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Numerous biological processes are concurrently and coordinately active in every living cell. Each of them encompasses 
synthetic, catalytic and regulatory functions that are, almost always, carried out by proteins organized further into higher-
order structures and networks. For decades, the structures and functions of selected proteins have been studied using 
biochemical and biophysical methods. However, the properties and behaviour of the proteome as an integrated system 
have largely remained elusive. Powerful mass-spectrometry-based technologies now provide unprecedented insights 
into the composition, structure, function and control of the proteome, shedding light on complex biological processes 
and phenotypes.

Collectively, proteins catalyse and control essentially all cellular 
processes. They form a highly structured entity known as the 
proteome, the constituent proteins of which carry out their func-

tions at specific times and locations in the cell, in physical or functional 
association with other proteins or biomolecules. A proliferating Schizo-
saccharomyces pombe cell contains about 60 million protein molecules, 
which have abundances that range from a few copies to 1.1 million copies 
per expressed gene1. Across the species, proteins constitute about 50% 
of the dry mass of a cell and reach a remarkable total concentration of 
2–4 million proteins per cubic micrometre or 100–300 mg per ml (ref. 2). 
The extensive proteome network of the cell adapts dynamically to external 
or internal (that is, genetic) perturbations and thereby defines the cell’s 
functional state and determines its phenotypes. Describing and under-
standing the complete and quantitative proteome as well as its structure, 
function and dynamics is a central and fundamental challenge of biology.

Two strategies that differ in principle have been used to study the 
proteome and the molecular mechanisms that it mediates. Convention-
ally, specific proteins are isolated and then analysed with respect to their 
structure and function through the established methods of biochemistry 
and biophysics. But it has also become possible to perform large-scale, 
systematic measurements of proteomes to generate biological insights 
from the computational analysis of proteomic datasets, either on their 
own or in combination with other ‘omics’ types of data. Both approaches 
have been transformed fundamentally by the development of powerful 
mass-spectrometry-based methods. Such techniques have the capability 
to identify conclusively and quantify accurately almost any protein that 
has been expressed. They can also systematically identify and localize 
modified amino acids in the polypeptide chain as well as determine the 
composition, stoichiometry and topology of the subunits of multiprotein 
complexes and even contribute to determining their structure.

The annotated genome identifies the entire proteome of an organism. 
However, the literature has focused on the small fraction of the proteome 
for which measurement assays are readily available3. This set of intensely 
studied proteins has remained surprisingly constant over the past few 
decades. Robust mass-spectrometry-based methods now enable most 
proteins to be measured reliably, which vastly extends the range of the 
classic, mechanism-focused analyses of specific components of the pro-
teome. They also make possible the systematic analysis of the proteome 
to an extent that had been predicted previously4,5.

Underlying reasons for the success of mass spectrometry in proteom-
ics include its inherent specificity of identification, the generic nature of 
the proteomics workflow and its potential for extreme sensitivity that, in 
principle, extends to the single ion. In practice, it has been challenging to 
realize the full potential of the technique, and ingenious ways of imple-
menting mass spectrometry as a universal detector of protein identity, 
abundance, precise chemical state and cellular context and localization 
are still being devised. At present, no single mass-spectrometry-based 
system or method can determine by itself these diverse dimensions for 
proteome data.

This Review highlights the achievements of mass-spectrometry-based 
proteomics and the challenges that remain. Efforts to catalogue system-
atically the proteomes of an array of species and to transform these cata-
logues into highly specific assays that can quantify any component are 
described. The analysis of post-translational modifications is discussed, 
especially with regard to completeness of measurement and how the 
research community might assign functions to the tens of thousands of 
modified sites that have been discovered in the past decade. The state of 
mass spectrometry is reviewed in the context of the study of functional 
modules, in which components of the proteome come together stably or 
temporarily in complexes to carry out a biochemical function. Last, mass-
spectrometry-based techniques that are capable of quantifying thousands 
of proteins across collections of large numbers of samples with a high 
degree of reproducibility are described; these generate large datasets that 
can be mined by statistical machine-learning tools to determine the state 
of the proteome and its response to perturbations. Such datasets start to 
uncover systemic malfunctions at the cellular and organismal levels in 
diseases that have been difficult to reach through classic protein-based 
or nucleic-acid-based research.

The identification and quantification of the proteome
The ability to identify reliably any component of the proteome is a 
requirement both for mechanistic, hypothesis-driven investigations 
and for large-scale, omics-type studies. A comprehensive and reliable 
mass-spectrometry-based proteome map is also a prerequisite for the 
development of targeted mass spectrometry techniques, as well as for 
data-independent acquisition (DIA) strategies (Fig. 1 and Box 1); these 
rely on information from pre-existing high-quality spectral libraries. The 
importance of accurate quantification in proteomics is hard to overstate, 
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Figure 1 | Bottom-up proteomics workflows.  a, All bottom-up proteomics 
workflows begin with a sample-preparation stage in which proteins are 
extracted and digested by a sequence-specific enzyme such as trypsin. Present 
methods of protein preparation are highly efficient and can be performed in 
96-well plates with robotic assistance. Peptides are then separated by means 
of chromatography and electrosprayed, after which they are introduced into 
the vacuum of a mass spectrometer. Three classes of methods are shown. In 
DDA methods, a full spectrum of the peptides (at the MS1 level) is acquired, 
followed by the collection of as many fragmentation spectra (at the MS2 level) 
as possible, within a cycle time of about 1 second. A quadrupole–orbitrap mass 
analyser is depicted, although other types of analyser are also used in DDA. 
Results are interpreted using software packages such as MaxQuant100 and the 
downstream Perseus environment101. In targeted analysis, a peptide of known 
mass-to-charge ratio (m/z) is selected in the first quadrupole, then the peptide 
is fragmented and several fragments are monitored over time. These transitions 
are multiplexed and their specificity is checked using software packages such 
as SkyLine102. In DIA methods, which are exemplified by sequential window 
acquisition of all theoretical fragment-ion spectra (SWATH)–MS103, ranges 
of m/z values (that typically span 25 m/z units) are selected and peptides are 
fragmented, followed by the acquisition of the fragments in a time-of-flight 
mass spectrometer. The instrument rapidly and seamlessly cycles through the 
entire mass range within a few seconds. The multiplexed fragment spectra 

