
Article
Reserve Flux Capacity in t
he Pentose Phosphate
Pathway Enables Escherichia coli’s Rapid Response
to Oxidative Stress
Graphical Abstract
131- C Glucose

time (sec)

[m
et

ab
ol

ite
]

Flux RatiosMetabolomics

Ensemble Modeling

G6P

G6P

Glucose
NADPH NADP

ROS

H O2 2

G6PDH

Reserve 
Flux Capacity

Sensitivity
to H O  stress2 2

G6PDH

Finding regulatory interactions

 H O2 2

Approach

Results

S PE

M

... S PE

M

E. co
li
Highlights
d Characterization of the immediate metabolic response of

E. coli to oxidative stress

d Development of a high-performance ensemble modeling

computational pipeline

d Identification of NADPH feedback inhibition on G6PDH as key

regulatory interaction

d Cells without reserve flux capacity in PP pathway are

sensitive to oxidative stress
Christodoulou et al., 2018, Cell Systems 6, 569–578
May 23, 2018 ª 2018 Elsevier Inc.
https://doi.org/10.1016/j.cels.2018.04.009
Authors

Dimitris Christodoulou, Hannes Link,

Tobias Fuhrer, Karl Kochanowski,

Luca Gerosa, Uwe Sauer

Correspondence
sauer@ethz.ch

In Brief

Christodoulou et al. describe the

immediate metabolic response of E. coli

to oxidative stress and reveal the key

interactions that implement it. Combining

quantitative metabolite dynamics with a

high-performing ensemble modeling

computational pipeline, they reveal the

importance of a small molecule–protein

interaction in the rapid cellular response.

This interaction acts as a valve,

maintaining a reserve of flux, which can

be used rapidly when cells are exposed to

stress. Cells without such a reserve

capacity are more sensitive to oxidative

stress.
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SUMMARY

To counteract oxidative stress and reactive oxygen
species (ROS), bacteria evolved various mecha-
nisms, primarily reducing ROS through antioxidant
systems that utilize cofactor NADPH. Cells must
stabilize NADPH levels by increasing flux through
replenishing metabolic pathways like pentose
phosphate (PP) pathway. Here, we investigate the
mechanism enabling the rapid increase in NADPH
supply by exposing Escherichia coli to hydrogen
peroxide and quantifying the immediate metabolite
dynamics. To systematically infer active regulatory
interactions governing this response, we evaluated
ensembles of kinetic models of glycolysis and PP
pathway, each with different regulation mechanisms.
Besides the known inactivation of glyceraldehyde
3-phosphate dehydrogenase by ROS, we reveal the
important allosteric inhibition of the first PP pathway
enzyme by NADPH. This NADPH feedback inhibition
maintains a below maximum-capacity PP pathway
flux under non-stress conditions. Relieving this
inhibition instantly increases PP pathway flux upon
oxidative stress.We demonstrate that reducing cells’
capacity to rapidly reroute their flux through the PP
pathway increases their oxidative stress sensitivity.

INTRODUCTION

Bacteria continuously face environmental challenges that

range from nutrient fluctuations to physicochemical stresses.

A frequent challenge is oxidative stress because respiratory

metabolism produces reactive oxygen species (ROS) that

chemically damage cellular components (Mishra and Imlay,

2012; Imlay, 2013). Several evolved metabolic and other

responses counter the detrimental effects by detoxifying ROS

and alleviating acute damages on short and longer time

scales (Greenberg and Demple, 1989; Brumaghim et al., 2003;
Blanchard et al., 2007; Grant, 2008; Ralser et al., 2009; Rui

et al., 2010; Kr€uger et al., 2011; Mishra and Imlay, 2012; Baez

and Shiloach, 2013; Shimizu, 2013).

In the facultative aerobe Escherichia coli, the long-term de-

fense against ROS is coordinated by the transcription factors

OxyR and the SoxRS (Zheng and Storz, 2000; Seo et al.,

2015), the former of which responds primarily to the ROS

hydrogen peroxide (H2O2) (Nunoshiba et al., 1992). Since gene

expression-based responses require minutes to become effec-

tive (Chechik et al., 2008), immediate responses must rely on

already present anti-oxidative systems such as superoxide dis-

mutase, catalases, glutathione peroxidase, and non-enzymatic

antioxidants like the reducing agent glutathione to scavenge

ROS (Kohen and Nyska, 2002; Finkel, 2003). In steady state,

the pool of reduced glutathione is continuously replenished

through redox reactions in central metabolism. Upon sudden

oxidative stress, however, the cellular redox state must be stabi-

lized immediately to circumvent stalling of anabolic reactions

and thus potential death. From bacteria to humans cells, most

organisms increase the reduction rate of NADP+ to NADPH

mainly by rerouting their glycolytic flux into the pentose phos-

phate (PP) pathway (Ralser et al., 2007; Rui et al., 2010; Anasta-

siou et al., 2011; Kuehne et al., 2015). The prevailing model stip-

ulates that ROS directly oxidize lower glycolytic enzymes (Ralser

et al., 2009) and thereby block glycolytic flux, such that upstream

accumulating intermediates passively cause the rapid rerouting

into the PP pathway (Ralser et al., 2007, 2009). This oxidative

block of glycolysis was an important discovery, but it is presently

not clear whether it is sufficient to achieve the rapid flux

rerouting. Indeed, inconsistent with this model, hexose levels

in mammalian cells do not increase prior to accumulation of

PP pathway intermediates (Kuehne et al., 2015).

To understand the combination of flux regulating mechanisms

necessary to achieve the immediate replenishment of NADPH for

glutathione reduction upon sudden oxidative stress in E. coli, we

determined the dynamic metabolome and 13C-tracer response

within the first minute after exposure to H2O2. For data interpre-

tation, we developed a computational framework that evaluates

ensembles of thousands of kinetic models of glycolysis and the

PP pathway, each with different combinations of regulation

mechanisms. Our computational framework was implemented
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Figure 1. Profiles of the TCACycle Interme-

diates upon H2O2 Treatment

The changes of each metabolite relative to

the untreated condition (time point 0) are shown,

see also Table S6. Solid black lines represent the

average relative change from three independent

biological experiments, with the shaded area

denoting the SD.
using concepts from parallel computing, allowing the efficient

evaluation of large numbers of structurally distinct kinetic

models. This enables unbiased identification of novel regulatory

interactions and quantitative assessment of their function in a

network context. By rigorous testing of these models against

the experimental data, we identify the most relevant molecular

interactions required for the rapid flux rerouting from glycolysis

to the PP pathway and validate them in vitro. Our results chal-

lenge the current model for this flux rerouting and reveal a large

reserve capacity in the PP pathway under normal steady-state

growth conditions.

RESULTS

The Immediate Metabolic Response of E. coli to H2O2

Stress
To identify the timescale of the immediate oxidative stress

response, we challenged E. coli cultures growing exponentially

on glucose with 1 mMH2O2 using a variant of the filter cultivation

method (Yuan et al., 2008; Link et al., 2013), and followed the dy-

namics of 30 intracellular metabolites for up to 1min. The contin-

uous increase of aconitate, up to 6-fold, together with the

decrease of succinate, succinyl-CoA, and malate in the tricar-

boxylic acid (TCA) cycle (Figure 1), are consistent with the known

strong reduction of isocitrate dehydrogenase activity upon

exposure to oxidative stress (Murakami et al., 2006; Sandoval

et al., 2011). Declining levels of the redox cofactor NADPH indi-

cate its consumption for the ROS defense (Figure 2A). The most

rapid responses, already within 5 s, occurred in all measured PP

pathway intermediates, most pronounced for 6-phosphogluco-

nate in the oxidative branch (Figure 2A). Responses in glycolysis

were much slower with a gradual increase and decrease over

30 s for fructose-1,6 bisphosphate (FBP) and phosphoenolpyr-

uvate, respectively. Hexose phosphate levels in upper glycolysis

remained invariant. Increasing PP pathway intermediate and

FBP levels and decreasing phosphoenolpyruvate levels upon
570 Cell Systems 6, 569–578, May 23, 2018
oxidative stress are consistent with

observations from yeast and mammalian

cells (Ralser et al., 2009; Kuehne

et al., 2015).

