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SUMMARY

Although countless highly penetrant variants have
been associated with Mendelian disorders, the ge-
netic etiologies underlying complex diseases remain
largely unresolved. By mining the medical records of
over 110 million patients, we examine the extent to
which Mendelian variation contributes to complex
disease risk. We detect thousands of associations
betweenMendelian and complex diseases, revealing
a nondegenerate, phenotypic code that links each
complex disorder to a unique collection of Mendelian
loci. Using genome-wide association results, we
demonstrate that common variants associated with
complex diseases are enriched in the genes indi-
cated by this ‘‘Mendelian code.’’ Finally, we detect
hundreds of comorbidity associations among Men-
delian disorders, and we use probabilistic genetic
modeling to demonstrate that Mendelian variants
likely contribute nonadditively to the risk for a subset
of complex diseases. Overall, this study illustrates a
complementary approach for mapping complex dis-
ease loci and provides unique predictions concern-
ing the etiologies of specific diseases.

INTRODUCTION

Clinicians and geneticists have previously observed that rare,

Mendelian disorders, such as thalassemia and cystic fibrosis,
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certain chromosomal abnormalities (such as Down and Kleinfel-

ter syndromes), and severely deleterious copy-number variants

(CNV) often predispose patients to more common, apparently

nonMendelian diseases. For example, patients with beta-thalas-

semia, Huntington disease and Friederichs ataxia often develop

type 2 diabetes mellitus (De Sanctis et al., 1988; Podolsky et al.,

1972; Ristow, 2004), and carriers of the genetic variants associ-

ated with Lujan-Fryns and DiGeorge (velo-cardio-facial) syn-

dromes display an increased risk for schizophrenia (De Hert

et al., 1996; Sinibaldi et al., 2004). Additionally, bearers of the

16p11.2 microdeletions and microduplications often develop

autism (Kumar et al., 2008; Tabet et al., 2012). In such cases,

the simple and complex diseases have been long suspected of

sharing genetic architecture; whether there is a broader pattern

of such associations, however, remains unclear.

A large and growing number of Mendelian and chromosomal

diseases have been precisely assigned to particular causal

genetic events. Although Mendelian disorders often manifest

many of the same complexities that are associated with multi-

genic diseases, such as incomplete penetrance and genetic

modification (Badano et al., 2006), they remain the best under-

stood in terms of their underlying genetic etiologies. This is

because the variants underlying Mendelian diseases are gener-

ally highly penetrant and nearly unaffected by the environment.

Furthermore, their physiologic effects are often severe, allowing

for very early diagnosis, sometimes even prenatally. Therefore, in

contrast to more complex human disorders, the clinical diag-

nosis of a Mendelian disease reveals unique insight into the

genotype of the affected patient. Consequently, we hypothesize

that statistically significant comorbidities between complex and

Mendelian illnesses represent a type of genetic association, in
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Table 1. The Clinical Record Data Sets Utilized in This Study

Data Set Description

Encoding

Type

Number of

Unique Patients

CU Columbia University, 1985–

2003

ICD9 1,505,822

DK Denmark; database covering

most of the country’s

population

ICD10 6,214,312

NYPH New York Presbyterian

Hospital and Columbia

University; 2004–present

ICD9 767,978

SU Stanford University ICD9 806,369

TX University of Texas at

Houston

ICD9 1,599,528

UC University of Chicago ICD9 146,989

USA MarketScan insurance

claims data set

ICD9 99,143,849

MED Medicare database ICD9 13,039,018

Total: 123,223,865

This table provides a brief description, the ICD encoding type, and the

size of each data set. The MED data set was used for comparison and

was not included in the full meta-analysis.
which a non-Mendelian phenotype is mapped to the genetic loci

that cause the Mendelian disease.

By analyzing millions of electronic clinical records obtained

from distinct regions of the United States and Denmark, we

demonstrate that such ‘‘transitive’’ genetic associations are

consistent and ubiquitous, yielding insight into the etiology of

complex diseases. Furthermore, we observe that each complex

disease possesses a unique Mendelian disease allelic architec-

ture, creating a nondegenerate code that identifies each illness

by its associated Mendelian loci. In support of our transitive

association hypothesis, we demonstrate that complex disease

genome-wide association signals are specifically enriched

within the genetic loci indicated by this code. Finally, we use

mathematical modeling to demonstrate that the variants under-

lying Mendelian disorders likely interact with one another to

contribute to complex disease risk, highlighting the potential of

clinical data for uncovering complicated genetic architectures.