are interpreted — often with the help of known fragment spectra from large 
spectral libraries — by software such as OpenSWATH104. b, Peptide quantities 
can be determined at the MS1 level by integrating the signal from peaks of the 
precursor ions that elute from the high-performance liquid chromatography 
column. An arbitrary number of runs (stacked mass spectra, left) can be 
compared using sophisticated alignment and normalization procedures. 
Quantitative comparison of the isotopic cluster of the same peptide over two 
runs can be performed. Peptide identities can also be transferred when the 
peptide is fragmented in only one of the runs but matches precisely the mass 
and elution time of an aligned peak (known as the ‘match between runs’ feature 
in MaxQuant100). Absolute quantities can be estimated by adding up the peak 
volumes of all peptides that identify a particular protein then determining 
the proportion of the (known) total proteome mass that has been analysed. 
Peptides can also be subjected to label-free quantification at the MS2 level 
(right). In this case, the fragment-ion intensities that are unique to a specific 
peptide are used for quantification, in a way that is analogous to the use of 
precursor-ion signal intensities for quantification using MS1-level data. In 
multiplexed shotgun proteomics, up to ten samples are labelled differentially 
so that they release reporter ions that can be distinguished in the MS2 spectra. 
In DIA-based methods, the intensities of fragments that belong to the same 
precursor ion are extracted to yield a measure of peptide abundance104,105. 
Q, quadrupole.
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and this has become a crucial requirement for almost all functional stud-
ies in the past 10 years.

The preferred method for proteome discovery is data-dependent acqui-
sition (DDA) (Fig. 1) and the past decade has seen striking advances in 
this area. Whereas the first description of a complete model proteome6 
and the identification of more than 10,000 different proteins in human 
cell lines7,8 were technological tours de force, a similar depth of coverage 
can now be achieved within hours and with minimal sample-preparation 
steps9,10. These developments, although still confined to a few specialized 
laboratories, will make proteomics increasingly applicable to everyday 
cell biology and biochemical research, which overwhelmingly uses clas-
sic antibody-based techniques such as western blotting. In addition to its 
exquisite specificity, other advantages of DDA-based proteomics include 
that it is unbiased and free from hypotheses; that is, the researcher does 
not need to know the identity of the expected proteins in advance. Fur-
thermore, in a DDA-based proteomics experiment all proteins can be 
interrogated at once. As well as helping to answer a specific question, 
proteomics can therefore turn every experiment into a global discovery 
study, which enables the detection of new and unexpected molecules and 
connections, providing fresh biological insights. These developments 

are supported by publicly accessible bioinformatics tools for processing 
and interpreting the large amounts of data that are generated in complex 
projects (Fig. 1). The continued development of highly streamlined and 
robust proteomics workflows, including robust and economical mass 
spectrometers, is advocated to usher in an age of complete, accurate and 
ubiquitous proteomes11, in analogy to what the introduction of next-
generation sequencing has provided for genomics-related fields.

Present technology already enables analysis of the complete protein 
inventory of biological systems, including cell-type-specific proteomes 
of mammalian organs12–14. One outcome of in-depth proteomics studies 
has been a demonstration of the extent to which diverse cellular systems 
have similar proteomes, with few proteins being uniquely detectable in 
specific situations15. This surprising finding is supported by the Human 
Protein Atlas, a large-scale antibody-based study that also reports ubiq-
uitous expression16. The identity of cells and tissues therefore seems to 
be determined primarily by the abundance at which they express their 
constituent proteins, and perhaps by the manner in which the proteins 
are organized in the proteome, rather than the presence or absence of 
certain proteins.

The application of DDA-based proteomics to a collection of human 
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tissues, combined with the integration of data from the community, 
has resulted in two draft human proteomes17,18. Mass-spectrometric 
evidence for 84% (ref. 17) or 92% (ref. 18) of protein-coding sequences 
was reported. However, re-analysis of the data using standard and com-
munity-approved false-discovery rates for peptides and proteins leads 
to much lower coverage and the removal of proteins not thought to be 
expressed in the sampled tissues19,20. Extensive peptide pre-fractionation 
has been combined with digestion by various enzymes and peptide frag-
mentation methods to reach a depth of proteome coverage that should 
soon be on par with the comprehensiveness to which the transcrip-
tome can be probed by next-generation sequencing13. Comprehensive 

characterization of the proteome is therefore feasible and we predict that 
it will soon become routine11. The coverage of identified proteins with 
sequenced peptides has also been improving, which makes it increas-
ingly realistic to distinguish between and quantify proteoforms, the dif-
ferent molecular forms of a protein that originate from the same gene. A 
complete inventory of proteoforms cannot yet be achieved and will be a 
challenge to attain because of the combinatorial explosion of proteoforms 
that are created by even a moderate number of modifications. Top-down 
proteomics characterizes the actual combination of modification events 
for each proteoform21. Although attractive in principle, top-down mass 
spectrometry is experimentally and computationally challenging because 