To elucidate oxidative stress-trig-

gered flux changes that cause the rapid

metabolite dynamics, we repeated the

experiment by perfusing cells on filter

with H2O2 and a medium containing

[1-13C] glucose. From liquid chromatog-

raphy-tandem mass spectrometry-

determined dynamic isotope distribu-

tions (Link et al., 2013), we quantified
the ratio of unlabeled versus labeled fructose-6-phosphate to

estimate relative flux changes through the PP pathway. Since

the carbon at position 1 of glucose is liberated as CO2 in the

oxidative PP pathway, increasing proportions of PP pathway

flux relative to glycolysis will lower the fractional labeling of fruc-

tose-6-phosphate (Figure 2B). Our results provide a lower

bound for the oxidative PP pathway flux and show that at least

13% of glucose catabolism proceeds through the PP pathway

during unstressed growth, which doubles to at least 28% about

1 min after oxidative stress (Figure 2C). A similarly rapid and

strong flux increase in the PP pathway flux for regeneration of

NADPH to fuel the glutathione system has been reported in

other organisms (Kuehne et al., 2015). This flux rerouting occurs

well before E. coli can change enzyme abundance, and hence

suggests either substrate or allosteric regulation. Since hexose

phosphate levels remain constant during this time frame, the

previously postulated block in glycolytic flux and substrate-

mediated overflow into the PP pathway (Ralser et al., 2007)

cannot be the only explanation. Instead, our results strongly

suggest that E. coli does not use the full flux capacity of the

oxidative PP pathway enzymes during growth on glucose

such that the flux can be increased without enzyme synthesis.

This result is consistent with the discrepancy between in vitro-

determined maximal enzyme activities in the oxidative

PP pathway of approximately 3.2 mmol g�1 h�1 (Fuhrer and

Sauer, 2009) and the about 40% lower actual intracellular fluxes

of 2.0 mmol g�1 h�1 reported previously (Fuhrer et al., 2005;

Park et al., 2016).

Model-Based Identification of Mechanisms that Enable
Rapid Adaptation to Oxidative Stress
How does E. coli rapidly mobilize this ‘‘reserve flux capacity’’

in the PP pathway? To identify the mechanism, we developed

a mathematical model of glycolysis and PP pathway with 12

ordinary differential equations that consists of 12 metabolites

(state variables) and 26 reactions, able to represent
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Figure 2. The Immediate Metabolic Response of E. coli to Oxidative Stress

(A) Profiles of glycolytic and PP pathway intermediates, upon H2O2 treatment of glucose-grown cells on filter (see STAR Methods). The changes of each

metabolite relative to the untreated condition (time point 0) are shown, see also Table S6. Solid black lines represent the average relative change from three

independent biological experiments, with the shaded area denoting the SD. Abbreviations are as follows: G6P, glucose 6-phosphate; F6P, fructose 6-phosphate;

DHAP, dihydroxyacetone phosphate; 6PG, 6-phospho gluconate; P5P, pentose 5-phosphate.

(B)When cells are treatedwith medium containing [1-13C]glucose, the 1-C of glucose is liberated as CO2 in the oxidative PP pathway. Bymeasuring the unlabeled

versus the labeled fraction of F6P we can quantify the ratio of the flux that goes through glycolysis (producing 100% labeled F6P) and the flux that goes through

the catabolic PP pathway (producing 100% unlabeled F6P).

(C) Relative changes in flux through the PP pathway. The experiment was performed by perfusing cells on the filter with a medium containing [1-13C] (M+1)

glucose with or without H2O2. Time point 0 represents the culture prior to label perfusion and subsequently filters were removed and cells immediately quenched

(legend continued on next page)
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Figure 3. Inference of In Vivo Functional Metabolite-Enzyme Interactions and the Parallel Computational Framework that Implements It

(A) Representation of the system we consider for the implemented computational models, for growth on glucose. Black arrows indicate biochemical reactions,

with reversible reactions indicated by arrows in both directions (see also Table S2). ROS is a state variable in our system, and is scavenged by consumption of

NADPH. Every irreversible reaction can be a target for activation of inhibition of each one of the state variables of our system.

(B) Metabolite-enzyme interactions are exhaustively tested in single interactions and in pairs. Each of the approximately 12,000 model topologies is simulated at

least 2,000 times with different parameters to account for parametric uncertainty in the kinetics. Each model of the approximately 24 million models is simulated

and then evaluated based on its capacity to describe the dynamic experimental metabolite data.

(C) Parallel computational framework for the evaluation of millions of kinetic models on their capacity to explain the experimental data. The framework allows the

simulation of millions of kinetic models by the distributed, parallel execution of many simulations by different workers-CPU processors (see also STARMethods).
glutathione detoxification of ROS by the oxidation of NADPH

(Figure 3A). Kinetics of reversible and irreversible reactions

were modeled with mass action and Michaelis-Menten laws,

respectively. The binding constants (KM) were randomly

sampled in a 0.1–10 times range around their literature values

to account for potential parametric uncertainty. Maximum

reaction rates (Vmax) were calculated from flux distributions

during steady-state growth on glucose, as was described

before (Link et al., 2013) (Supplemental Information) and the
at the indicated time points after label perfusion. Changes in the fraction of unlabe

two different cases are shown. The control experiment (no H2O2 stress), is repre

replicates, with the gray-shaded area representing the SD. Treatment with H2O2

biological replicates, with the red shaded area representing the SD.

572 Cell Systems 6, 569–578, May 23, 2018
ROS flux was treated as a free parameter. If inhibition of

glyceraldehyde 3-phosphate (GAP) dehydrogenase was

sufficient to explain metabolite dynamics and flux rerouting

(Ralser et al., 2007, 2009), amending the above model with

direct ROS inhibition of lower glycolysis should capture the

experimentally determined metabolite dynamics. While this

amended base model was indeed able to describe glycolysis

dynamics to some extent, it failed entirely to describe the

PP pathway dynamics (Figure S1), suggesting that, akin to
led fructose-6-phosphate of cells perfused with [1-13C] glucose on filter in the

sented with a black line which shows the average of two individual biological

stress is represented with a red line which shows the average of two individual



Figure 4. Relevance of Allosteric Interactions Based on the

Frequency of Occurrence in Models that Improve the Base Model

and the Information Content of the Best Model with This Interaction

(DAIC)

For the selected interactions, in parenthesis, the different ranks this interaction

achieved in frequency, score and in the overall averaged rank, are shown.

The type of interaction is indicated as activation (->) and inhibition (-I).