RESULTS

Clinical Record Analysis
We mined the administrative data associated with millions of

clinical records for evidence of comorbidity among Mendelian

and complex diseases. As a rule, such records are maintained

in order to facilitate patient billing rather than academic research,

and therefore, they may be incomplete and variably biased (van

Walraven and Austin, 2012). However, this does not diminish

their overall utility for making accurate inferences about clinical

phenotypes in large populations. The key to such analyses is

to carefully consider how missing data and biases may affect

the conclusions of the intended research and, if required, intro-

duce appropriate corrections. Becausewe conditioned our infer-

ences on the observed disease incidence counts, our comorbid-

ity estimates did not depend on the accurate estimation of

marginal disease prevalence. Therefore, we assumed a ‘‘missing

at random’’ model for undocumented records that is common

practice for epidemiological studies with uninformatively missing

data (Lyles and Allen, 2002). Finally, we took great care to focus

our data analysis on clearly identifiable phenotypes (see Exper-

imental Procedures), and we detected disease comorbidity

using a sophisticated statistical pipeline that accounted for a

large set of potentially confounding demographic, socioeco-

nomic, and environmental factors (for details, see Extended

Experimental Procedures and Figure S1 available online).

We judged the quality of our statistical inferences by com-

paring the results generated from multiple, distinct clinical data

sets. In the present study, we examined eight data sets, with

the smallest and largest describing approximately 150,000 and

100million unique patients, respectively (see Table 1; Figure 1A).

We found that our estimates of the comorbidity risks for the

complex-Mendelian disease pairs were remarkably consistent

(see Figures 1F and 1G, all correlation p values < 5 3 10�8),

which is reassuring considering that the data sets represent pop-

ulations in different geographic regions with variable ethnic

structure and disease prevalence (Figures 1B and 1C). Although

the US data set may possibly partially overlap with the smaller,

North American ones (CU, NYPH, SU, TX, and UC), the smaller

data sets should be nearly completely disjoint from one another
and from DK, indicating that duplicate records do not drive this

result (see Extended Experimental Procedures for a more

detailed treatment of potentially confounding factors). Although

other groups havemined clinical record data sets for disease co-

morbidities in the past (Hidalgo et al., 2009; Lee et al., 2008), the

vast majority of the relationships detected in this study are likely

to be novel, as associations among complex and Mendelian dis-

eases have never been analyzed at this scale (over 100 million

unique patients) (see Figures 1D and 1E for a comparison to pre-

viously published results).

A Nondegenerate Mendelian Phenotypic Code for
Complex Diseases
Figure 2 summarizes all of the significant comorbidities that were

detected among the complex and Mendelian disorders within

our compendium of clinical records (see Table S4 for detailed re-

sults). Each colored cell in the matrix indicates the logarithm of

the relative risk associated with a significant clinical signal, and

the complex diseases are grouped according to our current un-

derstanding of their pathophysiology. Reassuringly, many of the

known comorbidities are replicated within our data set. For

example, we detected significant comorbidity between lipopro-

tein deficiencies and myocardial infarction (Strong and Rader,

2012) and ataxia telangiectasia and breast cancer (Sellers,

1997). However, the majority of the 2,909 associations shown

in Figure 2 have not been previously reported. For example,

our analysis uncovered significant clinical comorbidities

between Marfan syndrome and several neuropsychiatric dis-

eases (autism, bipolar disorder, and depression), and it deter-

mined that fragile X is significantly associated with asthma,

psoriasis, and viral infection, highlighting a potential immune

system dysfunction in these patients (Ashwood et al., 2010).

In Figure 3A, the rows and columns of the comorbidity

matrix have been rearranged such that disorders with similar
Cell 155, 70–80, September 26, 2013 ª2013 Elsevier Inc. 71
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Figure 1. A Systematic Comparison of the

Eight Clinical Record Data Sets Analyzed

in This Study

(A) The total number of records in each data set,

broken down by gender.

(B and C) The average prevalence for the complex

and Mendelian diseases across the eight data

sets.

(D and E) Using the superset of the discovered

associations (based on the original seven data

sets; see Extended Experimental Procedures for

details), we compared the number of association

signals that were detected in each data set inde-

pendently, depicted as the percentage of all

associations discovered in the union of the seven

data sets (excluding MED): (D) Mendelian-com-

plex and (E) Mendelian-Mendelian associations.

(F) The rank correlation among relative risk esti-

mates (lower diagonal) and disease prevalence

(upper diagonal) for each significantly comorbid

complex-Mendelian disease pair across the eight

distinct data sets.

(G) Scatter plots depicting the relative risk corre-

lations for three pairs of data sets, indicated using

the colored boxes in (F).

See also Tables S2 and S3.
comorbidity structure are placed adjacent to one another.

