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Abstract
Summary: The recent literature on profile hidden Markov
model (profile HMM) methods and software is reviewed.
Profile HMMs turn a multiple sequence alignment into a
position-specific scoring system suitable for searching
databases for remotely homologous sequences. Profile
HMM analyses complement standard pairwise comparison
methods for large-scale sequence analysis. Several software
implementations and two large libraries of profile HMMs of
common protein domains are available. HMM methods
performed comparably to threading methods in the CASP2
structure prediction exercise.
Contact: eddy@genetics.wustl.edu

Introduction

Proteins, RNAs and other features in genomes can usually be
classified into families of related sequences and structures
(Henikoff et al., 1997). Different residues in a functional se-
quence are subject to different selective pressures. Multiple
alignments of a sequence family reveal this in their pattern
of conservation. Some positions are more conserved than
others, and some regions of a multiple alignment seem to
tolerate insertions and deletions more than other regions.

Intuitively, it seems desirable to use position-specific in-
formation from multiple alignments when searching data-
bases for homologous sequences. ‘Profile’ methods for
building position-specific scoring models from multiple
alignments were introduced for this purpose (Taylor, 1986;
Gribskov et al., 1987; Barton, 1990; Henikoff, 1996). How-
ever, profiles have been less used than pairwise methods like
BLAST (Altschul et al., 1990, 1997) and FASTA (Pearson
and Lipman, 1988), with the most notable exceptions being
the popular BLOCKS database (Henikoff et al., 1998) and
the skilled use of profiles by a small band of professional
protein domain hunters (Bork and Gibson, 1996).

In part, this is because the residue scoring systems used by
pairwise alignment methods are supported by a significant
body of statistical theory (Altschul and Gish, 1996). The pro-
babilistic ‘meaning’ of position-independent pairwise align-
ment scoring matrices is well understood (Altschul, 1991),
allowing powerful scoring matrices to be derived (Henikoff
and Henikoff, 1992). The statistical significance of un-

gapped pairwise alignment scores can be calculated analyti-
cally, and the significance of gapped alignment scores can be
calculated by simple empirical procedures (Altschul and
Gish, 1996; Altschul et al., 1997). In contrast, profile
methods have historically used ad hoc scoring systems.
Some mathematical theory was desirable for the meaning
and derivation of the scores in a model as complex as a pro-
file (Henikoff, 1996).

Hidden Markov models (HMMs) now provide a coherent
theory for profile methods. HMMs are a class of probabilistic
models that are generally applicable to time series or linear
sequences. HMMs have been most widely applied to recog-
nizing words in digitized sequences of the acoustics of
human speech (Rabiner, 1989). HMMs were introduced into
computational biology in the late 1980s (Churchill, 1989),
and for use as profile models just a few years ago (Krogh et
al., 1994a).

Here, the recent literature on profile HMM methods and
related methods for modeling sequence families is reviewed.
Preference is given to papers appearing in the past 2 years,
since my last review of the field (Eddy, 1996). There seem
to be three principal advances. First, motif-based HMMs
have been introduced as an alternative to the original Krogh/
Haussler profile HMM architecture (Grundy et al., 1997;
Neuwald et al., 1997). Second, large libraries of profile
HMMs and multiple alignments have become available, as
well as compute servers to search query sequences against
these resources (Sonnhammer et al., 1998). Third, there has
been an increasing incursion of profile HMM methods into
the area of protein structure prediction by fold recognition
(Levitt, 1997).

Because of space limitations, some of the background I
give is terse. A satisfactory introduction to HMMs and pro-
babilistic models is beyond the scope of this review. Tutorial
introductions to HMMs are available (Rabiner, 1989), in-
cluding introductions that specifically include profile HMM
methods (Krogh, 1998). Two recent books describe proba-
bilistic modeling methods for biological sequence analysis in
detail (Baldi and Brunak, 1998; Durbin et al., 1998).

Hidden Markov models

There are now various kinds of profile HMMs and related
models, all based on HMM theory. It is useful to understand
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the generality and relative simplicity of HMM theory before
considering the special case of profile HMMs. An HMM de-
scribes a probability distribution over a potentially infinite
number of sequences. Because a probability distribution
must sum to one, the ‘scores’ that an HMM assigns to se-
quences are constrained. The probability of one sequence
cannot be increased without decreasing the probability of
one or more other sequences. It is this fundamental constraint
of probabilistic modeling (Jaynes, 1998) that allows the
parameters in an HMM to have non-trivial optima.