Proteins can be studied as intact entities by mass spectrometry, an 
approach called top-down proteomics21. This has the advantage 
that all modifications that occur on the same molecule can, in 
principle, be measured together, enabling identification of the 
precise proteoform107. However, bottom-up proteomics, in which 
peptides are generated by the enzymatic digestion of proteins, has 
been experimentally and computationally more tractable and is 
the most widespread proteomic workflow. A number of bottom-up 
techniques exist; each has a specific purpose, a performance profile 
and a range of utility. In all of the techniques, proteins are extracted 
from the source material then digested into peptides by a sequence-
specific enzyme such as trypsin. The resulting mixture of peptides is 
separated by reverse-phase chromatography, which is coupled online 
to electrospray ionization (Fig. 1). The peptide ions are then transferred 
to the vacuum of a mass spectrometer, where they are fragmented 
in the gas phase to generate MS/MS (MS2) spectra that contain 
the information to identify and quantify specific peptides. Almost 
always, collision-induced dissociation or higher-energy collisional 
dissociation108 are used for fragmentation, but alternative methods 
are becoming more widely available. One such method, electron 
transfer dissociation109, is particularly beneficial for the fragmentation 
of large and modified peptides. The resulting data are analysed 
by mass-spectrometry-specific computational pipelines as well as 
general downstream systems-biology solutions that are tailored to 
proteomics101.

Three main approaches are used in bottom-up proteomics: 
discovery (or shotgun) proteomics by means of DDA, aimed at 
achieving unbiased and complete coverage of the proteome; 
targeted proteomics using selected reaction monitoring, aimed at 
the reproducible, sensitive and streamlined acquisition of a subset 
of known peptides of interest; and multiplexed fragmentation of all 
peptides that elute from the high-performance liquid chromatography 
column by DIA, aimed at generating comprehensive fragment-ion 
maps for a sample (Fig. 1a–c).

In DDA-based methods, mass spectra of all the ion species that 
co-elute at a specific point in the gradient elution (that is, precursor-ion 
spectra) are recorded at the MS1 (or full-scan) level. The instrument 
alternates between the acquisition of full-scan data and the acquisition 
of fragment-ion spectra, in which as many precursors as possible 
are sequentially isolated and fragmented (at the MS2 level). Of many 
possible instrument configurations, quadrupole–orbitrap analysers110 
dominate DDA proteomics but time-of-flight instruments also have 
unique promise. In typical ‘top N’ cycles (in which ‘N’ denotes the 
number of MS2 spectra that follow), an MS1 scan is followed by about 
ten fragment-ion scans. Contemporary instruments transfer ions into 
the vacuum with greatly improved efficiency, which results in very 
bright beams (of more than 109 ions per second). The resolution of 
orbitraps has improved several fold, enabling very fast top N cycles 

at high resolution. However, the capacity of orbitraps is still limited to 
about 1 million ions, which restricts the dynamic range that can be 
achieved in MS1 spectra.

In targeted proteomics, the proteins of interest are predetermined 
and known. Using pre-existing information, characteristic (proteotypic) 
peptides are selectively and recursively isolated and then fragmented 
over their chromatographic elution time. This is done by setting the 
first quadrupole of a triple quadrupole instrument to the expected 
precursor ion m/z ratio and the third quadrupole to the m/z ratio of 
an abundant fragment ion that is specific for the targeted peptide. 
(The second quadrupole houses the collision chamber.) To achieve 
selectivity, the process is multiplexed to several fragments per peptide 
(known as multiple reaction monitoring, MRM), and throughput is 
increased by multiplexing it to many peptides111. Alongside the robust 
and economical triple quadrupole instruments, high-resolution 
instruments such as quadrupole orbitraps are used increasingly for 
targeted analysis, a variant known as parallel reaction monitoring 
because it utilizes the entire MS2 spectrum112.

In DIA-based methods113 such as SWATH103, entire ranges 
of precursors are fragmented at the same time. The peptide 
fragmentation information is retrieved from the multiplexed MS2 
spectra either by targeted signal extraction on the basis of previously 
acquired single-peptide fragmentation spectra112 or by the generation 
of ‘pseudo’ fragment-ion spectra constructed directly from the 
DIA data that are then subjected to classic database searching105. 
The advantage of this approach is that the entire range of possible 
precursor-ion masses can be analysed seamlessly and in rapid 
succession, which eliminates the missing value problem of DDA 
(in which peptides are only measured in some of a set of liquid 
chromatography–mass spectrometry (LC–MS2) runs), at least within 
the dynamic range that is achieved in the experiment. At present, 
DIA is limited to a dynamic range of 4–5 orders of magnitude and it 
requires the a priori construction of fragment-ion spectra for the query 
peptides to deconvolve these peptides from the DIA data104,105,114.