Importantly, this rearrangement demonstrates that each com-

plex disease was comorbid with a diverse and unique combina-

tion of Mendelian phenotypes. Despite extensive variation within

this ‘‘Mendelian code,’’ much of our current understanding of the

pathophysiology of complex diseases is nonetheless recapitu-

lated (see Figure S2). To illustrate, we computed the Euclidean

distance between every pair of shared risk profiles and produced

the neighbor-joining tree (Saitou andNei, 1987) that best approx-

imates this set of statistics (Figure 3B). Not surprisingly, the re-

sulting tree contained many groupings that are highly consistent

with our current knowledge of disease etiology. For example,

autism, intellectual disability, and epilepsy form a tight cluster

in the tree (replicated in 96% of bootstrap pseudosamples),

consistent with previous genetic studies that have uncovered

variants underlying the risk for all three neuropsychiatric traits

(Shinawi et al., 2010).
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Complex Disease GWA Signals Are
Enriched within the Genetic Loci
Implicated by the Mendelian Code
We conjectured that the significant com-

plex-Mendelian comorbidities displayed

in Figure 2 indicate that the genes and

pathways perturbed in the Mendelian dis-

orders also play a role in the etiology of

the corresponding complex diseases.

Thus, we hypothesized that the ‘‘Mende-

lian code’’ could be used to pinpoint loci

that harbor complex disease-predispos-

ing genetic variants. To test this predic-

tion, we probed legacy genome-wide

association (GWA) results (NIH, 2012)
and asked whether common variants associated with the com-

plex diseases were enriched within the loci implicated by the

Mendelian comorbidities. Overall, we observed that complex

disease GWA signals were globally enriched in Mendelian loci

(106 observed, 55.3 expected, 1.92-fold enrichment, p = 4.0 3

10�10), an observation that has been previously highlighted by

others (Lupski et al., 2011). Furthermore, when we restricted

our analysis to unique signals only (i.e., removed duplicate sig-

nals that were replicated in subsequent studies), the enrichment

fell to 1.6-fold but remained highly significant (63 observed, 40.4

expected, p = 4.6 3 10�5). Importantly, complex disease-spe-

cific GWA signals were specifically enriched in the precise loci

indicated by the Mendelian phenotypic code (1.97-fold enrich-

ment, 40 observed, 20.1 expected, p = 5.7 3 10�5, see Table

S1 for detailed results), suggesting that the comorbidities high-

lighted in Figure 2 reflect a shared complex-Mendelian genetic

architecture. Moreover, the GWA signals enriched in comorbid
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The numerical values underlying each association are provided in Table S4. The statistical procedure for generating these values is outlined in Figure S1.

See also Tables S1, S2, and S3.
Mendelian loci weremore likely to be detected inmultiple studies

than those in other genic SNPs, including those that lie within

noncomorbid Mendelian loci (replication rates: 0.8 versus 0.36,

p = 0.026, Mann-Whitney-U test). Overall, these results suggest

that the loci implicated by the Mendelian code are likely to

contain a spectrum of complex disease predisposing variants,

providing testable hypotheses for future gene resequencing

and exome analyses (see Discussion for details).

Mendelian Disorders Share Significant Clinical
Comorbidity
Our analysis generated a surprisingly large number of statisti-

cally significant clinical associations between pairs of Mendelian

disorders (462 after conservative statistical filtering; see

Extended Experimental Procedures; Figure 4, Figures S3 and

S4; Table S5). We propose that these associations represent
interactions among genetic variants in distinct Mendelian loci,

and we found that it was possible to map individual interactions

to specific biological hypotheses. As an example, we observed

significant shared risk between fragile X and glycogenosis

(odds ratio = 859.09), and this effect remained highly significant

after controlling for a wide variety of potentially confounding fac-

tors, including disease similarity, age, gender, ethnicity, and

environment (see Extended Experimental Procedures). A link

between fragile X and glycogenosis has been previously pro-

posed in the molecular genetics literature (De Boulle et al.,

1993; Zang et al., 2009), and glycogen metabolism has been

suggested to play an important role in fragile X pathophysiology

and treatment (Min et al., 2009). A few anecdotal cases aside,

however, most of the relationships in Figure 4 represent totally

undocumented interactions among rare and highly deleterious

genetic variants.
Cell 155, 70–80, September 26, 2013 ª2013 Elsevier Inc. 73
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Figure 3. Complex-Mendelian Comorbid-

ities Provide Unique Insight into the Etiology

of Complex Diseases

(A) The data matrix from Figure 2 is reordered such

that similar rows and columns are adjacent to one

another (accomplished using greedy clustering).

(B) The neighbor-joining tree for the complex

phenotypes was constructed from the Euclidean

distances among the relative risks displayed in

Figure 2 and (A). The bootstrap numbers (10,000

replicates) over tree arcs indicate the reliability of

the corresponding partitions, with 100 being the

most reliable and zero the least. The color of the

tree labels is preserved with regard to the group-

ings of the phenotypes depicted in Figure 2.