An example of a simple HMM that models sequences
composed of two letters (a, b) is shown in Figure 1. This toy
HMM would be an appropriate model for a problem in which
we thought sequences started with one residue composition
(a-rich, perhaps), then switched once to a different residue
composition (b-rich, perhaps). The HMM consists of two
states connected by state transitions. Each state has a symbol
emission probability distribution for generating (matching)
a symbol in the alphabet. It is convenient to think of an HMM
as a model that generates sequences. Starting in an initial
state, we choose a new state with some transition probability
(either staying in state 1 with transition probability t1,1, or
moving to state 2 with transition probability t1,2); then we
generate a residue with an emission probability specific to
that state [e.g. choosing an a with p1(a)]. We repeat the transi-
tion/emission process until we reach an end state. At the end
of this process, we have a hidden state sequence that we do
not observe, and a symbol sequence that we do observe.

The name ‘hidden Markov model’ comes from the fact that
the state sequence is a first-order Markov chain, but only the
symbol sequence is directly observed. The states of the
HMM are often associated with meaningful biological la-
bels, such as ‘structural position 42’. In our toy HMM, for
instance, states 1 and 2 correspond to a biological notion of
two sequence regions with differing residue composition. In-
ferring the alignment of the observed protein or DNA se-
quence to the hidden state sequence is like labeling the se-
quence with relevant biological information.

Once an HMM is drawn, regardless of its complexity, the
same standard dynamic programming algorithms can be
used for aligning and scoring sequences with the model
(Durbin et al., 1998). These algorithms, called Forward (for
scoring) and Viterbi (for alignment), have a worst-case algo-
rithmic complexity of O(NM2) in time and O(NM) in space
for a sequence of length N and an HMM of M states. For
profile HMMs that have a constant number of state transi-
tions per state rather than the vector of M transitions per state
in fully connected HMMs, both algorithms run in O(NM)
time and O(NM) space—not coincidentally, identical to
other sequence alignment dynamic programming algo-
rithms. For a modest (constant) penalty in time, very mem-
ory-efficient O(M) and O(M1.5) versions of Viterbi and For-

Fig. 1. A toy HMM, modeling sequences of as and bs as two regions
of potentially different residue composition. The model is drawn
(top) with circles for states and arrows for state transitions. A
possible state sequence generated from the model is shown, followed
by a possible symbol sequence. The joint probability P(x,π|HMM)
of the symbol sequence and the state sequence is a product of all the
transition and emission probabilities. Notice that another state
sequence (1-2-2) could have generated the same symbol sequence,
though probably with a different total probability. This is the
distinction between HMMs and a standard Markov model with
nothing to hide: in an HMM, the state sequence (e.g. the biologically
meaningful alignment) is not uniquely determined by the observed
symbol sequence, but must be inferred probabilistically from it.

ward can also be implemented (Hughey and Krogh, 1996;
Tarnas and Hughey, 1998).

Parameters can be set for an HMM in two ways. An HMM
can be trained from initially unaligned (unlabeled) se-
quences. Alternatively, an HMM can be built from pre-
aligned (pre-labeled) sequences (i.e. where the state paths are
assumed to be known). In the latter case, the parameter es-
timation problem is simply a matter of converting observed
counts of symbol emissions and state transitions into prob-
abilities. In building a profile HMM, an existing multiple
alignment is given as input. In contrast, training a profile
HMM is analogous to running a multiple alignment program
before building the model, and thus is a harder problem.

Training algorithms are of interest because we may not yet
know a plausible alignment for the sequences in question.
The standard HMM training algorithms are Baum–Welch
expectation maximization or gradient descent algorithms.
Gibbs sampling, simulated annealing and genetic algorithm
training methods seem better at avoiding spurious local opti-
ma in training HMMs and HMM-like models (Eddy, 1996;
Neuwald et al., 1997; Durbin et al., 1998). Most training al-
gorithms seek relatively simple maximum likelihood (or
maximum a posteriori) optimization targets. More sophisti-
cated optimization targets are used to compensate for non-
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independence of example sequences (e.g. biased representa-
tion) (Eddy, 1996; Bruno, 1996; Durbin et al., 1998; Karchin
and Hughey, 1998; Sunyaev et al., 1998), or to maximize the
ability of a model to discriminate a set of true positive
example sequences from a set of true negative training
examples (Mamitsuka, 1996).

