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Sequence weighting techniques are aimed at balancing
redundant observed information from subsets of similar
sequences in multiple alignments. Traditional approaches
apply the same weight to all positions of a given sequence,
hence equal efficiency of phylogenetic changes is assumed
along the whole sequence. This restrictive assumption is
not required for the new method PSIC (position-specific
independent counts) described in this paper. The number
of independent observations (counts) of an amino acid type
at a given alignment position is calculated from the overall
similarity of the sequences that share the amino acid type
at this position with the help of statistical concepts. This
approach allows the fast computation of position-specific
sequence weights even for alignments containing hundreds
of sequences. The PSIC approach has been applied to
profile extraction and to the fold family assignment of
protein sequences with known structures. Our method was
shown to be very productive in finding distantly related
sequences and more powerful than Hidden Markov Models
or the profile methods in WiseTools and PSI-BLAST in
many cases. The profile extraction routine is available on
the WWW (http://www.bork.embl-heidelberg.de/PSIC or
http://www.imb.ac.ru/PSIC).
Keywords: fold recognition/ motif recognition/ profile extrac-
tion/position-specific independent counts/PSIC/sequence
weighting

Introduction

Sets of similar sequences can be characterized by a multiple
sequence alignment within common sequence domains (in the
case of protein families) or just a small sequence region
(motif). These alignments are used for the extraction of profiles
or scoring matrices which subsequently find application in
searches for other remotely homologous proteins (Bork and
Gibson, 1996).

Correlation among observation data cannot be ignored if it
is sufficiently extensive. This generally accepted rule is import-
ant for data treatment in multiple sequence alignments because
alignments frequently contain many similar (and even duplic-
ated) sequences. A typical protein family in sequence databases
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is a highly non-random sample of sequences where taxonomic
units with a long-term research tradition, with medical or
economic impact are heavily over-represented irrespective of
their evolutionary role. Besides such technical issues, statistical
correlation between similar sequences may arise from their
common evolutionary origin or as a result of similar functional
requirements. Closely related sequences are largely redundant,
i.e. they provide less information than more distant family
members.

To balance the representation of different classes of
sequences in multiple alignments, various concepts of
‘sequence weightings’ have been developed. Numerical co-
efficients (‘sequence weights’) are associated with each
sequence to denote the degree of independence of this sequence
from the others in the multiple alignment. In its most drastic
form, additional similar sequences are discarded from the set
of sequences studied, i.e. their weight is assigned to zero and
only highly different (‘independent’) sequences remain for
subsequent analysis (Heringaet al., 1992; Hobohmet al.,
1992; Neuwaldet al., 1995, 1997).

More elegant techniques use the full sequence information.
The diverse techniques described in the literature are of two
types, evolutionary tree-based or sequence distance-based.
Tree-based approaches assume that the sequences in the
multiple alignment have a common evolutionary origin and
are a result of divergent evolution and that an evolutionary
tree (or a set of alternative trees) can be constructed from
sequence, taxonomic or additional information (Altschulet al.,
1989; Thompsonet al., 1994). The distance-based methods
(Vingron and Sibbald, 1993; Gersteinet al., 1994; Henikoff
and Henikoff, 1994) avoid the problems of tree topology and
root placement and even do not require that the sequences are
related at all. Sequence weights are calculated from a matrix of
pairwise sequence–sequence similarities (Vingron and Sibbald,
1993) or from the amino acid type diversity observed at each
alignment position (Henikoff and Henikoff, 1994). Therefore,
such methods are applicable also to alignments of short
sequences (‘motifs’) or very distantly related proteins.

All variants of the sequence weighting approach described
above have in common that a single sequence weight is applied
to all sequence positions, i.e. the efficiency of phylogenetic
changes is believed to be identical at every alignment position,
an assumption which is obviously not true. Bruno (1996) has
proposed a calculation scheme within a tree-based approach
that assigns position-specific weights to each sequence position.
However, even with simplifying approximations, the calcula-
tion costs of this technique are large and restrict its applicability
to exemplary alignments, i.e. frequent usage in large-scale
applications with genomic data is not practical.

As a main new aspect in this paper, we present a simple
and fast computation approach (the PSIC approach) for the
assignment of position-specific sequence weights within the
sequence distance framework. For profile calculation, these
weights do not have to be explicitly determined; instead,
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they are implicitly estimated in the form of position-specific
probabilities to observe each of the amino acid types (position-
specific independent counts, PSIC). In addition to an outline
of possible further developments, we describe also a software
prototype incorporating the main new ideas. As an application,
profiles derived from multiple alignments with this method
are shown to be highly productive in detecting members of
protein fold families. They proved more powerful than HMM-,
PairWise- or PSI-BLAST-derived profiles (Thompsonet al.,
1994; Eddyet al., 1995; Birneyet al., 1996; Altschulet al.,
1997) in many cases. As another application, the PSIC method
has been successfully used for the characterization of the post-
translational glycosylphosphatidylinositol-modification site
(Eisenhaberet al., 1999).