(C) Heatmap comparing the qualities of fit for the

two multilocus genetic models discussed in the

main text over a range of loci numbers. The value

of the log10-Bayes factor indicates the support for

the combinatorial model in comparison to the

additive model. A log10-Bayes factor of one in-

dicates that, given the data, the combinatorial

model is ten times more likely than is the additive

model. See Figure S5 for a graphical comparison

of the model fits to the complex disease risk data.

See also Tables S1, S2, and S3 and Figure S2.
We do acknowledge that some of the apparently significant

comorbidities could be due to confounding factors. First, mis-

coding errors during medical billing could create false signals

of comorbidity. This could happen, for example, if two distinct

physicians examined the same patient but erroneously entered

different billing codes because of the clinical ambiguity of the

Mendelian disease. Second, the co-occurrence of Mendelian

phenotypes could be an artifact of a cryptic population structure.

As a result of assortative mating, some subpopulations could be

enriched with multiple Mendelian diseases, increasing the

apparent rate of rare disease co-occurrence. Although these

biases seem plausible, we do not believe that they contribute

significantly to the comorbidities depicted in Figure 4 for the

following reasons. First, although medical billing errors were

likely present in the data sets, we went great lengths to estimate

and remove their effects (see Extended Experimental Proce-

dures). Second, our statistical analysis procedure included a

variety of demographic and environmental covariates, and we

found that these potential confounders contributed only margin-

ally to the shared risk amongMendelian disorders, casting doubt

on the cryptic population structure hypothesis.

Perhaps more importantly, there are additional, orthogonal

pieces of evidence that indicate that the previous two con-
74 Cell 155, 70–80, September 26, 2013 ª2013 Elsevier Inc.
founders are unlikely to contribute perva-

sively toMendelian-Mendelian comorbid-

ity. For example, we found that comorbid

Mendelian disorders, even after removing

all clinically similar disease pairs, tended

to map to genetic loci that are signifi-

cantly more functionally alike than is ex-

pected by chance, as measured by their

distances within a large human gene
network (Lee et al., 2011) (see Extended Experimental Proce-

dures, p value < 0.00001). This result fits naturally with the theory

of widespread epistasis amongMendelian variants, but it cannot

be easily explained using either of the other two hypotheses.

Additionally, cryptic population structure, billing code errors,

and genetic interactions make very different predictions with

respect to complex disease risk in patients diagnosed with

multiple comorbid Mendelian disorders (see Experimental Pro-

cedures). In the next section, we use probabilistic modeling to

provide direct statistical evidence that the risk for several com-

plex diseases is highly consistent with the genetic modifier

hypothesis described above.

Mendelian Loci Contribute to Complex Disease Risk in a
Nonadditive Manner
Examining the complex disease risk in patients with compound

Mendelian phenotypes offered an additional avenue for assess-

ing the likelihood of the three mechanisms proposed in the

previous section. As a simple example, assume that the relation-

ships in Figure 4 were dominated by miscoding errors. If this

were true, then an individual diagnosed with one comorbid Men-

delian disorder should have the same average risk for the com-

plex disease as an individual diagnosed with two. Instead, we
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observed that individuals diagnosed with two comorbid Mende-

lian phenotypes had a higher average risk for the complex dis-

ease in 62 out of the 65 of the illnesses considered in this study

(p value = 6.2 3 10�12, Wilcoxon signed-rank test). Such ana-

lyses provide only indirect evidence for the genetic modifier
hypothesis. To provide direct statistical evidence, we formulated

two probabilistic genetic models for complex disease risk in

patients diagnosed with compound Mendelian phenotypes.

The first, termed the additive model (Risch, 1990), is consis-

tent with cryptic population structure and assumes that the
Cell 155, 70–80, September 26, 2013 ª2013 Elsevier Inc. 75



Mendelian variants contribute independently to complex disease

risk. The second, called the combinatorial model, invokes a sim-

ple mechanism for genetic epistasis among the Mendelian vari-

ants. By fitting each model to the clinical data sets, we formally

tested whether the genetic modifier hypothesis was supported

by the observed risk profiles of the complex diseases.

The two genetic models that we considered share several

assumptions in common. First, both assume that each complex

disease is associated with a set of genetic loci, some of which

are linked to Mendelian phenotypes as well. This assumption

ensures that eachmodel is capable of accounting for the comor-

bidity structure that was observed within the clinical data.

Second, the models assume that the genetic loci under consid-

eration possess only dominant, recessive, or X-linked (haploid)

variants, although the frequency and penetrance of such variants

can vary freely. Third, they assume that the penetrance values

for the complex diseases, at both Mendelian and other loci,

are sampled from some population-level distribution. Similarly,

both models assume that the frequencies of the deleterious

genotypes are sampled from a population-level distribution as

well. Finally, the models assume that the total number of loci

associated with any complex disease is finite and fixed.