However, since HMM training algorithms are local optim-
izers, it pays to build HMMs on pre-aligned data whenever
possible. Especially for complicated HMMs, the parameter
space may be complex, with many spurious local optima that
can trap a training algorithm.

In contrast to parameter estimation, a suitable HMM archi-
tecture (the number of states, and how they are connected by
state transitions) must usually be designed by hand. A maxi-
mum likelihood architecture construction algorithm exists
for the special case of building profile HMMs from multiple
alignments (Durbin et al., 1998). Efforts have been made to
develop architecture learning algorithms for general HMMs
(Yada et al., 1996). One can also train fully connected
HMMs and prune low-probability transitions at the end of
training (Mamitsuka, 1996).

More or less formal probabilistic models are increasingly
important in biological analysis, particularly in complicated
analysis problems with many model parameters. Because
many problems in computational biology reduce to some
sort of linear ‘sequence’ analysis, probabilistic models based
on HMMs have been applied to many problems. Other bio-
logical applications of HMMs include gene finding (Krogh
et al., 1994b; Kulp et al., 1996; Burge and Karlin, 1997; Hen-
derson et al., 1997; Krogh, 1997; Lukashin and Borodovsky,
1998), radiation hybrid mapping (Slonim et al., 1997), gen-
etic linkage mapping (Kruglyak et al., 1996), phylogenetic
analysis (Felsenstein and Churchill, 1996; Thorne et al.,
1996) and protein secondary structure prediction (Asai et al.,
1993; Goldman et al., 1996). In general, the more a problem
resembles a linear sequence analysis problem—i.e. the less
it depends on correlations between ‘observables’ (e.g. resi-
dues)—the more useful HMM approaches will be. Profile
HMMs and HMM-based gene finders have probably been
the most successful applications of HMMs in computational
biology. On the other hand, protein secondary structure pre-
diction is an area in which the state of the art is neural net
methods that outperform HMM methods by using extensive
local correlation information that is not necessarily easy to
model in an HMM (Rost and Sander, 1993).

Profile HMMs

Krogh et al. (1994a) introduced an HMM architecture that
was well suited for representing profiles of multiple se-
quence alignments. For each consensus column of the mul-
tiple alignment, a ‘match’ state models the distribution of
residues allowed in the column. An ‘insert’ state and ‘delete’

Fig. 2. A small profile HMM (right) representing a short multiple
alignment of five sequences (left) with three consensus columns.
The three columns are modeled by three match states (squares
labeled m1, m2 and m3), each of which has 20 residue emission
probabilities, shown with black bars. Insert states (diamonds labeled
i0–i3) also have 20 emission probabilities each. Delete states (circles
labeled d1–d3) are ‘mute’ states that have no emission probabilities.
A begin and end state are included (b,e). State transition probabilities
are shown as arrows.

state at each column allow for insertion of one or more resi-
dues between that column and the next, or for deleting the
consensus residue. Profile HMMs are strongly linear, left–
right models, unlike the general HMM case. Figure 2 shows
a small profile HMM corresponding to a short multiple se-
quence alignment.

The probability parameters in a profile HMM are usually
converted to additive log-odds scores before aligning and
scoring a query sequence (Barrett et al., 1997). The scores for
aligning a residue to a profile match state are therefore com-
parable to the derivation of BLAST or FASTA scores: if the
probability of the match state emitting residue x is px, and the
expected background frequency of residue x in the sequence
database is fx, the score for residue x at this match state is log
px/fx.

For other scores, profile HMM treatment diverges from
standard sequence alignment scoring. In traditional gapped
alignment, an insert of x residues is typically scored with an
affine gap penalty, a + b(x – 1), where a is the score for the
first residue and b is the score for each subsequent residue in
the insertion. In a profile HMM, for an insertion of length x
there is a state transition into an insert state which costs log
tMI  (where tMI  is the state transition probability for moving
from the match state to the insert state), (x – 1) state transi-
tions for each subsequent insert state that cost log tII , and a
state transition for leaving the insert state that costs log tIM .
This is akin to the traditional affine gap penalty, with the gap
open cost as a = log tMI  + log tIM , and the gap extend cost as
b = log tII .