Each of these approaches has advantages and limitations; hybrid 
methods that combine the best aspects will therefore probably 
emerge in the near future. Entirely new methods will also be created. 
For instance, in the past year it has become possible to store several 
precursor ions in parallel in a trapped-ion mobility device, which 
can then be followed by serial fragmentation. Known as parallel 
accumulation–serial fragmentation (PASEF), this method promises to 
increase the speed and sensitivity of fragmentation several fold115.

Metabolic and chemical labelling strategies have matured and can 
now be used for precise quantification, but they can still suffer from 
limitations to their accuracy and dynamic range116–118. Improvements 
in the resolution that can be achieved, combined with advances in 
algorithms, are making label-free quantification increasingly useful for 
DDA119, selected reaction monitoring120 and DIA104,105 methods.

BOX 1

Bottom-up proteomics

1 5  S E P T E M B E R  2 0 1 6  |  V O L  5 3 7  |  N A T U R E  |  3 4 9

REVIEW INSIGHT

©
 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



of the greater difficulty in analysing proteins in comparison with peptides 
and because each protein is distributed as multiple proteoforms that might 
or might not differ functionally. The array of modern mass spectrometry 
techniques has also been deployed to analyse unique types of sample with 
biological and clinical importance, including secreted proteins in the con-
text of immunology22, the peptidome of body fluids such as cerebrospinal 
fluid23, the immunopeptidome24 and the extracellular matrix25.

Proteomics is sufficiently advanced to warrant the in-depth characteri-
zation of a great variety of biological systems. Along with other important 
information, this enables protein copy numbers or concentrations to be 
determined on a proteome-wide scale26–28, which helps to improve under-
standing of the underlying biology.

Characterizing protein modifications and cell signalling
Mass-spectrometry-based proteomics is well suited to the study of post-
translational modifications because such changes lead to characteristic 
shifts in mass and can be located with the resolution of a single amino acid 
through peptide-fragment ion spectra (Fig. 2). The only deviation from 

the DDA-based proteomic workflow that is used to identify unmodified 
peptides is the addition of an enrichment step for peptides that carry the 
modification of interest. Post-translational modifications that are par-
ticularly labile, such as O-linked β-N-acetylglucosamine (O-GlcNAc), 
benefit from the use of electron transfer dissociation as the fragmentation 
method, and certain classes of modifications, including glycosylations 
with large glycans and nucleotide modifications, can also be challenging 
to detect using mass spectrometry. The most frequently studied types 
of post-translational modifications are phosphorylation, ubiquityla-
tion, the addition of ubiquitin-like proteins, glycosylation, methylation, 
acetylation and other types of acylation. For these, present technology 
enables the identification of thousands of sites of modification and their 
accurate quantification between proteomic states29. The main surprise 
has been the number and diversity of these post-translational modi-
fications as well as how many of them seem to be involved in cellular 
regulation. For example, more than 50,000 phosphorylation events on at 
least 75% of the proteome have been documented in a single cell line30. 
Phosphoproteomics is used routinely to quantify the response of cells to 

Figure 2 | Analysis of post-translational modifications.  a, In post-
translational modification, proteins are modified through the attachment 
of a chemical moiety such as a phosphate group, usually by a dedicated and 
highly specific system of enzymes. The most commonly studied post-
translational modifications are listed (centre) and these are accompanied 
by hundreds of other less-well-studied or unknown types of modifications. 
Such modifications can lead to: alterations in protein conformation 
(through phosphorylation) and subsequent allosteric regulation; changes 
in enzyme activity; crosstalk that results from the same amino-acid residue 
being targeted by more than one type of modification; alterations in 
the subcellular localization of proteins; changes in protein binding; and 
alterations in protein lifetimes (for example, through the attachment of 
the small protein ubiquitin). Ac, acetyl; ERK, extracellular signal-related 
kinase; Me, methyl; MEK, mitogen-activated protein kinase kinase; MYC, 
transcription factor cMYC; P, phosphate; RAF, RAF kinase; RAS, RAS 
GTPase; Ub, ubiquitin. b, After a modified peptide has been identified from 
the fragment spectra, the amino acid in the peptide chain to which the post-
translational modification is attached must be determined. The location of 
the modification within the three-dimensional structure of the protein can 

often also be determined, which provides clues about function. c, Global 
interrogation of the changes in a signalling pathway can be achieved 
readily by quantitative phosphoproteomics. For example, the suppression 
of aberrant signalling in cancer cells by drugs known as kinase inhibitors 
can be followed. d, Detailed time-course experiments yield information on 
the temporal ordering of events such as the activation of a kinase upstream 
of one of its substrates. The proportion of proteins that are modified by 
a particular post-translational modification (also termed the occupancy 
or stoichiometry) can change drastically depending on the biological 
conditions (not shown). It can be derived from the changes in protein 
level and the levels of the modified and unmodified peptide in two cellular 
states106. e, The modification of a protein often determines its subcellular 
localization — that is, whether it is found in the nucleus or the cytosol, 
for instance. Many types of stimuli can be applied to biological systems, 
after which the level of a particular post-translational modification can be 
determined. f, The structure of the perturbation matrix that results reveals 
the regulated sites and how they correlate between stimuli, as indicated 
by hot spots in the heat map. m, number of modification sites quantified; 
n, number of stimuli applied.

Subcellular localization

V K L T QQG AK S V S P A

?