Table 1. Rank of the Best Ten Interactions, as Inferred from the

Combined Computational-Experimental Approach

# Enzyme Metabolite

Activation/

Inhibition

Pairwise

Average Rank

1 G6PDH NADPH (�) 2.0

2 G6PDH FBP (+) 2.5

3 G6PDH PEP (�) 7.5

4 PFK S7P (+) 8.5

5 PPC NADPH (�) 11.0

6 PPS NADPH (+) 13.0

7 PYK S7P (�) 13.5

8 GND FBP (+) 14.5

9 PYK NADPH (�) 15.0

10 PPC PYR (�) 17.0

Pairwise average rank (fifth column, Table 1) was calculated as the

average of the different ranks each interaction achieved in individual met-

rics, namely frequency and score, stemming from the results of approx-

imately 24 million pairwise simulations. Enzymes affected by metabolites

(activated or inhibited) are shown in columns 2, 3, and 4 of the table,

respectively (see also Tables S3 and S4). Abbreviations: G6PDH, glucose

6-phosphate dehydrogenase; GND, phosphogluconate dehydrogenase;

PFK, phosphofructokinase; PPC, phosphoenolpyruvate carboxylase;

PPS, phosphoenolpyruvate synthase; NADPH, nicotinamide adenine

dinucleotide phosphate; FBP, fructose bisphosphate; PEP, phospho-

enolpyruvate; S7P, sedoheptulose 7-phosphate; PYR, pyruvate.

mammalian cells (Kuehne et al., 2015), inhibition of GAP dehy-

drogenase is perhaps necessary but not sufficient.

To identify putative missing allosteric regulation, we systemat-

ically tested activation and inactivation of each irreversible reac-

tion bymetabolites through adding a power law term that affects

themaximum reaction rate. Reversible reactions were not tested

systematically to reduce the computational complexity of the to-

pological search and because there is scarce evidence for their

regulation by small molecules (Reznik et al., 2017). To further

reduce the complexity, metabolites with similar signals, such

as the hexose phosphates, were lumped (Link et al., 2013) and

metabolites such as dihydroxyacetone phosphate (DHAP) that

do not change over time were excluded from the analysis (Fig-

ure 2). We thereby generated an ensemble of about 12,000

structurally different models, by first compiling all single acti-

vating and inhibiting interactions of nine irreversible enzymes

times nine metabolites, and consequently combining all pairs

from this set, excluding the cases where two metabolites act

on the same enzyme. Each structurally different model consists

of the base model with GAP dehydrogenase inhibition by ROS

plus two additional putative allosteric interactions (Figure 3B).

As above, the kinetic parameters KM and Vmax were randomly

sampled 2,000 times around their literature values for each

model, thus requiring 24 million simulations in total (see also

Table S2). Such a large number of simulations typically pre-

cludes systematic evaluation of structural and parametric uncer-

tainties in kinetic models (Jia et al., 2012; Sunnaker et al., 2013,

2014; Babtie et al., 2014; Link et al., 2014). To overcome this

limitation at a reasonable computation time, we used concepts

from parallel computing and developed a scalable framework

to perform thousands of simulations in parallel (Figure 3C, Sup-

plemental Information). Using our parallel framework, we tested

all 12,000 models for their capacity to describe the metabolite

dynamics after exposure to H2O2 stress. The information content

of these models was assessed by the Akaike information
criterion that quantifies the capacity to describe the data and

penalizes for additional interactions/parameters (Turkheimer

et al., 2003). This analysis provides us with two quantitative mea-

sures that can be used to evaluate the biological relevance of a

given interaction; i.e., the frequency at which individual interac-

tions occur in models that improved the amended base model

and the score of information content achieved by the best model

carrying these interactions (Figure 4).

The results of these computations show that glucose-

6-phosphate (G6P) dehydrogenase and phosphogluconate

dehydrogenase in the oxidative branch of the PP pathway

occur at high frequency as putative allosteric regulation targets

in the good models and also achieve the highest scores (Fig-

ure 4 and Table S4). In particular, increase of the G6P dehydro-

genase activity was key to improve the base model, and the

most prominent interaction that mechanistically achieved this

activation was relief from NADPH inhibition, which is rapidly

reduced upon stress (Figure 2A). In fact, this NADPH inhibition

of G6P dehydrogenase improved the base model in combina-

tion with any of the 144 possible regulation pairs (Table S4).

Our modeling framework is primarily a hypothesis-generation

tool in which different putative interactions (or combinations

thereof) may achieve similar model responses. To identify those

that most probably occur in vivo, we evaluated the different in-

teractions in the 24 million simulations (i.e., 2,000 runs for each

of the 12,000 models) by calculating the overall rank for every

interaction, based on the average of the different ranks each

interaction achieved in frequency and score (Tables 1 and

S3). The by far highest rank was achieved by NADPH inhibition

and FBP activation of G6P dehydrogenase, followed with quite

a distance by phosphoenolpyruvate (PEP) inhibition of G6P

dehydrogenase.
Cell Systems 6, 569–578, May 23, 2018 573
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Figure 5. Results from the Model-Based Identification of Mechanisms that Enable Rapid Adaptation and the Importance of the Reserve

Capacity of Flux in G6P Dehydrogenase

(A) In silico relevance of ROS oxidation (inhibition) of lower glycolysis and NADPH inhibition of G6P dehydrogenase. Black dots represent the dynamic exper-

imental data, the gray line shows simulation results of the amended base model (with ROS inhibitory interaction to lower glycolysis, see also Figure S1). Blue

dashed lines show the simulation results of the best single interaction model, NADPH inhibition of G6P dehydrogenase. Blue solid lines show the simulation

results of the best pairwise interaction model, which includes NADPH inhibition of G6P dehydrogenase and activation of phosphogluconate dehydrogenase by

FBP (see also Tables S3, S4, and S5).

(B) G6P isomerase deletion mutants (Dpgi) are blocked in upper glycolysis and rely exclusively on the PP pathway for glucose catabolism.

(C) Importance of reserve flux capacity for cell tolerance against oxidative stress. Dpgi mutants are less tolerant to H2O2 mediated oxidative stress, with

approximately half the H2O2 minimal inhibitory concentration (MIC) wild-type (WT) strains have.

(D) Growth of a titratable G6P dehydrogenase E. coli strain before and after challenge with 20 mM of H2O2. The black line corresponds to approximately WT

expression level (see also Figure 6G) and decreasing shades of gray represent lower expression levels, as indicated by the isopropyl b-D-1-thiogalactopyr-

anoside (IPTG) induction levels above each line. The H2O2 dosage was chosen as the MIC of the WT (Figure 5C). Inset: the same data are shown in log scale.

Growth rates before the oxidative stress treatment are reported in Figure 6.
To differentiate between the two most probable mechanisms

of modulating G6P dehydrogenase activity, we determined the

enzyme’s kinetic parameters in vitro (see Table S1). While FBP

does not alter G6P dehydrogenase activity at the tested concen-

tration of 2 mM (see Table S1), we observed strong inhibition by

NADPH with a KI in the range of 15–35 mM (Table S1), as has

been previously reported but without offering a quantitative

functional understanding in the network context (Sanwal, 1970;

Olavarrı́a et al., 2012). This strong inhibition by NADPH seems

to be the reason for the previously discussed discrepancy of
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approximately 40% between maximal in vitro activity and in vivo

G6P dehydrogenase fluxes, since simulated initial reaction

velocities of the enzyme decrease significantly when NADPH

inhibition is included (Figure S2).