However, in a profile HMM, these gap costs are not arbit-
rary numbers. This is an example of why probabilistic mo-
dels have useful and non-trivial optima. Imagine that we
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were trying to optimize the gap parameters of a model by
maximizing the score of the model on a training set of
example sequences. In a profile with ad hoc gap costs, we
could trivially maximize the scores just by setting all gap
costs to zero, but the alignments produced by a profile with
no gap penalties would be terrible. In the profile HMM, in
contrast, the probability of a transition to an insert is linked
to the probability of transition to a match and not inserting;
profile HMMs have a cost for the match state to match state
transition that has no counterpart in standard alignment. As
we lower the gap cost by raising the transition probability tMI
towards 1.0, the probability of the match–match transition
tMM falls towards zero, and thus the cost for sequences with-
out an insertion approaches negative infinity. There is, there-
fore, a trade-off point in choosing the state transition prob-
abilities where the cost for the sequences that do have an in-
sertion is balanced against the cost for the sequences that do
not.

Additionally, the inserted residues are associated with in-
sert state emission probabilities in the HMM. If these
emission probabilities are the same as the background amino
acid frequency, then the score of inserted residues is log
fx/fx = 0. In traditional alignment, inserted residues also have
no cost besides the affine gap penalty. The profile HMM for-
malism forces us to see that this zero cost corresponds to an
assumption that unconserved insertions in protein structures
have the same residue distribution as proteins in general.
However, the assumption is usually wrong. Insertions tend
to be seen most often in surface loops of protein structures,
and so have a bias towards hydrophilic residues. Profile
HMMs can capture this information in the insert state
emission distributions.

Profile HMM software

Several available software packages implement profile
HMMs or HMM-like models (Table 1). One important dif-
ference between these packages is the model architecture
they adopt (Figure 3). The philosophical divide is between
‘profile’ models and ‘motif’ models. By ‘profile’ models, I
mean models with an insert and delete state associated with
each match state, allowing insertion and deletion anywhere
in a target sequence. By ‘motif’ models, I mean models
dominated by strings of match states (modeling ungapped
blocks of sequence consensus) separated by a small number
of insert states modeling the spaces between ungapped
blocks. 

SAM (Hughey, 1996), HMMER (S.R.Eddy, unpublished),
PFTOOLS (Bucher et al., 1996) and HMMpro (Baldi et al.,
1994) implement models based at least in part on the original
profile HMMs of Krogh et al. (1994a). These packages have

Fig. 3. Different model architectures used in current methods. State
transitions are shown as arrows and emission distributions are not
represented. Numbered squares indicate ‘match states’. Diamonds
indicate ‘insert states’. Match and insert states each have emission
distributions over 4 or 20 possible nucleic or amino acid symbols.
Circles indicate non-emitting delete states and other special non-
emitting states such as begin and end states. From top to bottom:
BLOCKS-style ungapped motifs, represented as an HMM; the
multiple motif model in META-MEME; the original profile HMM
of Krogh et al.; and the ‘Plan 7’ architecture of HMMER 2,
representative of the new generation of profile HMM software in
SAM, HMMER and PFTOOLS.

augmented that simple model to deal with multiple domains,
sequence fragments and local alignments, as illustrated by
the HMMER 2.0 ‘Plan 7’ model architecture in Figure 3.
Thus, local versus global alignment is not necessarily in-
trinsic to the algorithm (as is usually thought, for instance, in
the distinction between the global ‘Needleman/Wunsch’ and
local ‘Smith/Waterman’ algorithms), but can be dealt with
probabilistically as part of the model architecture. Local
alignments with respect to the model are allowed by non-
zero state transition probabilities from a begin state to inter-
nal match states, and from internal match states to an end
state (dotted lines in Figure 3). Local alignments with respect
to the sequence are allowed by non-zero state transitions on
the flanking insert states (shaded in the Plan 7 architecture in
Figure 3). More than one hit to the HMM per sequence is
allowed by a cycle of non-zero transitions through a third
special insert state.
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Table 1. Internet sources for obtaining some of the existing profile HMM
and HMM-like software packages