Glycosylation

Turnover

Crosstalk

Acylation

Methylation

Phosphorylation

Lipidation
P

Ac

K

Localization

Catalytic 
center

Activity 
a�ected

Activity 
una�ected

Large-scale perturbation matrix

Stimuli1 n

N
u
m

b
er

 o
f 

m
od

i�
ca

tio
n
 s

ite
s

m

Lysosome

Mitochondrion

Endoplasmic 
reticulum

Nucleus

Cytosol

Protein
conformation

Ubiquitination Enzyme activityProtein binding 
and interaction

Ac

Ac

Ub

P

Ub

Me

Score

Peptide chain

3D structure

Probability

Cancer signallingLocation of modi�cation

Time-course experiments

Time

Shift

Kinase

Substrate

A
b
u
n
d
an

ce

RAF

RAS

MYC

MEK

ERK

Nucleus
Inhibition

Kinase 
inhibitor

Cancer
cell

a b c

e

d

f

3 5 0  |  N A T U R E  |  5 3 7  |  1 5  S E P T E M B E R  2 0 1 6

REVIEWINSIGHT

©
 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



stimuli and such studies have reached a remarkable level of detail and 
sophistication. As well as providing large catalogues of sites, they have led 
to the discovery of sites of regulation with pivotal roles in determining 
the state of biological processes31–35. A streamlined protocol has made it 
possible to analyse in vivo signalling events with high temporal resolu-
tion36. This revealed that insulin signalling in the liver is unexpectedly fast: 
maximal phosphorylation was reached within a few seconds at many sites 
and transcription factors were phosphorylated fully within 30 seconds. 
Another message emerging from phosphoproteomics is that the propor-
tion of sites that are functional seems to be high. This is suggested by high 
stoichiometry (that is, the fraction of proteins that are phosphorylated 
at a specific site), a large number of highly regulated sites in diverse pro-
cesses, and by the tight temporal correlation of many uncharacterized 
sites with sites that are known to be functional. Conversely, lysine acetyla-
tion behaves very differently: the stoichiometry is extremely low for most 
sites and often these modifications seem to be of a non-enzymatic origin, 
which is also true for acylations such as succinylation37,38. Lysine is the 
most frequently modified amino-acid residue and the specific target of 
ubiquitylation, a modification that can be enriched efficiently and studied 
in a linkage-specific manner by mass spectrometry. Effective strategies 
also exist for characterizing SUMOylation and modification with other 
ubiquitin-like proteins, and these have revealed unique insights into 
their large-scale behaviour39. Histone modifications and their regulators 
(proteins known as ‘writers’, ‘readers’ and ‘erasers’ that make, recognize 
and edit epigenetic marks) are of great interest and specific methods have 
been devised for their detection40,41.

Mass spectrometry also enables the characterization of hundreds of 
exotic or unknown modifications42–44. This emerging area builds on 
new instrumentation, innovative methods of fragmentation and fresh 
protocols for enrichment but faces the challenge of devising enrichment 
methods that are specific for each post-translational modification of inter-
est. As the proteome is probed to ever increasing depths, the analysis of 
modifications without their enrichment is becoming more feasible, and 
this is already possible for methylation and phosphorylation.

Post-translational modifications and proteolytic processing events, in 
particular, can also be analysed using chemical proteomics approaches. 
These use compounds that bind to engineered small-molecule binding 
pockets45 or probes that label the freshly created N termini of proteins after 

cleavage46,47. The deep, quantitative and time-resolved analysis of specific 
types of modifications in many systems and species has already provided a 
wealth of biological insights. These data also indicate that specific modifi-
cation systems intersect and cooperate to generate a specific cellular state. 
The comprehensive analysis of proteoforms that differ in their state of 
modification, the determination of the functional significance of such 
proteoforms and the elucidation of the processes that catalyse and control 
their homeostasis remain challenges for the future.

Protein modules, networks and cellular functions
Proteins rarely function alone; instead, they depend on the association 
of various components into macromolecular complexes. The concept of 
modular biology, proposed by Leland Hartwell and his colleagues, states 
that the biological functions of the cell are carried out by multicomponent 
modules48, and the modularity of the proteome has been impressively 
demonstrated by several classic studies49. An array of mass-spectrometry-
based strategies, the best established of which is interaction proteomics, 
has made considerable contributions to integrative or hybrid approaches 
to yield the composition, topology and structure of specific complex 
macromolecular assemblies50.

Interaction proteomics involves a pull-down assay of a bait protein 
with its binding partners followed by mass-spectrometric analysis, known 
as affinity-purification mass spectrometry (AP–MS)51 (Fig. 3a). Thou-
sands of proteins can be detected in such experiments owing to the high 
sensitivity of mass spectrometry and the propensity of the samples to 
contain unspecific contaminants. Proteins that bind with specificity to 
the bait can be distinguished effectively from the contaminants through 
the quantitative comparison of samples with control assays, preferably 
using rigorous statistical controls52,53. Without the ability to distinguish 
background binding, the reported interactomes of specific proteins often 
contain hundreds of purported binders with little biological importance. 
Versions of this basic AP–MS workflow have been implemented robustly 
to support large-scale mapping of the wiring diagrams of the human cel-
lular proteome54. Taking advantage of the relative abundance levels of 
prey proteins and the endogenously expressed bait, and adding copy 
numbers of the entire cellular proteome, provides a human interactome 
in three quantitative dimensions and enables the estimation of binding 
stoichiometries. This helps to classify interactions into stable, regulatory 