The remaining question is how relevant this NADPH inhibition

is in vivo; i.e., how well it can explain the data already on its

own. For this purpose, we tested all 162 models with only

single putative regulatory interactions in addition to the known

ROS inactivation of GAP dehydrogenase by extensive random

sampling of the parameter space 20,000 times. Consistent with
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Figure 6. The Titratable G6P Dehydroge-

nase E. coli Strain with Reduced Levels

of G6P Dehydrogenase—and Therefore

Reduced Level of Reserve Capacity—Is

ImpairedWhen Exposed to Oxidative Stress

(A–D) The titratable G6P dehydrogenase E. coli

strain with approximately the wild-type (WT) levels

of the enzyme (black line) was challenged with

20 mM of H2O2 stress, which was found to be the

MIC of H2O2 for WT E. coli (Figure 5C). The optical

density (OD) of the culture wasmeasured over time

and growth rates were calculated before and after

oxidative stress treatment. The same experiment

and calculations were performed for different

titration levels that translate to lower enzyme

levels. These are shownwith different gray shades:

the lighter the shade the lower the enzyme level.

Solid lines represent the average OD value at each

time point and the shaded area denotes the SD. To

quantify the effect the different enzyme levels (and

reserve capacity levels) have on the fitness of the

culture, we calculated the value

d =

ODWTpost stress
ODWTpre stress

�
ODXpost stress
ODXpre stress

ODWTpost stress
ODWTpre stress

,

where ODWTpost stress
is the OD value of the strain

induced with 50 mMof IPTG approximately 4 hours

after the insult of 20mMof H2O2.ODWTpre stress
is the

OD value of the same strain, just before the stress

was applied to the growing cells. Similarly,

ODXpost stress
is the OD value of any of the other four

cases (induction with 25, 12.5, 6.25, or 3.125 mMof

IPTG) after stress andODXpre stress
just before stress.

This value d provides an estimate of how much

loss of fitness the strains experience, relative to the

highest induced strain (approximating WT).

(E) Themean of theminimum values of the dln(OD)/

dt is shown, for each strain, indicating the

maximum effect the stress can have in the culture in terms of rate of change of the ln(OD). Stars denote statistically significant differences, ns denotes non-

significant differences. In particular: p value (50 versus 25) = 0.03, p value (50 versus 12.5) = 0.02, p value (50 versus 6.25) = 0.07, p value (50 versus 3.125) = 0.02 (t

test function, MATLAB).

(F) Mean expression level of G6P dehydrogenase in the five different titration levels, normalized for the OD of every culture. Error bars denote the SD from two

biological replicates.

(G) WT E. coli OD measurements over time, treated with 20 mM H2O2 stress at the indicated time against the titratable G6P dehydrogenase E. coli strain

treated with 50 mM IPTG and stressed at the (same) indicated time. Black lines show mean values and shaded gray areas show SD as defined by at least two

biological replicates. Pre-stress average growth rates of the titratable G6P dehydrogenase strain with different IPTG level: 50 mM – 0.56 hr�1, 25 mM – 0.56 hr�1,

12.5 mM – 0.57 hr�1, 6.25 mM – 0.57 hr�1, 3.125 mM – 0.55 hr�1.
our previous results, NADPH inhibition of G6P dehydrogenase

was again the best model topology (Table S5). This single

interaction model could already explain the PP pathway metab-

olite dynamics rather well (Figure 5A). The main improvement of

the best pairwise interaction model (Figure 5A) was a better fit

to the short-term dynamics of 6-phosphogluconate. Thus, the

most parsimonious explanation of all results is that the

rapid drop of NADPH levels (Figure 2A) alleviates inhibition of

G6P dehydrogenase to exploit the reserve capacity of the

PP pathway, which, in turn, stabilizes NADPH levels within

15 s (Figure 5A, NAPDH).

The Reserve PP Pathway Flux Capacity Is Important for
Oxidative Stress Resistance
Since the ‘‘reserve PP pathway flux capacity’’ during unstressed

growth on glucose was readily released during the initial oxida-
tive stress response, the results suggest that E. coli invests re-

sources during normal growth to maintain the capacity for rapid

stabilization of NADPH levels until transcriptional or other regula-

torymechanisms can be implemented. Consequently, cells lack-

ing such plasticity in the PP pathway should be more sensitive to

oxidative stress. To test this hypothesis, we used a G6P isom-

erase deletion mutant (Dpgi) with a block in upper glycolysis

that therefore relies exclusively on the PP pathway for glucose

catabolism (Figure 5B) (Canonaco et al., 2001; Usui et al.,

2012). The resulting NADPH overproduction is balanced through

the soluble transhydrogenase UdhA during steady-state growth

of themutant (Sauer et al., 2004). Since there is no known stress-

specific signal to this transhydrogenase that is not normally

active in the wild-type under our conditions, we hypothesized

that this Dpgi mutant has no means to rapidly increase its

NADPH production with its PP pathway running already at
Cell Systems 6, 569–578, May 23, 2018 575



maximum capacity, hence should be more sensitive to oxidative

stress. Although slowly growing strains are intrinsically more

tolerant to stress (Gilbert et al., 1990; Claudi et al., 2014), the

slow-growing Dpgi mutant was indeed more sensitive to H2O2-

mediated oxidative stress; i.e., the minimal inhibitory concentra-

tion was 10 mM compared with 20 mM for the wild-type (Fig-

ure 5C). Oxidative stress sensitivity of Dpgi mutants has been

reported before, but no convincing metabolic explanation was

offered (Valdivia-González et al., 2012; Byrne et al., 2014).

Since the Dpgi mutant has a different metabolism from wild-

type, indirect influences on the cells’ sensitivity to stress cannot

be excluded. To more directly validate the reserve flux capacity,

we hypothesized that oxidative stress sensitivity should scale

with the reserve PP pathway flux capacity. Using a titratable

G6P dehydrogenase (Zwf) E. coli strain, we gradually decreased

the enzyme’s expression level and hence the pathway’s

reserve capacity. Upon exposure to 20 mM H2O2, decreasing

G6P dehydrogenase expression gradually increased the strain’s

sensitivity to the oxidative stress (Figures 5D and 6). Overall, our

physiological results strongly support the conclusion of a reserve

PP pathway flux capacity during normal growth that can be

exploited upon stress to rapidly replenish increased cellular

NADPH demand.

DISCUSSION

By combining dynamicmetabolomics, 13C labeling experiments,

and computational modeling, we provided strong evidence for

the key metabolic mechanisms that coordinate the immediate

resistance to oxidative stress in E. coli. During unstressed

steady-state growth, cells invest into a higher flux capacity of

the oxidative PP pathway than required to support growth.

Within seconds, this reserve capacity can be utilized primarily

through the release of NADPH inhibition of G6P dehydrogenase

to instantaneously increase the PP pathway flux for the reduction

of NADPH from NADP+. This valve-like mechanism enables a

passive rapid response to any type of condition that depletes

NADPH levels, such as the glutathione-dependent defense

against ROS (Fang et al., 2002; Kohen and Nyska, 2002; Finkel,

2003; Stanton, 2012). We demonstrated that cells lacking such

plasticity are much less tolerant to oxidative stress, presumably

because they cannot rapidly and adequately reroute their flux

toward the NADPH regenerating PP pathway.

Our findings highlight the importance of small molecule

regulation in metabolism and the difficulty in understanding their

overall function in a dynamic network context. The previously

described oxidative damage of GAP dehydrogenase by ROS in

yeast and mammalian cells (Ralser et al., 2007; Rui et al.,

2010; Anastasiou et al., 2011) was necessary but not sufficient

for E. coli. Computational and in vitro biochemical evidence

identified the previously reported but not in vivo characterized

NADPH inhibition of G6P dehydrogenase (Sanwal, 1970;

Olavarrı́a et al., 2012) as a second key regulation mechanism,

and quantitatively explained its function in the immediate

oxidative stress response.

