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From 1982 to early 2000s, the number of bases in GenBank
doubled approximately every 18 months.
Next-gen sequencing technologies changed the landscape.
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Cost per Human Genome
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« Cost of initial 'draft' human genome sequence production: ~$300 million worldwide
~$2.7B if include costs of technology development, physical and genetic mapping, model
organism genome mapping and sequencing, bioethics research, and program management

« Cost for advancing to ‘finished’ genome sequence in 2003: ~$150 million worldwide




Genome Sequencing

brief history of Human Genome Project

human genome sequencing
>500,000 human genomes have been sequenced

ENCODE Project
“next-generation” sequencing (NGS) technologies

sequencing ancient DNA (paleogenomics)



Large-Scale Genome Sequencing Timeline
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International Public Consortium Celera

nature

Al Aspmicas aiocro

(Feb. 15, 2001; 409:860) (Feb. 16, 2001; 291:1304)



\Whose sequence was it?

Al Aspmicas aiocro

(Feb. 15, 2001; 409:860) (Feb. 16, 2001; 291:1304)

Public Consortium: Celera:
large number of 5 individuals,

anonymous donors including:




‘Draft’ human genome sequence in 2001:

* covered 90 percent of the genome at an error rate of one
in 1,000 base pairs

* >150,000 gaps

* only 28% of the genome had reached the ‘finished’
standard (<1 error 1n 10,000 bp)

https://www.genome.gov/human-genome-project/Completion-FAQ



Nature (Oct. 21, 2004): International Public Consortium

pJ

“Finishing the euchromatic sequence of the human genome’
 2.85 billion nucleotides (haploid genome)

~99% of the euchromatic portion

e 341 gaps

» error rate of 1 1n 100,000 bases

20,352 protein-coding genes and 22,259 noncoding genes

(Pertea et al., Genome Biol., 2018)

What’s left?

~ 7% of the human genome (~1% of euchromatin)

 tandem repeats, homopolymer runs

 large (>100s kb), nearly 1dentical segmental duplications in

centromeric, pericentromeric, and subtelomeric regions

- control of replication, chrom. condensation & dynamics;
- ribosomal DNA (rDNA) encoding ribosomal RNAs




Some Other Human Genome Highlights:

« ~45% -2 different types of repetitive elements

¢ ~95-99% non-protein-coding

« ~40% GC

* ~40% of genes were of unknown function

 average gene size: 27 kb (average coding length: 1340 bp)
e average # exons per mRNA: ~9

e most common protein domains: 1) Ig; 2) C2H2 ZnF



Repetitive, Transposable Elements in the Human Genome

DNA transposons: DNA intermediate; transposase
enzyme catalyzes excision & re-insertion (“cut &
paste”)

Retrotransposons: RNA intermediate 1s reverse
transcribed to DNA by a transposon-encoded reverse
transcriptase (“‘copy & paste”™)

- LINEs, SINEs, LTR-containing elements




Repetitive, Transposable Elements 1n the Human Genome

Classes of interspersed repeat in the human genome
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Hierarchical (Public) versus Shotgun Sequencing (Celera)

genomic DNA: partial digestion or shearing by sonication
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Colony Picking Robot

Gene Machines Mantis: - capacity: 72 plates

- can run 14 hrs unattended
- can pick 27,000 colonies



Robot for Setting up Sequencing Reactions




ABI377 DNA Sequencer

samples loaded 1nto
96-well vertical slab gel
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ABI377 DNA Sequencer

 up to 200 nt per hour
e typical read length: ~500-700 bp
« ABI 3700 capillary electrophoresis sequencer

- no gels to pour
- ~0.5 Mb sequence per day

-> At peak production, Int’l Consortium: 1,000 nt/sec



Sanger Sequencing (“1% generation sequencing”)

ATGTGGCATGCTAGCTAGCCCTACGTATTGCAGGAT

@ Add primer

ATGTGGCATGCTAGCTAGCCCTACGTATTGCAGGAT

TAC
——Primer

ACCGTACGATCG

Add nucleotides
and polymerase

ATGTGGCATGCTAGCTAGCCCTACGTATTGCAGGAT

TAL

TAC
IAC
TAC

IAC

ACCGTACGATCGATCGGGATGC ...

@ Separate by electrophoresis

ACCGTACGATCGATCGGGATGC
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ACCGTACGATCGATCGGGA

Manual Automated

A TG C Time
Sequence

e = = =
A =3 2 8 & =
L' = — o pa=a =
(e — | - = o —
'|' - e = e ]
( ' m— — aoma = | ez m.
c - —1 - — — —
.,\ = B = — B
_,\ -— " —-— —-— o—
'I' —-— = | = e —
.,'\ -— = = — —
C = — | — = —-—
[ - -— = el =
1 — - _— — -
A - o= l — ] ]

(Gibson & Muse, 02)

DNA sequence trace

140 150 160 170 180 180 ZC
TTTTAGAAGACGAG TTG TACCATAC TAATCCAGG TOACAG TCAGTT TAC GAG TCATTAT CALALACTATLCL




Phred: base-calling program for DNA sequence traces

e assigns probability score to accuracy of each base call

e outputs sequence in FASTA format

TTTTTTTT 65 T e AT AC T AL € A8 T AC L TE AT e AG 1A e AA A CT TS 1) Calculate mean distance between
peaks to locate predicted peaks.