The twomodels differed in one important assumption only: the

additive genetic model assumes that the effects of the delete-

rious genotypes contributed independently (additively) to com-

plex disease risk (Risch, 1990), whereas our nonadditive model

breaks this assumption by introducing ‘‘communities’’ of loci.

Essentially, such communities represented loci that normally

function in a coordinated manner, and our nonadditive model

assumes that at least one adverse genetic event must be present

within multiple communities in order to generate significant com-

plex disease risk. Thus, this community-based genetic model re-

quires combinations of particular deleterious genotypes, so we

refer to it as the combinatorial model to differentiate it from other

nonadditive genetic mechanisms. In the present study, the

combinatorial model was constructed to be as simple as

possible and included only two communities of loci.

Although the assumptions outlined above are simple, they

generate two models that make distinctly different predictions

in terms of the average complex disease risk in patients withmul-

tiple comorbid Mendelian phenotypes (see the Extended Exper-

imental Procedures for details). Specifically, the additive model

predicts that the average complex disease risk should increase

linearly as function of the number of comorbidMendelian pheno-

types, whereas the combinatorial model predicts a superlinear

(polynomial) increase. Furthermore, if billing record miscoding

errors were included into the additive model, the increase in

complex disease risk would become sublinear. All three

signatures were visually apparent in the risk profiles for the com-

plex diseases (see Figure S5), although sublinear increases were

rare (approximately 5 out of 65 illnesses). To formally quantify the

evidence in favor of each model, we took a Bayesian approach

and computed their posterior probabilities conditioned on the

clinical data (see Extended Experimental Procedures).

Because of the computational burden associated with fitting

genetic models to over 100 million patients, we selected a repre-

sentative sample of 20 complex diseases for analysis. In prac-

tice, the population-level mean of the genotype frequencies
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and the total number of complex disease predisposing loci

were not jointly identifiable, so we repeated the model selection

procedure for a range of potential loci numbers (see Experi-

mental Procedures). Eachmodel was clearly favored for a subset

of diseases, but the combinatorial model had stronger overall

support across the entire set (see Figure 3C). For diseases that

displayed a sublinear increase in risk (consistent with possible

miscoding errors), the additive model was supported over the

combinatorial by a wide margin (see diabetes mellitus type II in

Figure S5). Overall, this result provides additional and orthogonal

support for the hypothesis that Mendelian-Mendelian comorbid-

ities were driven by genetic interactions. It also suggests that

certain complex diseases (such as Addisons disease, acute

glomerulonephritis, and malignant brain neoplasms, but not

the two forms of diabetes or bipolar disorder) have a nonadditive

(epistatic) genetic architecture with respect to Mendelian dis-

ease variants.

DISCUSSION

Highly penetrant mutations have not been found for most com-

mon, complex diseases, despite intensive search. Although

rare single-nucleotide and copy-number variants have been

implicated in some complex disorders, including intellectual

disability (Vissers et al., 2010), schizophrenia (Bassett et al.,

2008) and autism (Iossifov et al., 2012), these results appear to

be the exception rather than the norm. The fact that we observed

widespread comorbidity among Mendelian and complex dis-

eases suggests that rare, highly penetrant variants do in fact

play a significant role in complex disease risk, but their delete-

rious effects do not result in single, isolated diseases. Instead,

highly deleterious genetic variants likely induce a variety of path-

ological consequences, consistent with the Mendelian code

displayed in Figures 2 and 3A. Such analysis resonates with

the results of recent genetic dissections of oligogenic traits,

such as Bardet-Biedl syndrome, which appears to harbor a

diverse genetic architecture that produces a variety of clinical

phenotypes (Katsanis et al., 2001; Zaghloul et al., 2010).

In addition to these direct associations, we also observed that

common risk variants associated with complex diseases were

specifically enriched in comorbid Mendelian loci. The most

obvious explanation for this is that some of the patients included

in GWA studies carried genetic variation that predisposed them

to both the Mendelian and complex diseases. However, there

are several reasons to be skeptical of this hypothesis. First, sub-

jects with Mendelian disorders are typically, by design, excluded

from GWAS (Zhao et al., 2010). Second, Mendelian diseases are

rare and have overt clinical presentations, so the unintentional in-

clusion of such carriers in the studies is highly improbable.

Finally, even if the rate of accidental sampling of Mendelian phe-

notypes were aberrantly high, we do not believe that ‘‘synthetic’’

genome-wide associations, in which the detected common var-

iants are in linkage disequilibriumwithMendelian disease alleles,

drive our results (Dickson et al., 2010). As discussed at length by

others (Visscher et al., 2012), numerous empirical and theoretical

analyses are simply not consistent with this interpretation.