To enable systematic mapping of allosteric interactions and to

identify their functional relevance by ensemble modeling, we

developed a more efficient computational framework that

enables millions of simulations at a reasonable time frame.
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This partially scalable framework is based on principles from

parallel computing, allowing us to exhaustively explore most

possible structural combinations for our system. Beyond allo-

steric regulation of enzymes by small molecules, this approach

and framework are applicable to any type of kinetic modeling

where dynamic data have to be interpreted mechanistically to

understand the system’s regulatory circuit, for example in under-

standing kinase or transcription factor regulation (Arai et al.,

2008; Soares et al., 2013; Schmidt et al., 2015; Drazic et al.,

2016; Kochanowski et al., 2017).
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and Noor, E. (2017). Genome-scale architecture of small molecule regulatory

networks and the fundamental trade-off between regulation and enzymatic

activity. Cell Rep. 20, 2666–2677.

Rui, B., Shen, T., Zhou, H., Liu, J., Chen, J., Pan, X., Liu, H., Wu, J., Zheng, H.,

and Shi, Y. (2010). A systematic investigation of Escherichia coli central carbon

metabolism in response to superoxide stress. BMC Syst. Biol. 4, 122.

Sandoval, J.M., Arenas, F.A., Vásquez, C.C., Purwantini, E., and Daniels, L.

(2011). Glucose-6-phosphate dehydrogenase protects Escherichia coli from

tellurite-mediated oxidative stress. PLoS One 6, e25573.

Sanwal, B.D. (1970). Regulatory mechanisms involving nicotinamide adenine

nucleotides as allosteric effectors. 3. Control of glucose 6-phosphate dehy-

drogenase. J. Biol. Chem. 245, 1626–1631.

Sauer, U., Canonaco, F., Heri, S., Perrenoud, A., and Fischer, E. (2004). The

soluble and membrane-bound transhydrogenases UdhA and PntAB have

divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem.

279, 6613–6619.

Schmidt, A., Kochanowski, K., Vedelaar, S., Ahrné, E., Volkmer, B., Callipo, L.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

E. coli BW 25113 KEIO collection (Baba et al., 2006) N/A

Dpgi E. coli KEIO collection (Baba et al., 2006) N/A

zwf titration strain This paper N/A

Chemicals, Peptides, and Recombinant Proteins

H2O2 (Hydrogen Peroxide Solution) Sigma-Aldrich CAS # 7722-84-1

Software and Algorithms

Parallel Ensemble Modelling Pipeline This Paper N/A
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains, Media and Perturbation
E. coli BW 25113 was cultivated in 500-mL shake flasks with M9 minimal medium containing 2 g L�1 glucose. Shake flask cultures

were grown exponentially to an optical density at 600 nm between 0.4 and 0.6, and 2 ml culture aliquots were vacuum-filtered on a

0.45 mm pore size nitrocellulose filter (Millipore) and perfused for 10 s with M9 medium containing 2 g L�1 glucose at 37�C. Oxidative

stress perturbations were realized by changing the perfusion solution to M9medium containing 2 g L�1 glucose plus 1mMH2O2 (see

also Figure S4 and (Link et al., 2013)). For labeling experiments the perfusion M9 medium contained 2 g L�1 [1-13C] glucose with or

without 1 mM H2O2 (control and stress condition respectively).

The zwf titration strain was constructed as follows. First, the zwf gene was cloned into the IPTG-titratable expression plasmid

pTrc99KK (Link et al., 2013) (primer 1:GCCTCGAGATGGCGGTAACGCAAACAGCC,primer2:CGGGATCCTTACTCAAACTCATTC

CAGGAACG), yielding plasmid pTrc99KK-zwf. This plasmid was then transformed into a zwf deletion strain obtained from the

Keio collection (Baba et al., 2006). To exclude adverse effects on oxidative stress resistance merely due to protein overexpression,

the zwf deletion strain was also transformed with a N-terminal his-tagged GFP titration plasmid, pTrc99KK-GFP:N-term HT, which

was obtained from Nikolaev et al. (2016).

Cultivation and Experiments for the Determination of H2O2 MIC Concentrations in WT and Dpgi E. coli Strains
All experiments were performed using M9 minimal medium (with 2 g L�1 glucose as the carbon source, from now on referred as

minimal medium). Minimal medium batch cultures of wild type E. coli or Dpgi from the KEIO collection (Baba et al., 2006) in 96-

deep-well format plates (Kuehner AG, Birsfelden, Switzerland) were inoculated 1:50 from LB precultures and incubated overnight

at 37�C under shaking. Subsequently, 96-well flat transparent plates (Nunc, Roskilde, Denmark) containing M9 medium (fill vol-

ume 200 ml) were inoculated with overnight cultures. Online measurements of optical density at 600 nm (OD600) and fluores-

cence (excitation wavelength: 500 nm, emission wavelength: 530 nm) were performed at 37�C with shaking using a plate reader

(TECAN infinite M200, Tecan Group Ltd, M€annedorf, Switzerland). During early exponential growth (OD600 around 0.3) the plate

was taken out of the plate reader and different wells of the plate were treated with different levels of minimal medium with H2O2

of stress: control (0 mM H2O2), 0.5 mM, 1 mM, 2.5 mM, 5 mM, 10 mM, 15 mM, 20 mM, 25 mM, 30 mM, 35 mM and 40 mM of

H2O2. MIC was calculated as the H2O2 concentration, where the post-stress growth rate of a culture is below 0.02 h-1. All results

stem from at least 4 individual biological replicates, for every different stress level.

Quantification of Intracellular Metabolite Concentrations
Shake flask cultures were grown exponentially to an optical density at 600 nm between 0.4 and 0.6, and 2 ml culture aliquots were

vacuum-filtered on a 0.45 mm pore size nitrocellulose filter (Millipore) and perfused for 10 s with M9 medium containing 2 g L�1

glucose at 37�C. Oxidative stress perturbations were realized by changing the perfusion solution to M9 medium containing 2 g

L�1 glucose plus 1 mM H2O2 (see also Figure S4 and (Link et al., 2013)). Metabolomics samples were taken after the annotated

exposure to the stress perfusion solution (Figure S4) and were immediately quenched in 4 ml quenching/extraction solution

(40% methanol, 40% acetonitrile, 20% H2O, all v/v) at -20OC (Link et al., 2012). To normalize for variations in sample processing,

100 ml of a fully 13C-labeled E. coli internal metabolome extract was added. Samples were incubated for 2 h at�20�C, subsequently
dried completely at 120 mbar (Christ RVC 2-33 CD centrifuge and Christ Alpha 2-4 CD freeze dryer), and stored at �80�C until mea-

surements. Beforemeasurements, samples were resuspended in 100 ml water, centrifuged for 5min (5,000 g, 4�C) to remove residual

particles, and transferred to V-bottomed 96-well sample plates (Thermo Fisher Scientific). Measurement, data acquisition, and data

analysis were performed as described previously (Link et al., 2012). Briefly, separation of compounds was achieved by ion-pairing
Cell Systems 6, 569–578.e1–e7, May 23, 2018 e1



ultrahigh performance liquid chromatography (UPLC) using a Waters Acquity UPLC with a Waters Acquity T3 end-capped reverse

phase column (dimensions, 150 mm3 2.1 mm3 1.8 mm; Waters Corporation) and coupled to compound detection using a tandem

mass spectrometer (Thermo TSQ Quantum Ultra triple quadrupole; Thermo Fisher Scientific). Data acquisition and peak integration

was performed with in-house software. To determine the absolute concentration of metabolites, a 1:3 dilution series of a standard

solution (containing more than 80 metabolites of central carbon metabolism) with 13C internal standard was prepared and measured

in parallel (see also Table S6).