U\W | l ‘ L ‘ l 2) Identify peaks with sufficient area.

“....| 3) Match observed/predicted peaks.

4) Find missing peaks.
e i

5) Assign error probabilities to peaks.
(details: Gibson & Muse, p.69)




Assembly for Hierarchical Sequencing
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Assembly for Hierarchical Sequencing

Align BACs

Shotgun Sequencing

(Gibson & Muse, ‘02)



BAC Fingerprinting
BAC: Bacterial Artificial Chromosome

restriction digest (6-bp recog. site) 12 03 4
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Merge

Assembly for Hierarchical Sequencing

(Gibson & Muse, ‘02)

Align BACs

Align shotgun Sequences

Contigs of
sequenced clones

Mate-pair and cDNA data
- from 50 kb plasmids

Scaffold of
sequence contigs



Computational Processing of Sequenced Clones:

1. Filtering — remove bacterial, vector sequences
2. Layout — ordering the contigs

3. Merging

=> sequence-contig scaffolds (draft genome sequence)




Celera used the Public sequence in their assembly:

“Shredding” of the public sequence with 2-fold coverage,
to create “faux reads”



e “coverage”, or “read depth”: average number of times
that a target base (e.g., in the reference genome) is covered

by a high-quality read

 bias in coverage depending on sequence composition



Suggested readings

On the sequencing of the human genome
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e “de novo sequencing”: assembly of the genome from
the sequencing reads

* most genome sequencing now 1s just “resequencing”:
aligning reads to a reference genome



From a reference genome to a pan-genome:

* deep sequencing of 910 individuals of African
descent

* 1dentified a set of unique sequences representing
regions of the African pan-genome missing from the
reference genome

* African pan-genome contains ~10% more DNA
(296.5 Mb) than the current human reference
genome (GRCh38)

Sherman et al., Nature Genetics (2019) 51(1):30-35



Genome Annotation

 protein-coding genes

 RNA genes — tRNAs, RNAs, microRNAs, etc.
* CIS regulatory elements

e chromosome maintenance

* repeats

* ctc.

- How do these all function?




Homology of Human Genes
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(from The Public Consortium, Nature ‘01)



Functions of Human Genes

May 25, 21‘]1-1 . - . o ] ] n
-f;z:zjﬁf:fe}rfgiimrs:zms |someras§s, 94j 0’5?’ ”"C’M’ 23,3% extracellular matrix proteins; 72; 0,4%
receptor‘s, 1076; 6’?; /o proteases; 476; 2,8%
storage proteins; 15; 0,1% y cytoskeletal proteins; 441; 2,6%

structural proteins; 280; 1,6%
surfactants; 15; 0,1%
cell junction proteins; 67; 0,4%
chaperones; 130; 0,8%
transcription factors; 2067; 12,0%
phosphatases; 230; 1,3%
membrane traffic proteins; 321; 1,9%
transfer/carrier proteins; 248; 1,4%
hydrolases; 454; 2,6% : L
defense/immunit{; proteins: 107: 0,6% nucleic acid binding; 1466; 8‘2%
calcium-binding proteins; 63; 0,4% signaling molecules; 961; 5,6%
viral proteins: 7; 0,04% enzyme modulators; 857; 5,0%

transporters; 1098; 6,4%
transmembrane receptor regulatory/
/adaptor proteins; 84; 0,5%
transferases; 1512; 8,8%
oxidoreductases; 550; 3,2%
lyases; 104; 0,6%
cell adhesion molecules; 93; 0,5%
ligases; 260; 1,5%

(Panther classifications from May, 2011)



ENCODE Project: catalog the “parts list”
(ENCyclopedia Of DNA Elements)
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ARTICLE

doi:10.1038/nature11247

An integrated encyclopedia of DNA
elements in the human genome

The ENCODE Project Consortium#*

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is
unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription,
transcription factor association, chromatin structure and histone modification. These data enabled us to assign
biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many
discovered candidate regulatory elements are physically associated with one another and with expressed genes,
providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical
correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation.
Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an
expansive resource of functional annotations for biomedical research.