For clarity, we want to emphasize that the sensitivity of
profile techniques depends on several aspects, not just from
the treatment of observed residue frequencies. Profile extraction
methods face two difficulties: (1) the problem of interdepend-
ence between sequences and (2) the problem of a small number
of sequences. This paper addresses topic (1). Problem (2) was
extensively studied in the framework of Bayesian statistics
and found a solution in the concept of pseudocounts (Lawrence
et al., 1993; Tatusovet al., 1994; Bruno, 1996; Henikoff and
Henikoff, 1996; Sjo¨landeret al., 1996; Altschulet al., 1997).
Additionally, the application of profiles for database searches
depends also on (3) the treatment of gaps and (4) the type of
profile-sequence alignment method (Gribskovet al., 1987;
Birney et al., 1996). Concerning aspects (2)–(4), we rely on
published methodologies.

A preliminary version of our method has already been
presented at the 2nd Annual International Conference on
Computational Molecular Biology (RECOMB98; see Sunyaev
et al., 1998). Here, we publish a more detailed and fully
formalized description of the methodical approach with new
technical improvements and more extensive comparisons with
other available profile methods.

Theory and methodical details
From alignments of related sequences to counts of independent
observations
We consider an alignmentA 5 { Sk} involving N amino acid
sequencesSk (k 5 1, 2, . . .,N). The length of the alignment
(i.e. the number of alignment positions) is denoted byL. Each
sequenceSk 5 (s1k, s2k, . . ., snk) is described as anL-tupel
of amino acids (or gaps)sik at the alignment positionsi
(i 5 1, 2, . . .,n). We define also a Kronecker symbolδ (a,i,k),
which is equal to 1 if amino acid typea is observed at
alignment positioni in sequenceSk and equal to zero otherwise:

1, if sik 5 a,
δ(a,i,k) 5 { (1)

0, otherwise.

The profile matrixW5 { W(a,i)} represents the characteristic
features of the sequence set in the alignment region in form
of scores for the placement of amino acid typesa at alignment
positions i. In traditional approaches (Gribskovet al., 1987;
Tatusovet al., 1994; Thompsonet al., 1994), the elements of
the profile matrix are calculated by averaging scores from an
amino acid substitution matrixD(b,a):

W(a,i) 5 Σ
N

k 5 1

wk Σ
b

δ(b,i,k)D(b,a) (2)

where sequenceSk contributes to the profileW with weight
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wk. This equation is purely heuristic and does not rely on any
statistical model of a protein family evolution. The notion of
amino acid substitution matrices implicitly accepts that the
mutation probabilities are identical at every position of protein
family, an assumption which is somehow opposite to the basic
idea of profile methods to derive position-specific scores.

In the PAM model, the process of amino acid substitutions
during protein evolution is modelled as a Markov process
(Dayhoff et al., 1978). Theoretically, substitution matrices can
be normalized to (raising a transition probability matrix to the
power of) any evolutionary distance in PAMs. However, for
very long distances the probabilities of occurrence of amino
acid types converge to the invariant distribution of Markov
process. Since substitution probabilities in the PAM model are
independent of protein and position, the invariant distribution
of the process is just the amino acid composition of the protein
databank, i.e. the probability of observing a particular amino
acid type at a given alignment position after infinitely long
evolution coincides with the probability of finding this amino
acid type in the sequence databank. Therefore, the PAM model
of protein evolution is inefficient for detecting very remote
relationships in the world of proteins.

A more realistic model of sequence family evolution can
be constructed with the assumption that substitution probabili-
ties are position-dependent. In this case, the invariant distribu-
tion of Markov process at the particular positioni is the
probability p(a,i) of observing amino acida at the positioni
after infinitely long evolution. This probability is determined
by the environment of the residue in the 3D structure and by
functional constraints. If the probabilities described above are
known, the optimum equation (from a statistical viewpoint,
see Appendix A) for the profile matrix element is given by
the following log likelihood ratio (Kendall and Stuart, 1977;
Karlin and Altschul, 1990; Lawrenceet al., 1993):

p(a,i)
W(a,i) 5 ln [ ] (3)

qa

whereqa is the default probability of observing amino acida,
for example, in a database of proteins.