Figure 3 | Interaction proteomics and structural proteomics.  a, 
Schematic representations of a protein interaction network with bait 
proteins (teal), core complex members (dark green) and weak interactors 
(light green). A bait protein is precipitated with its interaction partners 
and is measured in replicates by one of the workflows described in Fig. 1. 
By considering the interaction stoichiometry (the molar ratio of prey 
proteins and the bait protein expressed under endogenous control) and 
the relative cellular abundances of the proteins, stable core complexes 
can be distinguished from weak interactions and unspecific interactions, 
as well as from asymmetric interactions between proteins of different 
abundances55. b, A wild-type protein complex and the same complex 
with mutations (*) are investigated using complementary structural 

techniques, collectively termed integrative or hybrid structural analysis. 
For example, XL–MS can reveal information about subunit topology and 
direct domain–domain interactions. Hydrogen–deuterium exchange mass 
spectrometry (HDX–MS) is able to determine the interaction surfaces and 
solvent-exposed regions. Native mass spectrometry (native MS), in which 
entire protein complexes are electrosprayed into the mass spectrometer, 
can infer the stoichiometry and the assembly pathway of such complexes, 
and cryo-EM can obtain their overall shape and their density maps. 
The heterogeneous structural restraints are integrated in a common 
computational framework that evaluates subunit configurations (known as 
conformational sampling). Consensus models that represent the structures 
of the wild-type and mutated complexes can then be derived.

Integrative 
models

%

18+

8+ 
12+

100

0

Weak-interactor 
protein

Core-complex 
protein Bait 

protein

Wild-type complex

Mutated complex
Native MS

XL–MS

Cryo-EM

HDX–MS

Conformational 
sampling

Structure investigation

Bait proteins
Interacting
proteins

b Integrative structural analysisa A�nity-puri�cation mass spectrometry

*

1 5  S E P T E M B E R  2 0 1 6  |  V O L  5 3 7  |  N A T U R E  |  3 5 1

REVIEW INSIGHT

©
 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



or transient ones and even captures client interactions such as proteins 
being folded by chaperone complexes55. This work established that net-
works of cells are surprisingly dominated by a large number of weak 
interactions and that the number of stable core complexes is limited. The 
emerging picture of a modular proteome in which modules have vari-
able stoichiometric robustness is also supported by a study in which the 
relative changes of bona fide protein components of 182 complexes were 
determined in 11 cell types and 5 temporal states56. The covariance of the 
co-expression profiles for complex subunits varied considerably, which 
suggests that dynamic subunit associations fine-tune the composition 
and function of specific cellular modules56.

Modified peptides, oligonucleotides and small molecules have also 
been used with success as bait proteins for AP–MS experiments51. For 
instance, transcription-factor complexes that are crosslinked to DNA 
can be analysed readily, as can protein complexes that are recruited to 
specific DNA lesions57. Other approaches to capture protein interactions 
include enzyme-meditated proximity labelling in cells followed by pull-
down assays of the labelled proteins58,59 and the accurate measurement 
of co-fractionation patterns60–62. Such measurements are also the basis of 
organellar proteomics, which aims to determine the subcellular location 
and dynamics of the proteome63–66, a valuable complement to imaging-
based technologies.

Although AP–MS and related methods indicate the composite 
population of proteins that is associated with a particular bait protein, 
other mass-spectrometry-based methods can also identify the subunit 
interfaces, topology, conformation and structure of protein complexes 
(Fig. 3b), as shown by the analysis of the nuclear pore complex67.

Native mass spectrometry, which is the direct analysis of macromo-
lecular assemblies by mass spectrometry, has been used both by itself68 
and as part of an integrative approach69 to gain insights into the subunit 
stoichiometry, topology and structure of macromolecular assemblies. 
When applied to membrane protein complexes, the technique revealed an 
unappreciated structural role for lipids in respiratory protein complexes70.

Integrative or hybrid approaches complement X-ray crystallography 
and nuclear magnetic resonance, methods that are central to structural 
biology, and mass spectrometry has become an essential component 
of the hybrid structural-biology toolbox71. Distance restraints that are 
generated by chemical crosslinking and the mass-spectrometry-based 
identification of crosslinked residues (an approach termed XL–MS) have 
proven helpful for determining the structure of large complexes72, par-
ticularly in combination with single-particle cryo-electron microscopy 
(cryo-EM) data. XL–MS and cryo-EM have been used to solve longstand-
ing problems in structural biology71, to identify the substrate binding sites 
in molecular chaperones73 and to detect steric alterations in complexes 
in different functional states74. XL–MS has also been used to analyse 
protein–RNA interfaces75, to identify receptor–ligand pairs directly76, to 
map physical interactions between different types of biomolecules and 
to identify the ligands of orphan receptors.

Integrative structural-biology methods are being adapted for use with 
the microgram amounts of protein complexes that are isolated by affinity 
purification, and this advance has been applied to mapping the organiza-
tion of the protein phosphatase 2A (PP2A) enzyme system in HEK293 
cells77. Using the two catalytic subunits, the scaffold subunit and most of 
the 15 regulatory subunits from which trimeric PP2A structures are com-
binatorially assembled as bait proteins, XL–MS identified the protein–
protein interfaces, the actual subunit composition of the PP2A complexes 
that are concurrently expressed in the cell and their associated proteins 
to establish a high-granularity protein interaction network consisting of 
more than 150 proteins77.