Nature (2012) 489:57; plus numerous companion papers

“brochemical functions for 80% of the genome, in particular
outside of the well-studied protein-coding regions”



modENCODE:

Similar genome ‘parts’ cataloguing efforts, but
focused on the model organisms Drosophila
melanogaster (fruit fly) and C. elegans (nematode
worm)

Neither ENCODE nor modENCODE cataloguing
efforts were comprehensive or complete.
Revealed significant trends, developed
technologies, generated much data, but much still
remains uncharacterized and biological functions
unknown.



20d (“Next”) Generation Sequencing

reaction miniaturization =2 cost savings

methods of DNA sample preparation & sequence detection/readout
impacts reagent costs, labor, and time required

re-sequencing vs. de novo sequencing

...... truly personalized medicine = “precision medicine”



Most commonly used: Illumina sequencing

« Attach DNAs to slide surface and do on-slide template
amplification to create more than a billion “clusters”,
each containing ~1,000 copies of template DNA

flow cell with

8 separate “lanes” per run

http://www.illumina.com/



[1lumina sequencing: sequencing by synthesis

« Attach DNAs to slide surface and do on-slide template
amplification to create ~more than a billion “clusters”,
each containing ~1,000 copies of template DNA

« Extend with DNA polymerase + reversible fluorescent
terminator nucleotides

* 4-color (or 2-color) fluorescence scans

« Remove blocked 3’ terminus & fluorophore

* Add polymerase + reversible fluorescent terminators
* 4-color (or 2-color) fluorescence scans

* Repeat.

« Up to 300-nt read lengths (although quality decreases
with increasing read lengths); sequencing run-times:
hours to days



Attaching & amplifying samples on Illumina slides
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“single-end” read:
sequence one end of the
DNASs 1n the fragment library

“paired-end” reads:
sequence both ends of the
DNASs 1n the fragment library

http://www.illumina.com/
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[llumina HiSeq X Ten:
10 instruments delivering up to 3 billion paired-end reads (2 x
150 bp) per flow cell in 3 days

—> At production scale, between $1K and $2K

per human genome.

I1lumina NovaSeaq:

Up to 20 billion reads (2 x 250 bp) per flow cell in 2 days
—> At scale, cheaper & faster than HiSeq X Ten

[1lumina MiSeq, NextSeq:
25M to 1B reads (2 x 300 bp MiSeq, 2 x 150 bp NextSeq) in
hours to a few days




“indexing”: adding unique barcodes to different
DNA sequencing libraries (samples), which allows for
“multiplexing” different libraries in a single lane



Sequencing by ligation

« Higher accuracy than sequencing by synthesis

ex. DNA “nanoball” arrays (Complete Genomics, Inc.)

- rolling circle amplification to create DNA “nanoballs”
—> array of DNA “nanoballs”

- Patterned

l substrates

Each spot contains
a single DNB

-> sequencing by ligation of 9-mers with fluorescent dA/C/G/TTP at
position 1..n; run n cycles of ligation, detection, & stripping

—> 35-nt sequence from each end



Sanger vs. 2" Generation Sequencing Accuracy

Sanger sequencing (ABI platform): 0.001% error rate
gold standard 1n sequencing

[1lumina MiSeq, HiSeq: 0.1% error rate

Complete Genomics: 0.01% error rate
(acquired by BGI)

(Rhoads and Au, Genom. Proteom. Bioinf., 2015)



Whole-genome sequencing:

 Reads contain sequence errors! Recommended to
sequence to >30x average depth with paired end
reads, providing ~95% coverage.

* For human, that requires 360 million reads &
corresponds to >100 Gb data (!).



Whole-genome sequencing:

 Reads contain sequence errors! Recommended to
sequence to >30x average depth with paired end
reads, providing ~95% coverage.

* For human, that requires 360 million reads &
corresponds to >100 Gb data (!).

Different sequencing technologies exhibit different
sequence biases. For example, a typical Illumina
genome doesn’t actually cover all of the reference
genome.



31 generation sequencing

sequencing of individual DNA molecules
very long read lengths (103 nt to over 1 Mb)

high error rate:
~12-13% (or higher!) single-pass error rate, mostly indels

sequencing accuracy improves with increasing
number of times a DNA template 1s sequenced,
enabled by use of a circular template (PacB10)



31 generation sequencing

most widely used: Pacific Biosciences (“PacB10”)

Principle: Polymerase 1s
immobilized at bottom of
tiny well; as each differently
fluorophore-conjugated

, nucleotide 1s incorporated

. by the polymerase, a camera
o WNIE records the emitted light and
A 4 & .

ﬂ the fluorophore 1s cleaved

bctation 100 prior to incorporation of

(Figure from Rhoads and Au, next nucleotide.
Genom. Proteom. Bioinf., 2015)

Glass




31 generation sequencing: Nanopore sequencing

e.g., Oxford Nanopore Technologies

Principle: As DNA
molecule passes through
nanoscale pore, 10n
current passing through
pore changes according to
DNA sequence.