Software URL

SAM http://www.cse.ucsc.edu/research/compbio/sam.html

HMMER http://hmmer.wustl.edu/

PFTOOLS http://ulrec3.unil.ch:80/profile/

HMMpro http://www.netid.com/

GENEWISE http://www.sanger.ac.uk/Software/Wise2/

PROBE ftp://ncbi.nlm.nih.gov/pub/neuwald/probe1.0/

META-MEME http://www.cse.ucsd.edu/users/bgrundy/metameme.1.0.html

BLOCKS http://www.blocks.fhcrc.org/

PSI-BLAST http://www.ncbi.nlm.nih.gov/BLAST/newblast.html

These profile HMMs are rather general, allowing inser-
tions and deletions anywhere in a sequence relative to the
consensus model. Intuitively, they should be more sensitive
than ungapped models. However, in practice, there is a trade-
off between increasing the descriptive power of the model
and the difficulty in determining an increasingly large
number of free parameters. A complex model is more prone
to overfitting the training data and failing to generalize to
other sequences. SAM and HMMER use mixture Dirichlet
priors on most distributions to help avoid overfitting and to
limit the effective number of free parameters (Sjolander,
1996). It is possible to reduce the effective number of free
parameters even further by adopting hybrid HMM/neural
network techniques (Baldi and Chauvin, 1996). Nonethe-
less, this relatively unconstrained freedom to insert and de-
lete anywhere makes these models somewhat difficult to
train from initially unaligned sequences. HMMER and
PFTOOLS are used primarily to build database search mo-
dels from pre-existing alignments, such as those in the Pfam
and PROSITE Profiles databases (see below).

PROBE (Neuwald et al., 1997), META-MEME (with its
brethren MEME and MAST) (Grundy et al., 1997) and
BLOCKS (Henikoff et al., 1998) assume quite different
‘motif’ models. In these models, alignments consist of one
or more ungapped blocks, separated by intervening se-
quences that are assumed to be random (Figure 3). The
handling of these gaps in BLOCKS is ad hoc. PROBE and
META-MEME adopt probabilistic models for the gaps.
META-MEME, interestingly, fits its models into HMMER
format. The motif models can therefore be viewed as special
cases of profile HMMs; indeed, HMMER, SAM and
PFTOOLS have various options for creating motif-like mo-
dels. The strength here is that by limiting the freedom of the
model a priori, the HMM training problem is made more
tractable. These approaches can be very powerful for dis-
covering conserved motifs in initially unaligned sets of se-
quences. PROBE, for instance, has been turned loose on a
fully automated exercise in identifying domain families in

the current protein database starting with single randomly
selected query sequences, with impressive results (Neuwald
et al., 1997).

GENEWISE is a sophisticated ‘framesearch’ application
that can take a HMMER protein model and search it against
EST or genomic DNA, allowing for frameshifts, introns and
sequencing errors (Birney and Durbin, 1997).

PSI-BLAST (Altschul et al., 1997) is not an HMM ap-
plication per se, but it uses some principles of full probabilis-
tic modeling to build HMM-like models from multiple align-
ments. Like the use of PROBE (Neuwald et al., 1997), PSI-
BLAST starts from a single query sequence and collects
homologous sequences by BLAST search. These homo-
logues are aligned to the query. An HMM-like search model
is built from the multiple alignment. The model is searched
against the database, new homologues are discovered and
added to the alignment, and a new model is built. The process
is iterated until no new homologues are discovered. PROBE
and PSI-BLAST both illustrate the power of automating it-
erative profile searches. The remarkable speed of PSI-
BLAST also demonstrates that the fast BLAST algorithm
can be applied to position-specific scoring systems and
gapped alignments, and hence to profile HMMs.