METHOD DETAILS

Purification of Glucose-6-phosphate Dehydrogenase
Glucose-6-phosphate dehydrogenase was overexpressed in 50 ml LB medium with 0.1 mM IPTG and 25 mg/L chloramphenicol at

37�C and 250 rpm from an overexpression plasmid obtained from the ASKA clone collection (Kitagawa et al., 2006). Cells were har-

vested by centrifugation and the pellet was washed twice with 2 ml 0.9%NaCl with 10 mMMgSO4. The pellet was then resuspended

in 4ml ice cold 100mMTris-HCl pH 7.5, 5mMMgCl2 supplemented with Protease-Inhibitor (Complete EDTA-free, Roche) and 1mM

DTT. Cells were disrupted by passage through a precooled French press mini cell at 1000 PSI and the crude extract was subse-

quently centrifuged for 30 min at 23000 x g and 4�C to obtain a clear cell lysate. The lysate was then loaded on a 1 ml HisTrap

HP columns from Amersham Biosciences. The column was washed with 12 volumes of wash buffer (20 mM NaH2PO4 pH 7.5,

500 mM NaCl, 10 mM Imidazole, 15 mM b-Mercaptoethanol) and then the protein was eluted using increasing imidazole concentra-

tions. Fractions containing pure protein were buffer-exchanged against 100 mM Tris-HCl pH 7.5, 10 mM MgCl2 and 15 mM

b-Mercaptoethanol using 25 kD Spectra-Por Float-A-Lyzer (see also Figure S3).

In Vitro Enzymatic Assay to Determine Kinetic Parameters
All enzyme assays were run at 30�C in 100 mM Tris HCl pH7.5 and 10 mM MgCl2 on a Spectramax Plus spectrometer (Molecular

Devices). Absorbance was recorded at 340 nm with 2 second interval single measurements in 1 ml cuvettes. Purified enzyme

was equilibrate with cofactor until absorbance at 340 nm was stable. The measured absorbance curve over time was regressed

with a second order polynomial to determine the initial velocity at the time point when the second substrate was added and the

sample was mixed. KM values for glucose 6-phosphate dehydrogenase were determined from measurements were glucose-

6-phosphate concentrations were varied from 50 mM to 400 mM, while the NADP+ concentrations were held constant between

20 mM and 150 mM. According to the proposed sequential ordered bi-bi-mechanism (Segal, 1975), it was expected that NADPH

will inhibit competitively in respect to NADP+ (Chassagnole et al., 2002). To determine the respective inhibition constant, reaction

velocities were determined under different NADPH concentrations (150, 75 and 0 mM), the glucose-6-phosphate concentration

was held at 400 mM and NADP+ was varied from 10 to 60 mM. The KM values for NADP+ and glucose-6P and the KD value for

NADPH were then obtained by varying respective substrate or inhibitor concentrations and analysis by primary and secondary

Lineweaver-Burk plots assuming a sequential two-substrate mechanism (Chassagnole et al., 2002):

VG6PDH =
Vmax½NADP+ �½G6P�

kD;NADP+ kM;G6P + kM;G6P½NADP+ �+ kM;NADP+ ½G6P�+ ½NADP+ �½G6P� (Equation 1)

Inhibition by NADPH was determined to be competitive with respect to NADP+ which can be included by the following inhibitory

terms (Chassagnole et al., 2002):

VG6PDH =
Vmax½NADP+ �½G6P�

kD;NADP+ kM;G6P

�
1+ ½NADPH�

ki;NADPH

�
+ kM;G6P½NADP+ �+ kM;NADP+ ½G6P�

�
1+ ½NADPH�

ki;NADPH

�
+ ½NADP+ �½G6P�

(Equation 2)

Kinetic Model of Glycolysis/Gluconeogenesis and the Pentose Phosphate Pathway
The model (and its stoichiometry) considered are shown in Figure 2A in the main text.

The irreversible reactions and transport of glucose are described by Michaelis-Menten kinetics:

v = vmax

cSubstrate

cSubstrate +KM

Similar to previous studies (Link et al., 2013) we assume that reversible reactions are near equilibrium and the law of mass action

describes the kinetics for the forward (+) and backward (�) direction in these cases.

v + = k + cSubstrate
v� = k�cProduct

The detailed equations are given below:
e2 Cell Systems 6, 569–578.e1–e7, May 23, 2018



Kinetic Rate Equations – Irreversible Reactions

Reaction 1

glucose specific phosphotransferase system

vPTS = vmax;PTS

cGlucose

cGlucose +KPTS;Glucose

Reaction 2

phosphofructokinase (PFK)

vPFK = vmax;PFK

cF6P

cF6P +KPFK;F6P

Reaction 3

fructose-1,6-bisphosphatase (FBPase)

vFBPase = vmax;FBPase

cFBP

cFBP +KFBPase;FBP

Reaction 4

glucose-6-phosphatedehydrogenase (G6PDH)

vG6PDH = vmax;G6PDH

cG6P

cG6P +KG6PDH;G6P

Reaction 5

6-phosphogluconate dehydrogenase (GND)

vGND = vmax;GND

c6PG

c6PG +KGND;6PG

Reaction 6

pyruvate kinase (PYK)

vPYK = vmax;PYK

cPEP

cPEP +KPYK;PEP

Reaction 7

phosphoenolpyruvate synthetase (PPS)

vPPS = vmax;PPS

cPYR

cPYR +KPPS;PYR

Reaction 8

pyruvate dehydrogenase (PDH)

vPDH = vmax;PDH

cPYR

cPYR +KPDH;PYR

Reaction 9

phosphoenolpyruvate carboxylase (PPC)

vPPC = vmax;PPC

cPEP

cPEP +KPPC;PEP

Kinetic Rate Equations – Reversible Reactions

Reaction 10/11

phosphoglucoseisomerase (PGI)

v +
PGI = k +

PGIcG6P
v�PGI = k�PGIcF6P

Reaction 12/13

fructose-1,6-bisphosphate aldolase (ALD).

Instead of GAP and DHAP this reaction produces 2 molecules DHAP, since we assume that GAP and DHAP are in equilibrium by

triose phosphate isomerase.

v +
ALD = k +

ALDcFBP
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v�ALD = k�ALDcDHAPcDHAP
Reaction 14/15

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglucokinase (PGK), phosphoglucomutase (PGM) and enolase

(ENO) are in equilibrium (Link et al., 2013) and lumped into one reaction.

v +
GAPDH = k +

GAPDHcDHAP
v�GAPDH = k�GAPDHcPEP

Reaction 16/17

transketolase A (TKTA)

v +
TKTA = k +

TKTAcP5P
v�TKTA = k�TKTAcDHAPcS7P

Reaction 18/19

transketolase B (TKTB)

v +
TKTB = k +

TKTBcP5PcE4P
v�TKTB = k�TKTBcDHAPcF6P

Reaction 20/21

transaldolase (TALA)

v +
TALA = k +

TALAcDHAPcS7P
v�TALA = k�TALAcE4PcF6P

Reaction 22

biosynthetic E4P drain (E4PD)

v +
E4PD = k +

E4PDcE4P

Reaction 23

biosynthetic P5P drain (P5PD)

v +
P5PD = k +

P5PDcP5P

Reaction 24

anabolic proxy of NADPH drain (NADPHD)

v +
NADPHD = k +

NADPHDcNADPH

Reaction 25

generation of ROS from external source (ROSG)

this reaction is implemented as a constant input (that we vary in the different simulations)

v +
ROSG = k +

ROSG

Reaction 26

scavenging of ROS with NADPH (ROSS)

v +
ROSS = k +

ROSScROS

Kinetic Rate Equations: Small Molecule – Enzyme Interactions

An interaction between an enzyme catalyzing reaction i and a small molecule j is included as a power law term affecting the

reaction rate.

v�i = vmax;i

Y
j

�
cj
�
cj;0

�ai;j
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In the basemodel without interactions (except the one fromROSonGAPDH), all exponents ai,j are zero and therefore the power law

terms equal to 1. With this model we managed to easily search the topological space by testing ensembles of structurally different

models by setting the according exponent to real-valued numbers.With this approachwe alsomanaged to create a parallel algorithm

that does so efficiently.