The estimation ofp(a,i) is a very difficult task since, as a
rule, the number of sequences in the alignment is small and
the sequences themselves cannot be considered independent
(the independent evolution has not been sufficiently long for
every pair of sequences). Previous studies estimatedp(a,i) as
raw or weighted frequencies (Tatusovet al., 1994; Altschul
et al., 1997) or with a maximum likelihood approach
(Bruno, 1996).

We suggest here a new, simple, empirical method for the
estimation of the probabilitiesp(a,i). If all sequences were
independent, the best estimator forp(a,i) is the raw frequency,
i.e. the numbern(a,i) of observations of the amino acida at
position i of the multiple alignment normalized by the total
number of sequencesN. Since the sequences may be strongly
dependent, we attempt to compute a normalized effective
numbern(a,i)eff of observations (i.e. the number of independent
observations that carry the same amount of information as
available dependent ones) and to determinep(a,i) as

n(a,i)eff
p(a,i) 5 (4)

Σ
b

n(b,i)eff

The valuen(a,i)eff is thought to depend on the overall similarity
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Fig. 1. Relationship between the effective number of amino acid type
observations and the overall similarity of sequences. To compute the
effective number of valinesV at positionj in accordance with
Equations 8–10, we compute the number of conserved positions in the
subalignmentAVj.

of the sequences having the common amino acid typea at the
alignment position considered. The idea is that the observation
of amino acid typea at the given alignment position in a
subset of sequences provides less new information compared
with a single observation ofa [implying a smallern(a,i)eff],
the more similar the sequences in the subset are. The procedure
outlined below complies with all intuitive requirements but
does not pretend to be mathematically rigorous.

Algorithm for the determination of position-specific
independent counts
Let us assume that a subsetAaj of sequences in the alignment
A has the same amino acid typea at the alignment positionj
(1 ø j ø L). In this case (Figure 1), the number of observed
occurrences of amino acid typea at positionj is

n(a, j )obs 5 Σ
N

k 5 1

δ(a, j,k) (5)

In general, not all of these observations are independent. The
more similar the sequences in the subsetAaj are to each other,
the closern(a, j )eff should be to unity (as in the case of identical
sequences inAaj). As a suitable similarity measure within the
subsetAaj, we propose the numberl(a, j )eq-pos of identical
alignment positions (not includingj ) within the subsetAaj:

l(a, j )eq-pos5 Σ
L

i 5 1, i Þ j
[ Σ

b
Π

N

k 5 1

δ(a, j,k)δ(b,i,k) ] (6)

where the two summations are over all alignment positions
i Þ j and all amino acid typesb, respectively. The term

Π
N

k 5 1

δ(a, j,k)δ(b,i,k) (7)

equals unity if every sequence with amino acid typea at
position j (i.e. sjk 5 a) has the same amino acid type at
position i and to zero in all other cases.

The probabilityP(Aaj) of finding the same amino acid type
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at any alignment positioni Þ j for all sequences in the subset
Aaj can be estimated with the valuel(a, j )eq-posvia

l(a, j )eq-pos
P(Aaj) 5 (8)

m

wherem ø L – 1 is the number of alignment positions of the
sequences in subsetAaj excluding positionj and positions
with gaps.

On the other hand, if the setAaj were a set ofn(a, j )eff
randomly aligned independent Bernoulli sequences (given the
amino acid composition {qb} in the sequence database,b is
any of the amino acid types), the probabilityP(Aaj) would be
equal to

P(Aaj) 5 Σ
b

qb
n(a, j )eff (9)

The central idea of the PSIC approach is to equate the right
sides in Equations 8 and 9, i.e. the frequency of identical
positions in a given alignment and the probability of identical
alignment positions for random sequences in order to define
the effective numbern(a, j )eff of observations (5 position-
specific independent counts). Thus, the solution of the equation

l(a, j )eq-pos
5 Σ

b

qb
n(a, j )eff (10)

m

for n(a, j )eff is an estimate for the number of independent
observations of amino acid typea at positionj in the alignment
A and can be applied in Equations 3 and 4. The valuen(a, j )eff
defined in this way agrees well with intuitive requirements:
For very similar (identical) sequences, it is close (equal) to 1,
whereas for a subsetAaj of divergent sequences,n(a, j )eff is
much larger than 1.