(Figure from Schneider & Dekker, Nat. Biotechnol., 2012)



Advantages of long-read sequencing
over short-read sequencing

Structural genomic variation
Align repeat-containing reads to genome
Span gaps 1n genome sequence

Phase genomes
Haplotype: sequence of genetic variants that co-occurs
along a single chromosome

Structure of splice 1soforms



Genome Sequencing

brief history of Human Genome Project

human genome sequencing

ENCODE Project

“next-generation” sequencing (NGS) technologies

sequencing ancient DNA (paleogenomics)



Challenges 1n Sequencing Ancient DNA

 DNA 1s degraded to small fragment sizes (<100 nt)

 degradation also involves deamination (C->T most
commonly, but other degradation events too), which
causes C to be read as T during sequencing

* most DNA 1n fossils 1s from other organisms that
colonized fossil after the animal’s death

« modern human contamination is a particular
problem for sequencing of ancient hominid DNA!!!



Analysis of one million base pairs of
Neanderthal DNA

Richard E. Green', Johannes Krause', Susan E. Ptak', Adrian W. Briggs', Michael T. Ronan?, Jan F. Simons?, Lei Du?,
Michael Egholm?, Jonathan M. Rothberg?, Maja Paunovic’i & Svante Paabo’
Vol 44416 November 2006/ doi:10.1038 /nature05336 330

- DNA from ~7 mg of ~38,000 year old fossilized femur bone

Sequencing and Analysis of
Neanderthal Genomic DNA

James P. Noonan,™* Graham Coop,® Sridhar Kudaravalli,’> Doug Smith,*
Johannes Krause,* Joe Alessi,* Feng Chen,* Darren Platt,* Svante Paabo,*
Jonathan K. Pritchard,® Edward M. Rubin®%*

SCIENCE VOL 314 17 NOVEMBER 2006 1113

Vindija Cave, Croatia



PCR to amplify hypervariable region of mitochondrial DNA (mtDNA),
where can distinguish Neanderthal vs. modern human DNA sequences

Modern human Neanderthal
mtDNA (%) mtDNA (%)
100 80 60 40 20 0 20 40 60 80 100
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Figure 1| Ratio of Neanderthal to modern human mtDNA in six hominid
fossils. For each fossil, primer pairs that amplify a long (119 base pairs;
upper lighter bars) and short (63 base pairs; lower darker bars) product were
used to amplify segments of the mtDNA hypervariable region. The products
were sequenced and determined to be either of Neanderthal (yellow) or

modern human (blue) type.
(Green et al., Nature, 2006)

More recently, enrich for human mitochondrial DNA and screen bone
fragments to 1dentify those with high content of Neanderthal DNA and
low content of present day human mtDNA (Priifer et al., Science, 2017)



Examine similarity of sequence reads to all known DNA
sequences using BLASTN

Burkhaolderiales
(1,212; 0.8%)

enyv ——
(8,408; 3.3%)

Primates

(15,701;6.2%)

Actinomycetales -

(17,213; 6.8%)

Pseudomonadales

Rhizobiales
(1.470; 0.6%) | ——""(1,230; 0.5%)

Enterobacteriales
(788; 0.3%)
Poales
(429; 0.2%)
Rhodocyclales
(394; 0.2%)

All other orders
(6,559; 2.6%)

No hit
(200,829; 79.0%)

Figure 2 | Taxonomic distribution of DNA sequences from the Vi-80
extract. The taxonomic order of the database sequence giving the best
alignment for each unique sequence read was determined. The most
populous taxonomic orders are shown.

(Green et al., Nature, 2006)



« senome sequence of Neanderthal at ~30x coverage from ~52,000
years ago from Vindija cave (Priifer et al., Science, 2017) or from Altai
mountains in Siberia (Priifer et al., Nature, 2014)

 modern human / Neanderthal populations split ~550,000-765,000
years ago (assuming human/chimp divergence was 6.5-13 Mya)
(Priifer et al., Nature, 2014)

« all or almost all of the gene flow detected was from Neanderthals into
modern humans (Priifer et al., Nature, 2014)

 on average, 1.8-2.6% of the genomes of Eurasians are derived from
Neanderthals, while essentially none of the genomes of sub-Sarahan

Africans derive from Neanderthal (Priifer et al., Science, 2017)

* Neanderthal variants associated with human phenotypes



Gene flow between archaic and present-day humans

Modern humans MNeandertals Denisovans
I ] I 1 1
Africa Europe Asia Oceania ¥ Caucasus Croatia Siberia Siberia Y Unknown
50
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% =="
~0.2%

1.5-2.1%

(Paabo, Cell, 2014)



Background & optional readings for today:

* human genome sequencing papers
« ENCODE Project overview & commentaries

* next generation sequencing review article

Reading for this Wednesday:

* 2 required papers for discussion in class

- All articles are posted on course website.



