 2012). Whether this principle applies

to PPIs or other types of biomolecular interactions remains to be

explored but, if true, could provide strong evidence of function-

ality. One particular challenge in using these principles is that

many PPIs, including functional ones, are weak. In that respect,

the occurrence frequency of a PPI cannot be used by itself as an

indicator of functionality. However, experimental work could be

used to measure the distribution of effects that mutations have

on PPIs affinity to ultimately estimate how binding can evolve

through neutral mutations. Such knowledge could indeed help

us infer a confidence level for an interaction given a measured

affinity. Most importantly, the consideration of what may be

functional and what may not be functional requires that we

move beyond the simple definitions of false-positive and false-

negative hits in large-scale interactome studies. Accordingly,

efforts should be made so that parameters such as the stoichi-

ometry or the affinity of interactions can be considered in the

analysis of networks.

Other approaches reside in correlating the behavior of PPIs

with specific cellular responses. In principle, one should expect

nonfunctional interactions to exhibit no specific dynamic re-

sponses, whereas functional PPIs should display coordinated

dynamics within pathways or cellular processes. For instance,

there is evidence that dynamic changes in phosphorylation

following perturbations of cells are more likely functional than

static sites, as others have intuitively surmised (Olsen et al.,

2006). We have recent evidence suggesting that PPIs that are

dynamic in response to a perturbation are also more likely func-

tional (Messier et al., 2013). As methods and tools for perturbing

interactomes on a large-scale are developing, it should now be

feasible to exploit this principle to further investigate the func-

tional elements of these networks (Diss et al., 2013).

Finally, themost straightforward solution is to use an approach

that all biochemists and geneticists intuitively use when dissect-

ing the function of a gene or of a protein: comparative analyses.

Functional features of genes and genomes indeed tend to be

under purifying selection and thus tend to be conserved within

and between species. The systematic use of orthogonal informa-

tion, such as PPI conservation among closely related species, is

thus an obvious solution that has already been applied success-

fully to map out gene regulatory networks (Harbison et al., 2004)

and is being developed for protein interactomes (Leducq et al.,

2012). In the case of proteins of known structure, comparative

approaches have also been successful in discriminating interac-

tion interfaces from solvent-accessible protein surface (Armon

et al., 2001; Elcock andMcCammon, 2001; Valdar and Thornton,

2001), even among weak interactions (Dey et al., 2010). Compar-

ative approaches will also require an understanding of the

contributions of nonadaptive forces and how these do link to

chemical constraints that shape them (Fernández and Lynch,

2011; Levy et al., 2012a; Lynch, 2007a). This requires quantifying

mutation rates for gains and losses of interactions as well as

estimating the costs of nonfunctional PPIs. In vivo PPI studies

so far have been mostly descriptive, as there have been very
986 Cell 155, November 21, 2013 ª2013 Elsevier Inc.
few attempts to manipulate PPIs through perturbations such

as mutations on binding interfaces or changes in protein abun-

dance (Gagnon-Arsenault et al., 2013) and mutations of protein

residues (Dreze et al., 2009; Ear and Michnick, 2009). With these

parameters in hand, it may be possible to estimate how many

nonfunctional interactions may populate protein networks. In

order to reach this goal, we will need methods to study the role

of PPIs independently of the other functions of the proteins

involved. It is currently difficult to examine the function of a single

PPI because most genetic approaches involve gene deletions

that eliminate both the proteins and all of its interactions alto-

gether. Current experimental approaches have been developed

to manipulate PPIs without completely eliminating the proteins

involved (Dreze et al., 2009; Ear and Michnick, 2009), and these

could be used for this purpose. These PPI-centered experiments

will also be important for testing hypotheses regarding the role of

PPIs that are indirect consequences of another function. In addi-

tion, it remains difficult, if not impossible, to define a putative

function (let alone define what a function is) for any given PPI

and thus to design the appropriate experiments. However, with

the development of the tools described above that allow us

to specifically dissect PPIs, one could assay the fitness of

point mutants in diverse environmental conditions to uncover

combinations where network failure may decrease fitness—for

instance, using approaches developed for gene knockouts (Hill-

enmeyer et al., 2008) or for genetic interaction mapping (Braberg

et al., 2013).