As an alternative explanation, we and others (Lupski et al.,

2011) propose that Mendelian genes carry both rare and



common deleterious variants, such that alleles from both ends of

the frequency spectrum contribute to disease risk. Rare, highly

penetrant variants cause Mendelian disorders, whereas com-

mon variants with milder effects contribute to the complex phe-

notypes. By design, GWAS detect only the latter end of the

frequency spectrum, and the former is typically uncovered

through linkage analysis and sequencing. When the Mendelian

and complex phenotypes are similar, we can think of the two dis-

orders as different ends of the same genetic and phenotypic

spectrum, known as the allelic series hypothesis. In fact, there

are several well-documented examples of this phenomenon,

such as the familial and common forms of Parkinsonism and

blood lipid disorders (Manolio et al., 2009).

However, aside from a few special cases, this straightforward

definition of allelic series is not very helpful when explainingMen-

delian and complex phenotypes that are comorbid and share

genetic loci but are biologically dissimilar. For example, asthma

and systemic primary carnitine deficiency share clinical risk and

are both associated with variants in the SLC22A5 locus, but

there is no obvious relationship between the biology underlying

these two diseases. Instead, we suggest a modification to the

allelic series hypothesis that considers the multifactorial nature

of gene function. On one end of the spectrum, we hypothesize

that very rare, Mendelian disease variants completely or nearly

completely abolish all of a gene’s physiological functions. There-

fore, their effects are highly penetrant and pleiotropic, resulting in

overt pathologies (like Mendelian disease), while increasing a

carrier’s risk for a variety of other disorders. On the other end,

less deleteriousmutationsmay perturb the same genes, but their

effects are more limited, perhaps modifying only a subset of a

gene’s functions. In such instances, the resulting deleterious

effects may be quite subtle, allowing the variants to reach rela-

tively high population frequencies. Moreover, their ultimate path-

ological manifestations may be very different than those that are

observed in patients harboring Mendelian variants, reflecting the

different subsets of physiological functions perturbed by each

mutation type.

With this in mind, we hypothesize that the loci underlying

comorbid Mendelian disorders represent strong candidates for

harboring complex disease-predisposing genetic variants with

moderate and weak effects, as the Mendelian associations

have already suggested that the underlying gene is involved in

the pathophysiology of the complex disorder. This theory is sup-

ported by our GWAS enrichment results, but we believe that it

extends to rare variants with larger effects as well. Because

they have already been shown to contain a variety of complex

disease predisposing variants, we propose that the best candi-

dates for testing this hypothesis are perhaps those loci that

were found to contain both common risk and Mendelian

disease-causing variants (see Table S1). Consistent with this

hypothesis, we note that 4 out of the 7 neoplasms for which

GWAS results were available were found to associate with

both common and rare Mendelian genetic variants in the TERT

locus, which encodes the human telomerase reverse transcrip-

tase. Mendelian variants within this locus completely abolish

reverse-transcriptase enzymatic activity, resulting in several

overt, pathological symptoms (combined into a syndrome called

dyskeratosis congenita) (Kirwan and Dokal, 2009). Recently, a
rare germline variant in the promoter region of TERT was linked

to a familial form of melanoma, although carriers of the allele

may have increased risk for other neoplasms as well (Horn

et al., 2013). In support, somatic variants within the promoter re-

gion of TERT were also found in a variety of human cancer cell

lines (Huang et al., 2013) and solid tumors (Killela et al., 2013).

Such results raise the intriguing possibility that a spectrum of

TERT-associated variants, both rare and common, somatic

and germline, increase one’s risk for neoplastic disease.

Furthermore, our complex-Mendelian comorbidity analysis

predicted that schizophrenia, bipolar disorder, autism, and

depression are all associated with the following four Mendelian

loci: SYNE1, PRPF3, CACNA1C, and PPP2R2B. Consistent

with their hypothesized shared genetic architecture (Cross-

Disorder Group of the Psychiatric Genomics Consortium et al.,

2013), these four loci were also found to harbor common genetic

variants that influence risk for this same set of diseases. Interest-

ingly, exome sequencing in autism patients has uncovered both

de novo and inherited potentially deleterious variants in SYNE1

(O’Roak et al., 2011; Yu et al., 2013). We find this result particu-

larly interesting, as it suggests that these four genes may also

harbor rare variants that predispose carriers to multiple neuro-

psychiatric disorders. If this is correct, then pooling strategies

that combine sequence data from patients with these different,

but related, complex phenotypes could offer a simple approach

for increasing the power to identify rare variants with modest

effects.