Notably, XL–MS is beginning to be used on a proteomics scale78,79. 
Although the crosslinks that are identified in such studies come primar-
ily from highly expressed complexes, they highlight a path towards the 
direct measurement of protein–protein interfaces in the cell. The com-
bination of AP–MS and XL–MS was recently refined so that chemical 
crosslinks could be identified from samples containing only a few mil-
lion cells80,81. Complexes that are isolated by AP–MS can also be used to 

generate cryo-EM single-particle data, which opens up the possibility of 
linking the atomic structure and function of macromolecular assemblies 
that have been isolated from cells in a particular functional state. Results 
from cryo-electron tomography studies further extend this perspective 
towards the possibility of observing specific macromolecular modules by 
template matching in situ82,83.

In a similar way to their composition, the conformation of the subunits 
of protein complexes can adapt to the state of the cell. Mass spectrometry 
techniques can detect changes in protein conformation and protein inter-
faces and then relate these observations to functional alterations in par-
ticular proteins. Hydrogen–deuterium exchange mass spectrometry is a 
classic method for determining alterations in the conformation, structure 
and interfaces of specific complexes84. By contrast, the hydroxyl radical 
footprinting method predominantly labels solvent-exposed side chains 
and is not affected by back exchange of the labelled residues85. The differ-
ent conformations of a protein can vary in thermal stability, an observa-
tion that has been used to probe conformational changes at a proteomic 
scale86. Cells treated with a cancer drug were subjected to different tem-
peratures, after which heat-denatured proteins were removed and the 
remaining soluble proteins were analysed by mass spectrometry. This 
pinpointed both expected and unexpected binding partners of the drug. A 
conceptually similar technique used the fact that conformational changes 
in proteins can be detected using protein digestion patterns generated 
under conditions of limited proteolysis87. Structural features of more than 
1,000 yeast proteins were concurrently monitored by targeted mass spec-
trometry and altered conformations for about 300 proteins on a change 
in nutrients were detected87. Such examples demonstrate how structural 
proteomics techniques are helping to tackle the challenge of detecting 
often weak interactions between proteins, small-molecule ligands and co-
factors on a global scale, as well as the structural effects of ligand binding.

Proteotype states and cellular phenotypes
In the 1940s, Linus Pauling established that a structural alteration in 
haemoglobin was related causally to a disease phenotype88. In that par-
ticular case, the structural variation was caused by a single amino acid 
change in one of the haemoglobin chains, the result of a mutation in the 
gene that encodes the chain. The extension of this fundamental principle 
of biology to the level of proteome networks suggests that genetic or exter-
nal perturbations change the state of the proteome network and that such 
changes cause or correlate with altered phenotypes (Fig. 4). The state of a 
proteome that is associated with a specific phenotype can be described as 
a proteotype. The association between a proteotype and its corresponding 
phenotype can be investigated by means of two mass-spectrometry-based 
approaches that differ in principle. The first approach attempts to describe 
a phenotype mechanistically using the aggregated structure and func-
tion of the proteins or modules that constitute the underlying processes. 
The second approach associates a phenotype with its proteotype through 
advanced statistical machine-learning tools (known collectively as ‘big 
data’ analytics) but does not necessarily reach a causal or mechanistic 
understanding of the underlying processes. Both approaches have been 
greatly advanced by mass-spectrometry-based technology. In particular, 
the big data approach based on statistical associations has become possible 
only through the development of mass spectrometry techniques that are 
capable of quantifying sets of proteins with a high degree of reproduc-
ibility across large collections of samples, generating large data matrices 
of proteins measured across various samples with minimal missing values. 
Mass-spectrometry techniques that are used to generate such matrices 
include the matching of MS1 intensity maps, using their retention time 
versus mass-to-charge ratio, from collections of samples and DIA-based 
methods, and the targeted mass spectrometry of smaller numbers of pro-
teins (Box 1).

In a demonstration of these concepts, a yeast genetic reference panel 
was used to quantify the effect of genetic perturbations on a metabolic 
network89. Selected-reaction-monitoring targeted mass spectrometry 
measured 50 metabolic proteins in 96 genetically well-defined strains 
of yeast. Parental strains acquired independent genetic variations that 
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consistently affected levels of proteins from the same module or pathway 
that selective pressures favoured for the acquisition of sets of polymor-
phisms that maintain the stoichiometry of complexes and pathways. Simi-
larly, 192 proteins that constituted a metabolic network were quantified by 
selected reaction monitoring of liver samples in two metabolic states from 
40 strains of mice from a genetic reference strain compendium90, enabling 
genetic and environmental perturbations to be probed effectively91. This 
established a direct mechanistic link between alleles of the gene Dhtkd1 (a 
protein quantitative trait locus (pQTL)), the quantity of 2-aminoadipate 
(a metabolite that is controlled by Dhtkd1) and a disease risk for type 2 
diabetes. Mechanistic and data-driven approaches can therefore converge 
to enhance understanding of complex phenotypes if multilevel omics data 
are integrated at the level of modular networks. Repeating the proteomics 
measurements of the liver samples using DIA-based mass spectrometry 
techniques quantified more than 2,600 proteins across the collection of 
samples, which led to the detection of hundreds of pQTLs as well as mech-
anistic insights into inborn errors of metabolism and the determination 
of a molecular basis for respiratory super-complex formation92.