Ordinary Differential Equations (ODEs)

dG6P

dt
=Reaction1� Reaction4� Reaction10+Reaction11=
= vmax;PTS

cGlucose

cGlucose +KPTS;Glucose

� vmax;G6PDH

cG6P

cG6P +KG6PDH;G6P

� k +
PGIcG6P + k�PGIcF6P
dF6P

dt
= � Reaction2+Reaction3+Reaction10 � Reaction11+Reaction18� Reaction19+Reaction20� Reaction21
dFBP

dt
=Reaction2� Reaction3� Reaction12+Reaction13
dDHAP

dt
= 23Reaction12� 23Reaction13� Reaction14+Reaction15+Reaction16� Reaction17

+Reaction18� Reaction19� Reaction20+Reaction21
d6PG

dt
=Reaction4� Reaction5
dPEP

dt
= � Reaction1� Reaction6+Reaction7� Reaction9+Reaction14� Reaction15
dPYR

dt
=Reaction1+Reaction6� Reaction7� Reaction8
dP5P

dt
=Reaction5� 23Reaction16+ 23Reaction17� Reaction18+Reaction19� Reaction23
dE4P

dt
= � Reaction18+Reaction19+Reaction20� Reaction21� Reaction22
dS7P

dt
=Reaction16� Reaction17� Reaction20+Reaction21

dNADPH

dt
=Reaction4+Reaction5� Reaction24� Reaction26
dROS

dt
=Reaction25� Reaction26
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Parallel Ensemble Modeling Framework
Initially amodel containing the biochemical reactions displayed in Figure 3A plus an inhibition directly fromROS toGAPDH is created.

This base model serves as the scaffold/template for every other model topology, which is implemented by augmenting the base

model with one or two metabolite-enzyme interactions. All the different (�12000) model topologies are populated as different

model objects in one master server and then are consequently sent to different CPU cores - workers for simulation, using the

High Performance Computing service of ETH (Figure 3C), containing over 29000 processor cores with a theoretical performance

reaching over 1000 teraflops. Depending on howmany CPU cores are available, the time of computation for all the simulations (which

depend on the number of model topologies and the number of different parameter sets we test for every model, in our case 12000

topologies and 2000 parameter sets yield �24 million simulations) scales accordingly. Once the simulations from the different CPU

cores – workers are finished, the saved simulated results return to themaster, where they are processed and analyzed thus yielding

the rank of every interaction, based on the criteria we have set (frequency and score). All code was written in MATLAB and various

functions from the Parallel Computing toolbox and the SimBiology toolbox were used.

QUANTIFICATION AND STATISTICAL ANALYSIS

Parameterization of the Kinetic Model of Glycolysis/Gluconeogenesis and the Pentose Phosphate Pathway
Kinetic parameters followed from statistical sampling of unknown parameters and a steady analysis as described below.

KM Values

The KM values were randomly sampled from an interval of 0.1-10 times the in vitro determined literature value.

Steady State Analysis and Statistical Sampling

In order to determine Vmax values we performed a steady state analysis using measured glucose uptake rate (1.17 mM/s). Metabolic

fluxes were estimated by flux balance analysis during growth on glucose (Fong et al., 2003) and we considered uncertainties about

the fluxes by taking into account measured flux distributions (Gerosa et al., 2015) and by statistical sampling of 5 parameters:

1.Futile cycling between PFK and FBPase: vFBPase;0 � vPFK;0=vFBPase;0 = 0� 1

2.Futile cycling between PYK and PPS: vPPS;0 � vPYK;0=vPPS;0 = 0� 1

3.PP pathway flux: 15-40% of the glucose uptake

4.Biosynthetic drain of pentoses (P5P) and E4P: 50-70% of the PP pathway flux

5.Immediate increase in ROS flux: 0.5 – 1

The steady state reaction rates (v0) of all reactions follow from these unknown flux ratios and the measured glucose rate.

Subsequently, the Vmax of reaction i follows from vi
0, the sampled Ki,M and the measured steady state concentrations cj

0 of the

particular small molecule:

vi;max = v0i

�
1+Ki;M

.
c0
j

�
Rate Constants of Reversible Reactions

In the case of reversible reactions, we statistically sample for every pair (e.g. reactions 10/11) the efficiency of this reaction: if we

know that a glycolytic flux of 1 goes through this reaction pair in the glycolytic direction and the efficiency is 0.5, this means that

reaction 10 will have a flux of 2 and reaction 11 a flux of 1. The rate constants k+ and k- are calculated following this approach.

Selection of the Best Parameter Set for Each Model Topology
As described in themain text, we randomly sampled P = 20000 for each of themodels with single small-molecule enzyme interactions

and P = 2000 for each of each model with pairs of small-molecule enzyme interactions. For each parameter set, the simulation was

performed with MATLAB. The residuals between the simulated species (indicated by 0) and the measured species are calculated at

t=5 time points for s = 8 species where we have absolute concentrations for. Due to differences in the absolute metabolite concen-

trations we estimated the sum of squared errors for s=8 relative metabolite concentrations (~c) that are normalized to the glucose

steady state concentrations:

SSRc =
X8

s=1

X5

t= 1

0
@gc0

s;t �gcs;t

1
A2

We used this objective to select the best parameter set for each model topology.

Akaike Information Criterion (AIC)
In order to compare in a systematic manner the simulation results of models with different topologies and different number of

parameters K (due to different numbers of small-molecule – enzyme interactions), we utilized the Akaike Information Criterion

(AIC) (Link et al., 2013; Turkheimer et al., 2003).

AIC=NlogðSSR=NÞ+ 2K
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whereN is the total number of residuals. A particular model X with small molecule – enzyme interactions is ranked relative to the base

model by the difference of AICs:

DAICModelX =AICBaseModel � AICModelX

Pairwise Average Rank
The ranks of the pairwise interactions based on how often the interaction appears in models with DAIC>0 (frequency) and the best

DAIC that was achieved with a model including this interaction, were taken into account in the calculation of the average rank of the

interactions. The average rank of an interaction i is calculated as the mean of the two individual ranks that a certain interaction has

achieved.

Biological Replicates and Analysis of Data
In every case, the average values and the standard deviation result from three independent experiments, unless otherwise stated.

The analysis of the (experimental and simulated) data was performed using custom MATLAB (MathWorks) software. MATLAB

was used for all simulations and the kinetic model was partly implemented using the SimBiology toolbox. The model is detailed in

Supplemental Information. The p-values displayed in Figure 6, were calculated using the ttest function, MATLAB (MathWorks).

Significance was evaluated based on the calculated p-value (significance for p-value < 0.05).

DATA AND SOFTWARE AVAILABILITY

The data generated in this work are available as Tables S1 and S6.
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Supplementary Figures 
 

 

Figure S1. Related to Figure 5: Base model (model amended with the ROS inhibition of GAPDH) 
simulation results (red solid line) against the experimental data (black dots). Y axis represents the 
relative change of a particular metabolite, compared to the untreated condition (time point 0).  