There are many characteristics that are associated with func-

tional PPIs, and an optimal approach will be to consider them

jointly. With the accumulation of experimental data on context-

dependent PPIs and on interspecies comparisons, onewill even-

tually be able to integrate these features into a scoring scheme

that will allow us to make predictions as to which PPIs are

most likely functional.

Problem 3: Proteins Are Rule Breakers
In addition to considering nonfunctional PPIs, assumptions

about how PPI networks should be organized into complexes,

for example, could obscure additional or even alternative expla-

nations for how matter is organized in the cell (Figure 1E). There

is evidence of such modules that can work independently from

the rest of the network. Groups of proteins that are hypothesized

to reflect functional modules can indeed be artificially assembled

and maintain their functional dynamics, even in isolation. For

instance, mammalian MAP kinases have been shown to display

predictable behavioral response to external stimuli when recon-

stituted in yeast (O’Shaughnessy et al., 2011). In addition, the

cell-cycle control in fission yeast has been reduced to a mono-

molecular Cdk-cyclin engine that can drive major cell-cycle tran-

sitions (Coudreuse and Nurse, 2010). However, any disagreeing

results should also be considered. For instance, several recent

studies suggest that proteins and nucleic acids can exist in a

number of potential states, including as assemblies of different

dimensions, from nano- to micrometer scales and can have

unique physical properties. Structures seen in cells, such as

nucleoli, PML, Cajal bodies, and ribonucleoprotein granules

are just a few examples of what are likely metascale (hundreds

of nanometers) liquid states in which groups of molecules may



be organized and physical properties may bemaintained to carry

out specific functions (Brangwynne et al., 2009, 2011; Han et al.,

2012; Hyman and Brangwynne, 2011; Kato et al., 2012; Li et al.,

2012; Narayanaswamy et al., 2009). The discovery of these alter-

native states of protein assembly is prompting a re-evaluation of

how matter is organized in cells and how these organizations

may affect everything from transcription and translation of genes

to signal transduction and morphogenesis. Importantly, the

physical properties, such as viscosity, of these assemblies are

quite different from the surrounding cytoplasm (Brangwynne,

2011). Consequently, interactions thatmight beweak in the cyto-

plasm could be stronger inside of these bodies, and there may

be no apparent functional logic to the PPIs involved. These

may simply be a nonfunctional consequence of localization

within the bodies to which they may contribute certain proper-

ties, such as mRNA storage or regulation with P-bodies (Brang-

wynne et al., 2009). The proteins within the body may have no

apparent functional relationships to each other but that of aggre-

gating under certain conditions. Furthermore, other proteinsmay

freely exchange between the cytosol and the body over time, re-

sulting in many interactions—none making any particular sense.

Such PPIs could be considered outliers in large-scale PPI

studies, the data likely shuttled into a supplementary file and

forgotten (Figure 1A). PPI data therefore need to be examined

without any a priori judgments or models regarding how they

should be organized in the cell.
Conclusions
Network biologists have many tools at hand to discern meaning

from existing data, but much of the models they use are based

on intuitive, teleological assumptions. We view PPI data as

they exist today as capturing a snapshot of evolutionary wiring

and rewiring of a PPI network in which much of the information

may be superfluous to the contemporary function of an organ-

ism. Sorting out the meaningful from the superfluous may be a

matter of distinguishing chemical parameters that are shaped

through natural selection. We think that PPI networks could be

telling us a good deal more about the organization and history

of matter in the cell. Taking a fresh view that is equally objective,

biophysical, and comparative will provide a more meaningful

understanding of where PPI networks came from and where

they are going.
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