In the second part of our study, we discovered approximately

450 comorbidity associations among pairs of Mendelian disor-

ders, suggesting that genetic interactions amongMendelian var-

iants are quite common. Consistent with this hypothesis, we

used genetic modeling to demonstrate that epistatic effects

could be detected in the complex disease risk profiles of patients

diagnosed with multiple, comorbid Mendelian disorders. At the

very least, our results suggest that strongly deleterious variants

have a high propensity for modifying the effects of other delete-

rious alleles in functionally similar genes. However, the existence

of nonadditive effects among rare genetic variants could have

practical consequences as well. For example, undocumented

epistasis among rare variants in distinct loci could negatively

impact the power of targeted resequencing studies.

Although our inference of widespread, nonadditive genetic

effects is novel, the fact that highly penetrant genetic variants

are subject to modification by other alleles that exist in trans is

well known. For example, at first glance, the Mendelian disorder

retinitis pigmentosa appears to follow the ‘‘independent effects’’

assumption of genetic additivity quite well (Parmeggiani, 2011),

as several, highly penetrant mutations in distinct genes have

been associated with the phenotype. However, this disease

was also one of the first Mendelian phenotypes with clearly

demonstrated digenic inheritance (Kajiwara et al., 1994), and

epistatic interactions among multiple loci have been reported

for other Mendelian phenotypes as well, such as Bardet-Biedl

syndrome (Badano et al., 2006). There are also known examples

in which trans genetic variants modify the specific symptoms of

Mendelian disorders. More specifically, several suspected ge-

netic modifiers have been previously identified for cystic fibrosis

(CF) (Cutting, 2010), a recessive disease caused by mutations in
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the CFTR gene. CF patients display a variety of symptoms,

including mucus congestion in the lungs, intestinal obstruction,

diabetes, abnormal gut microflora, and liver disease, and nearly

a dozen loci have been identified that appear to modulate the

strength of these clinical symptoms (Cutting, 2010). For

example, variation in EDNRA appears to affect the pulmonary

function of CF patients, whereas MSRA alleles modulate intesti-

nal obstruction.

In summary, we detected thousands of instances of comor-

bidity between complex-Mendelian and Mendelian-Mendelian

disease pairs. The existence of such associations was not unex-

pected; however, their widespread nature was surprising.

Furthermore, although there is a growing body of evidence that

genetic interactions are common across both Mendelian and

complex traits, such as Alzheimer’s disease (Badano and Katsa-

nis, 2002), facioscapulohumeral dystrophy type 2 (Lemmers

et al., 2012), and Hirschsprungs disease (Wallace and Anderson,

2011), we believe that this is the first instance in which such re-

lationships have been uncovered systematically across multiple

complex diseases. Ultimately, we demonstrate that digital

phenotypic data can be utilized to infer genetic and genomic

architectures, potentially allowing for extensive, novel analyses

in the field of human disease genetics. Moreover, this work

highlights the importance of documenting a wider spectrum of

Mendelian and other disease traits in a very large population of

humans, perhaps the entire United States or even multiple coun-

tries, in order to uncover the pathophysiology associated with

very rare genetic events.

EXPERIMENTAL PROCEDURES

Phenotype Curation and Billing Code Assignments

To identify the clinical phenotypes of interest, we used the disease codes pro-

vided by the International Disease Classification (ICD) system (WHO, 2010)

(see Table 1). The mappings between billing codes (both ICD9 and ICD10)

and diseases were obtained from Rzhetsky et al. (2007) and by manual cura-

tion, first by a PhD-level contractor trained in a biomedical field and second by

two of the authors, iteratively. All billing code mappings for the complex and

Mendelian diseases are provided in Tables S2 and S3, respectively. The billing

codes enabled the identification of 65 specific complex disorders and 95Men-

delian disease groups (representing 213 disorders) (see Tables S2 and S3,

respectively). Note, this reduction of 213-to-95 was not a choice of experi-

mental design but was necessitated by the ICD9 code taxonomy. See

Extended Experimental Procedures for additional details.

Clinical Record Analysis

Each clinical record database was first parsed (see Table 1), removing dupli-

cate records and identifying patients that harbored the diseases of interest.

In theory, a small fraction of these records could be shared between US and

the other, smaller US data sets (CU, NYPH, SU, TX, UC) because some

patients could have been documented in multiple databases. Because dupli-

cate records would strongly bias the results for rare diseases, we decided

against simply combining the information from different data sets into a single

meta-analysis. Instead, we performed an independent statistical analysis for

each data set and then combined the results according to a conservative pro-

cedure (see Extended Experimental Procedures for details). For the complex-

Mendelian comorbidity analysis, any disease pair containing a complex or

Mendelian disease that was specific to males or females (indicated by _ and

\, respectively, in Figure 2) was analyzed after conditioning on the appropriate

gender; gender-specific diseases were not included in the Mendelian-Mende-

lian analysis. The MED data set (Hidalgo et al., 2009; Lee et al., 2008) was

excluded from the meta-analysis, as we were unable to consistently identify
78 Cell 155, 70–80, September 26, 2013 ª2013 Elsevier Inc.
our phenotypes of interest. Specifically, the MED data set provides individual

ICD9 code counts only, but many of the disorders used in our analysis map to

multiple such codes. Additional details concerning our statistical procedures

for the analysis of complex-Mendelian and Mendelian-Mendelian disease

pairs are provided in the Extended Experimental Procedures.