With the exception of PSI-BLAST, profile HMM search
algorithms are computationally demanding. Fast hardware
implementations of Gribskov profile searches (Gribskov et
al., 1987) are available from several manufacturers, includ-
ing Compugen and Time Logic. These systems are currently
being revised to accommodate profile HMMs and the exist-
ing PROSITE and PFAM HMM libraries. HMM approaches
are also readily parallelized (Grundy et al., 1996; Hughey,
1996). Even more esoteric speed-ups are also possible. For
instance, Intel Corporation has made a white paper available
on using MMX assembly instructions to parallelize the Viter-
bi algorithm and get about a 2-fold speed increase on Intel
hardware (http://developer.intel.com/drg/mmx/AppNotes/
AP569.HTM). This could be significant, since some of the
WWW-based HMM servers are backed by Intel processor
farms running Linux or FreeBSD, such as the ISREC/Prosite
INSECT farm (Jongeneel et al., 1998).

Profile HMM libraries

Profile HMM software is well suited for modeling a particular
sequence family of interest and finding additional remote homo-
logues in a sequence database. Suppose instead that I have a
query sequence of interest, and I am interested in whether this
sequence contains one or more known domains. This problem
arises especially in high-throughput genome sequence analysis,
where standard ‘top hit’ BLAST analyses can be confused by
proteins with several distinct domains. Now I need to search the
single query sequence against a library of profile HMMs, rather
than a single profile HMM against a database of sequences.
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Building a library of profile HMMs in turn requires a large
number of multiple alignments of common protein domains.
A database of annotated multiple alignments and pre-built
profile HMMs becomes desirable.

Two large collections of annotated profile HMMs are cur-
rently available: the Pfam database (Sonnhammer et al., 1997,
1998) and the PROSITE Profiles database (Bairoch et al.,
1997). The PROSITE Profiles database is a supplement to the
widely used PROSITE motifs database; for families that can-
not be recognized by simple PROSITE motif patterns (regular
expressions which either match a sequence or do not), more
sensitive profile HMMs are developed. Both databases are
available via WWW servers, including on-line analysis
servers for submitting protein sequence queries (Table 2). A
new European Union funded initiative, called Interpro, has
established a collaboration among several sites interested in
effective protein domain annotation, including the Pfam,
PROSITE and PRINTS development teams as well as the
SWISS-PROT/TREMBL team.

The current pre-release of the PROSITE Profiles database
contains profiles for 290 protein domains, and the current
Pfam 3.1 release contains 1313 profiles. There is substantial
overlap between the two collections. It is not meaningful to try
to estimate how complete these databases are, because the
number of protein families in nature is unknown and probably
very large. Although there is much discussion of how many
protein families there are—the number 1000 is often cited
(Chothia, 1992)—such estimates typically make a false as-
sumption that all families have approximately equal numbers
of members (Orengo et al., 1994). However, a small number
of families (such as protein kinases, G-protein coupled recep-
tors and immunoglobulin superfamily domains) account for
a disproportionate number of sequences. The two databases
are therefore seeing diminishing returns as models of less
populous families are developed. For example, the 175 mo-
dels in Pfam 1.0 recognize one or more domains in ∼27% of
predicted proteins from the Caenorhabditis elegans genome
project, the 527 models in Pfam 2.0 recognize ∼35% and the

806 models in Pfam 3.0 recognize ∼42% (S.R.E. unpublished
data). Thus, an ∼5-fold increase in Pfam database size (175 to
806) resulted in only about a 50% increase in the number of
sequences recognized with significant scores. On the bright
side, the number of C.elegans sequences annotated by one or
more Pfam models is starting to approach the number that is
hit by one or more informative BLAST similarities to the non-
redundant sequence database (42% compared to ∼55%).

None of the profile servers is mature. Both profile software
and profile databases are rapidly improving and changing. In
particular, profile databases typically include domain models
that other databases may not yet have. Users are well advised
to search several domain annotation servers. The Interpro col-
laboration is expected to be extremely valuable as the various
database teams begin actively sharing alignment and annota-
tion data.

HMMs for fold recognition

Profile HMMs are sometimes viewed as ‘mere sequence mo-
dels’. However, profile scores can be calculated from struc-
tural data instead of sequences, e.g. ‘3D/1D profiles’ (Bowie
et al., 1991; Luthy et al., 1992). These structural profile ap-
proaches can readily be put into a full probabilistic, HMM-
based framework (Stultz et al., 1993; White et al., 1994). Di
Francesco and colleagues have used profile HMMs to model
secondary structure symbol sequences by modifying the
SAM code to emit an alphabet of protein secondary structure
symbols, training models on known secondary structures,
and aligning these models to secondary structure predictions
of new protein sequences (Di Francesco et al., 1997a,b).