These examples and analogous ones from the proteogenomics of can-
cer93 establish a link through association studies between genetic loci and 
the network state, as well as between the network state and disease pheno-
types. The mass spectrometry methods of bottom-up proteomics (Box 1) 
represent a general experimental framework for systematically probing 
the proteotype at ever increasing levels of completeness and precision to 
support the association of proteotypes and phenotypes.

In the context of translational medicine, proteins that consistently alter 
their abundance in correlation with a disease phenotype are considered to 
be biomarker candidates for the phenotype of interest. Typically, a small 
number of study participants are investigated in depth to extract potential 
biomarkers that can be validated in larger cohorts94,95. Although attractive 
in principle, biomarker discovery using mass-spectrometry-based meth-
ods is extremely challenging in practice. However, data-driven approaches 
are opening fresh avenues to associating protein-expression patterns with 
disease states.

In particular, the detection of protein biomarkers in blood plasma as 
a window to the physiological state of a person has been an important 
goal of protein science since before the advent of mass spectrometry. 
Experience gained over the past decade in plasma proteome analysis by 
mass spectrometry has demonstrated the enormous challenges of this 
approach, which are rooted in the complexity of the plasma proteome, 
its inherent variability across a population and the prevalence of factors 
that affect its composition, including age, gender and lifestyle. However, 
several studies94,96,97 have shown that the highly reproducible mass spec-
trometry techniques used for proteotype measurements in tissues can 
be applied to plasma proteins. Fast and reliable measurements of plasma 
samples will therefore be possible in collections that consist of hundreds of 
samples. The systematic measurement of plasma proteins in twin popula-
tions has already been used to associate observed changes in abundance in 
the plasma proteome with genotype98. Furthermore, the plasma proteome 
can now be probed in a broad and high-throughput manner with the aim 
of extracting as much information about the health or disease state of an 
individual as possible, effectively enabling high-throughput phenotyp-
ing of people96. Continuing advances in mass spectrometry technology 
might therefore enable the future discovery of clinically actionable protein 
biomarker patterns.

Outlook
Over the past decade, mass-spectrometry-based proteomics has matured 
from a largely technology-driven field of research into a mainstream ana-
lytical tool for the life sciences. It is a versatile approach that supports the 
analysis of many aspects of proteins, including sequence, quantity, state 
of modification, structure and macromolecular context. It also accom-
modates a variety of research approaches, such as mechanism-oriented 
exploration for determining causal relationships and big-data strategies 
that rely on statistical associations to discover biological relationships.

Further, dramatic improvements in the core technology of mass 

spectrometry are probable and will open up the field of proteomics to 
even more applications. Aside from a focus on signalling and structural 
applications, important goals for proteomics will be to build comprehen-
sive and quantitative catalogues of proteins under many conditions and 
perturbations and to organize these proteoforms into a modular proteome 
of the cell. This will improve understanding of processes across many 
areas of biology and diseases and will constitute an excellent starting point 
for modelling the cell. For this to occur, proteomics must be tightly inte-
grated with other technologies and it should address challenges such as 
single-cell analysis, an approach that was pioneered by mass cytometry99. 
The integration of different types of data is already far advanced in the case 
of next-generation sequencing technologies (for example, RNA sequenc-
ing, chromatin immunoprecipitation followed by sequencing (ChIP-seq) 
and ribosome profiling) and metabolomics, and the integration of data 
from structural biology and imaging-based technologies is advancing at 
a rapid pace. There are also considerable opportunities for bringing pro-
teomics together with increasingly efficient tools for editing the genome 
— in particular, CRISPR–Cas9. We envision this to work in an iterative 
manner in which proteomics findings are interrogated by deleting, tag-
ging and point-mutating one or more genes of importance, followed by 
further rounds of proteomics measurements to determine the effects of 
the genetic alterations on the proteome. This will address the fundamental 
question of how genotypic variability is mechanistically translated into 
phenotypic variability. The integration of various omics approaches and 
many perturbations will generate exponential flows of disparate data 
types. This will necessitate commensurate advances in bioinformatics 
and computational proteomics, which will be powered increasingly by 

Figure 4 | Proteotype states and phenotypes.  The proteotype, which is the 
acute state of the proteome, is shown as a modular network of interacting 
protein entities (coloured shapes). The composition of the proteotype 
and the organization of individual proteins into functional modules and 
interaction networks are determined by the combined effects of genotype and 
external perturbations, which include physical or chemical stimuli, cell–cell 
interactions or the microbiota. Genotypic differences such as allele differences 
or somatic mutations might perturb the proteotype. The relationship between 
genetic loci and the abundance of a protein can be described by a pQTL. 
These are identified by associating the abundance of a specific protein with 
particular alleles in genetically characterized sample populations such as 
genetic reference panels. In turn, the proteotype determines phenotypes, 
including clinical phenotypes. Association studies can identify relationships 
between proteotypes and phenotypes. Establishing such associations requires 
the generation of quantitatively accurate and highly reproducible datasets 
in which the same proteins are quantified across a large number of samples 
(for example, genetic reference panels or cohorts of patients). Datasets that 
support such association studies can now be generated using various mass 
spectrometry techniques.
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machine-learning technologies while retaining their ability to generate 
biological insights. In this regard, the journey from single-protein analysis 
to a true understanding of the proteome and the importance of proteo-
types will be long, challenging and exciting. ■
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