Neighbor-Joining Tree Inference

The complex disease tree was constructed from the Mendelian comorbidity

relationships using the neighbor-joining method (Saitou and Nei, 1987). See

Extended Experimental Procedures for additional details.

GWAS Enrichment Analysis

To test for an enrichment of common, complex disease risk variants inMende-

lian loci, we aligned legacy genome-wide association results (NIH, 2012) with

the SNP-to-gene annotations provided by SCAN (Gamazon et al., 2010). Bino-

mial tests that specifically controlled for gene length and SNP annotation

biases were used to assess enrichment (see Extended Experimental Proce-

dures for details).

The Additive and Nonadditive Genetic Models for Complex Disease

Risk

In the main text, we briefly described two competing genetic models that

specify distinct mechanisms for how multiple Mendelian disease variants

combine to affect complex disease risk. Ultimately, the additive and combina-

torial models make very different predictions with respect to the increase in

complex disease risk as a function of the number of comorbid Mendelian phe-

notypes, allowing them to be differentiated within our massive clinical data

sets. The mathematical details concerning this prediction are somewhat

involved, and the interested reader should consult the Extended Experimental

Procedures. In the following section, we simply introduce our competing

genetic models using standard notation.

Consistent with common practice (Risch, 1990), each of our genetic models

treats the genotype (g) and phenotype (f) of an individual as random variables.

Their joint probability is equivalent to the expected population frequency of in-

dividuals that possess both a particular genotype (G) and disease of interest

(D). It is computed by taking the product of the genotype frequency and its

corresponding penetrance:

Pðf=D;g=GjQÞ=Pðg=GjQÞPðf=Djg=G;QÞ=FðGÞ3WDðGÞ;

where F(G) is the probability of observing genotypeG andWD(G) is the genetic

penetrance ofGwith respect to phenotype D (i.e., the probability of D givenG)

(Risch, 1990). The overall expected prevalence of the disease within the

population is computed by summing the previous probability over all possible

genotypes:

Pðf=DjQÞ=
X
G

FðGÞ3WDðGÞ:

Although not included for the sake of simplicity, environmental factors can be

easily incorporated into this framework through the inclusion of additional

random variables.

Our additive genetic model is specified within the previous framework by

defining the following simple penetrance function (Risch, 1990):

WDðGÞ= 1�
Yn
i = 1

½1�WDðGiÞ�;

where n is the number of independent loci affecting phenotypeD, andWD(Gi) is

the marginal penetrance function of the genotype at the ith locus (Risch, 1990)

that may take a variety of forms (dominant, recessive, additive, etc.). Techni-

cally, the model assumes that each locus contributes independently to com-

plex disease risk, and this assumption generally underlies most ‘‘additive’’

models in human genetics. That said, it also approximates a stricter definition

of ‘‘additivity,’’ in which the probability of the complex disease is simply the

linear combination of the penetrance probabilities of the individual loci (Risch,

1990).



Our nonadditive genetic model assumes that the deleterious genotypes

belong to a different ‘‘communities’’ of loci that act coordinately, and at least

one adverse genetic event must be present within multiple communities in

order to generate significant complex disease risk. Because this model re-

quires combinations of deleterious alleles, we call it the ‘‘combinatorial’’

model. To illustrate, imagine two disjoint groups of loci, or ‘‘communities,’’

each harboring a set of genotypes that predispose an individual to the disease

of interest. We denote the two communities using circle and square sub-

scripts, such that fgB;1;gB;2; :::; gB;nBg and fg,;1;g,;2; :::; g,;n,g denote

the genetic loci that belong to each community and nB and n, denote com-

munity sizes. To simplify notation, wewill indicate either the square or the circle

community, depending on context, using the C symbol ðC = fB;,gÞ.
Assuming an additive model within each community, the penetrance function

for the two-community combinatorial model is

WDðGÞ=
Y

C˛fB;,g

 
1�

YnC
i = 1

½1�WDðGiÞ�
!
:

Note that more general formulations of the model could allow for more than

two communities and a variety of different community- and loci-specific pene-

trance functions.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, five

figures, and five tables and can be found with this article online at http://dx.
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