The pejorative appellation of ‘mere sequence models’
seems to be applied to HMMs based on a misunderstanding
of the central assumption of position independence in
HMMs. Obviously, neighboring three-dimensional struc-
tural contacts influence the types of residue that will be ac-
cepted at any given position in a protein structure. How can
HMMs that explicitly assume position independence hope to
be a realistic model of protein structure?

Table 2. WWW analysis servers for analyzing protein sequences for known domains 

Profile HMM libraries:

Pfam (Sonnhammer et al., 1998) http://www.sanger.ac.uk/Pfam/

PROSITE profiles (Bairoch et al., 1997) http://ulrec3.unil.ch/software/PFSCAN_form.html

HMM-like methods:

BLOCKS (Henikoff et al., 1998) http://www.blocks.fhcrc.org/

Other protein domain family classification servers:

PRINTS (Attwood et al., 1998) http://www.biochem.ucl.ac.uk/bsm/dbbrowser/PRINTS/

ProClass (Wu et al., 1996) http://diana.uthct.edu/proclass.html

PRODOM (Corpet et al., 1998) http://www.toulouse.inra.fr/prodom.html

SBASE (Fabian et al., 1997) http://base.icgeb.trieste.it/sbase/
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The assumption of position independence only means that
when an HMM state scores a residue in a sequence, it does
so independently of the rest of that sequence’s alignment.
However, nothing says that the emission probability distribu-
tion at that state cannot be determined in the first place from
complex three-dimensional structural knowledge of the
training set. If I know that a residue is buried by spatially
neighboring hydrophobic residues, and this environment is
approximately constant among related structures in the pro-
tein family, I can build that knowledge into my model. What
HMMs cannot deal with efficiently are long-distance cor-
relations between residues, as is seen in RNA structural
alignments, where the complementarity of a pair of distant
sequence positions is more important than the identity of
either position by itself (Durbin et al., 1998). (Short-distance
correlation can be built into HMMs without much difficulty;
for example, gene-finding HMMs typically model the prob-
ability of coding hexamers instead of probabilities of single
residues.)

Many current fold recognition methods are not cast as
HMMs, but instead as sequence/structure ‘threading’ algo-
rithms with relatively ad hoc scores. However, any threading
scoring system for which a dynamic programming algorithm
can be used to find optimal sequence/structure alignments can
be recast as a full probabilistic HMM. This includes ‘frozen
approximation’ methods (Godzik et al., 1992), for instance.

The fold recognition section of the CASP (Current Asses-
sment of Structure Prediction) exercise (Moult et al., 1997)
is one of the most interesting anecdotal benchmarks of how
HMM techniques perform. In CASP, the sequences of pro-
tein ‘prediction targets’ whose structures are soon to be
solved by crystallography or NMR are made available to
computational structure prediction groups. After the struc-
tures become available, the success of the fold predictions is
evaluated. Ranking the performance of different methods in
CASP is difficult and somewhat subjective (Levitt, 1997).
Also, there is usually a variable and sometimes substantial
degree of expert human interpretation added to the auto-
mated methods (Murzin and Bateman, 1997). Nonetheless,
CASP has been a lively venue to explore the strengths and
weaknesses of fold recognition methods. At CASP2 last
year, HMM-based methods were among the techniques used
by several of the most successful prediction groups (Di Fran-
cesco et al., 1997; Karplus et al., 1997; Levitt, 1997; Murzin
and Bateman, 1997). Indeed, Murzin and Bateman (1997)
correctly predicted the folds of all six proteins they at-
tempted, using a combination of profile HMMs, secondary
structure prediction and expert knowledge.

Conclusion

The human genome project threatens to overwhelm us in a
deluge of raw sequence data. Successful large-scale se-

quence annotation is so difficult that some people almost
seem ready to give up on it (Wheelan and Boguski, 1998).
The development of robust methods for automated sequence
classification and annotation is imperative. Our hope in de-
veloping profile HMM methods is that we can provide a sec-
ond tier of solid, sensitive, statistically based analysis tools
that complement current BLAST and FASTA analyses. The
combination of powerful new HMM software and large se-
quence alignment databases of conserved protein domains
should help make this hope a reality.
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