 

 

Figure S2. Related to STAR Methods: Simulated reaction velocities for glucose-6-phosphate 
dehydrogenase using rate laws without NADPH inhibition (blue line, Supplementary Methods 
Equation 1) and with NADPH inhibition (black line, Supplementary Methods Equation 2). 
Experimentally determined kinetic parameters were used (mean values from Table S1) and the 
pool of NADPH and NADP+ was assumed to be approximately 500μM, well above measured 
dissociation, inhibition constants and KM. The shaded areas are created by testing different 
NADP/NADPH ratios. Only the forward reaction with NADPH inhibition was simulated since the 
6P-gluconolactone produced reacts rapidly further to 6P-gluconate and in addition is very 
instable1. G6P concentration during growth on glucose in wild type E. coli is in the range of 1-2 
mM, with mutant strain Δpgi having approximately 10 times higher concentrations2. 



 

Figure S3. Related to STAR Methods: SDS-PAGE of overexpressed and His-Tag purified glucose-
6P dehydrogenase (~56.8 kD including His-Tag). The pure enzyme was eluted with different 
imidazole concentrations (lanes 1 to 6: 100-200, 200, 200-300, 300, and twice 500 mM 
imidazole). Fractions in lane 2 and 3 were pooled and used for further analysis. 

 

 

 

 

Figure S4. Related to STAR Methods: Experimental setup for fast carbon-source switching. 
Culture broth from a shake flask is transferred onto a nitrocellulose filter mounted on a vacuum 
device. Subsequently cells are continuously perfused with medium containing glucose and are 
then switched to a freshly prepared medium containing glucose and H2O2. Upon filtration the 
filter is extracted in cold acetonitrile/methanol/water mix and cell extracts are analyzed by 
ultrahigh performance liquid chromatography– tandem mass spectrometry. Lower panel, 
perfusion profiles of samples before extraction. Cyan bars, perfusion with glucose medium; 
orange bars, with glucose and H2O2 medium. 

 



Supplementary Tables 
 

Table S1. Related to Figure 5: Experimentally determined kinetic parameters of G6P 
dehydrogenase  and intracellular metabolite concentrations 

 This study 

[μM] 

Olavarria et al* 

[μM] 

Kinetic Parametersa:   

Substrate KM:   

NADP+  23 7.5 ± 0.8 

glucose-6-phosphate 136 174 ± 11 

NADP+ dissociation Ki:   

NADP+  90 19 ± 4 

NADPH inhibition Ki:   

Kic,NADP+  35 14 ± 2 

Kic,glucose-6-phosphate 100 101 ± 9 

Relative reaction ratesb    

2 mM Fructose- 1,6-bisphosphate (FBP) 98 - 

 

a Own values were obtained from primary and secondary Lineweaver-Burk plots and were confirmed by non-linear 

regression fits with the corresponding rate laws. 

b Normalized to reaction rate in absence of inhibitor, using 25 µM NADP+ and 125 µM as substrate, standard 

deviations were below 5% from triplicate experiments. 

* Olavarría, K., Valdés, D. & Cabrera, R. The cofactor preference of glucose-6-phosphate dehydrogenase from 
Escherichia coli--modeling the physiological production of reduced cofactors. FEBS J. 279, 2296–309 (2012). 

 

 

 

 



Table S2. Related to Figure 3: Kinetic parameters of reactions in the glycolysis – PP pathway 
model. Vmax of irreversible reactions are estimable parameters and no value is given. 

 

Reaction Parameter Value Range 

 

Irreversible Reactions 

PFK Vmax,PFK - 

 KPFK,F6P (0.1-10) ▪ 0.16mM1 

FBPase Vmax,FBPase - 

 K FBPase,FBP (0.1-10) ▪ 0.015mM2 

G6PDH Vmax, G6PDH - 

 K G6PDH,G6P (0.1-10) ▪ 0.2mM3 

GND Vmax,GND - 

 K GND,6PG (0.1-10) ▪ 0.1mM4 

PYK Vmax,PYK - 

 K PYK,PEP (0.1-10) ▪ 0.31mM5 

PPS Vmax,PPS - 

 K PPS,PYR (0.1-10) ▪ 0.083mM6 

PDH Vmax,PDH - 

 K PDH,PYR (0.1-10) ▪ 0.515mM7 

PPC Vmax,PPC - 

 K PPC,PEP (0.1-10) ▪ 0.19mM8 

 

1. Zheng, R. L. & Kemp, R. G. The mechanism of ATP inhibition of wild type and mutant phosphofructo-1-kinase 
from Escherichia coli. J. Biol. Chem. 267, 23640–5 (1992). 

2. Kelley-Loughnane, N. et al. Purification, kinetic studies, and homology model of Escherichia coli fructose-1,6-
bisphosphatase. Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol. 1594, 6–16 (2002). 

3. Westwood, A. W. & Doelle, H. W. Glucose 6-phosphate and 6-phosphogluconate dehydrogenases and their 
control mechanisms in Escherichia coli K-12. Microbios 9, 143–65 (1974). 

4. de Silva, A. O. & Fraenkel, D. G. The 6-phosphogluconate dehydrogenase reaction in Escherichia coli. J. Biol. 
Chem. 254, 10237–42 (1979). 

5. Boiteux, A., Markus, M., Plesser, T., Hess, B. & Malcovati, M. Analysis of progress curves. Interaction of 
pyruvate kinase from Escherichia coli with fructose 1,6-bisphosphate and calcium ions. Biochem. J. 211, 631–
40 (1983). 

6. Berman, K. M. & Cohn, M. Phosphoenolpyruvate synthetase of Escherichia coli. Purification, some properties, 
and the role of divalent metal ions. J. Biol. Chem. 245, 5309–18 (1970). 

7. Nemeria, N. et al. Inhibition of the Escherichia coli Pyruvate Dehydrogenase Complex E1 Subunit and Its 
Tyrosine 177 Variants by Thiamin 2-Thiazolone and Thiamin 2-Thiothiazolone Diphosphates: EVIDENCE FOR 
REVERSIBLE TIGHT-BINDING INHIBITION. J. Biol. Chem. 276, 45969–45978 (2001). 

8. Kai, Y. et al. Three-dimensional structure of phosphoenolpyruvate carboxylase: a proposed mechanism for 
allosteric inhibition. Proc. Natl. Acad. Sci. U. S. A. 96, 823–8 (1999). 

 



 

Table S3. Related to Table 1: Rank of the interactions, as inferred from our combined 
computational-experimental approach. Pairwise average rank (5th column) was calculated as the 
average of the different ranks each interaction achieved in individual metrics, namely frequency 
and score, stemming from the results of approximately 24 million pairwise simulations. Enzymes 
affected by metabolites (activated or inhibited) are shown in columns 2, 3 and 4 of the table, 
respectively. 

Table S4. Related to Table 1: Rank of all 162 interactions that were tested in models with pairwise 
allosteric interactions. Both frequency and score metrics are displayed. Ranking is based on how 
often the interaction appears in models with ΔAIC>0 (frequency).  

Table S5. Related to Table 1: Rank of all 162 interactions displaying the AIC of models with single 
interactions relative to the base model. Ranking is based on the best ΔAIC that was achieved with 
a model including only this interaction. 

Table S6. Related to Figure 1, Figure 2 and STAR Methods: Metabolite data of the H2O2 
perturbation. The standard deviation (s.d.) results from three independent experiments. Time (in 
seconds) demonstrates the time of exposure to H2O2, after 10 seconds washing with glucose 
minimal medium (see STAR Methods) 
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