It may appear difficult to solve Equation 10 with respect to
n(a, j )eff , but a simple recursive, binary search procedure can
easily help since the solution is enclosed between 1 and
n(a, j )obs and the sum on the right-hand side decreases mono-
tonously withn(a, j )eff . The solutionx is assumed to be the
midpoint of a test interval (which is [1,n(a, j )obs] at the
beginning of the recursion) and the right-hand sumΣ is
calculated. IfΣ is larger than the left-hand side of Equation
10, the lower half of the interval is used as test interval for
the next recursion level. Otherwise, the upper half is taken.
This procedure is continued until the length of the test interval
is smaller than a user-defined epsilon (we used 10–4); the value
x is then considered the solution forn(a, j )eff . The calculated
valuesn(a, j )eff for all 20 amino acid typesa enter Equation
4 for the computation of the probabilitiesp(a, j ) which in turn
serve for the computation of the profile values in accordance
with Equation 3. After having obtainedp(a, j ), the explicit
weight wjk of sequenceSk at positionj can be calculated (see
Appendix B).

The profile matrixW(a, j ) having the dimensionality 20
times the number of alignment positions can be used in the
traditional way for calculating scores of alignments of protein
sequences with the given profile (Gribskovet al., 1987). Any
scheme for gap treatment (Birneyet al., 1996) or pseudocount
heuristics (Lawrenceet al., 1993; Tatusovet al., 1994;
Bruno, 1996; Henikoff and Henikoff, 1996; Sjo¨landeret al.,
1996; Altschulet al., 1997) can be combined with the PSIC
methodology.

The PSIC approach has been implemented in a computer
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program in the C-programming language. The computation
time was found negligibly small on standard UNIX work-
stations.

PSIC implementation detail I: the case of very divergent
sequences
Two types of difficulties arise in practical applications of this
algorithm. The first problem is encountered in the case of very
divergent sequences in the alignmentA. The valuen(a, j )eff
approaches its maximumn(a, j )eff

max for l(a, j )eq-pos 5 1 in
accordance with Equation 6. It may also happen that
l(a, j )eq-pos 5 0 (there may be no identical positions among
the sequences in the alignment subsetAaj except for position
j), i.e. n(a, j )eff cannot be estimated with Equation 6 owing to
the lack of data (absence of similar and intermediate sequences).
If this happens for only a few alignment positionsj (regulated
with a user-defined thresholdt0), we approximaten(a, j )eff
with the smallest integer larger thann(a, j )eff

max [we used the
value 4; another possibility would be the valuen(a, j )obs].
Otherwise, it is necessary to subdivide the sequence family in
alignmentA into R subfamiliesAr and to computen(a, j )eff as
a sum over subfamilies:

n(a, j )eff 5 Σ
R

r 5 1

nl(a, j )eff (11)

The PSIC software allows one to subdivide the set of
sequences into subfamilies manually in accordance with addi-
tional information, for example, from a structural database
such as CATH (Orengoet al., 1997) or SCOP (Murzinet al.,
1995). In this case, the parametert0 is assumed constant and
set equal to 1% of the alignment length.

PSIC implementation detail II: automatic subfamily division
We have also developed a simple clustering procedure based
on pairwise sequence identity as a distance measure to group
the sequences into subfamilies automatically. In the following,
we describe in detail an iterative algorithm for the determination
of both the numberR of sequence sets and the thresholdt0 in
dependence on the input sequence alignment.

If R 5 1 (at the beginning of the iteration), all sequences
form one set. In the case ofR . 1, we determine as a first
step R sequences (for a subdivision intoR sequence sets)
serving as cluster centers. IfR 5 2, the two most distant
sequences are selected. ForR . 2, the cluster centers are
determined in an iterative manner: TheRth cluster center is
the sequence having the largest sum of distances to theR – 1
previously selected clusters. The remaining sequences are
assigned to the nearest cluster center.

The thresholdt0 can be determined with the following con-
siderations. Thea priori numbern0 of eventsl(a, j )eq-pos5 0 can
be calculated as

n0 5 (m1 1)Σ
b

qb
n(a, j )obs (1 –Σ

b

qb
n(a, j )obs)m

(12)

The valuen0 depends weakly on the number of alignment
positionsm and reaches its maximumn0

max at n(a, j )obs 5 3
sequences formup to about 100 and atn(a, j )obs5 4 sequences
for m,1000. In addition to thea priori expected events
l(a, j )eq-pos5 0 for each subfamily, we allowl(a, j )eq-pos5 0
to happen for a user-defined fractiontu of all alignment
positions (for example,tu 5 0.01). Thus, we calculate the
thresholdt0 as

t0 5 int(n0
max R 1 1) 1 int(tu L 1 1) (13)
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where the function int(x) is the largest integer smaller thanx.
This equation takes into account the alignment lengthL (also
via m) as well as the number of groups of highly different
sequences in the alignment (via the number of subfamiliesR).
If the thresholdt0 is exceeded, the number of subfamiliesR
is incremented by one and the profile computation is restarted.

Subfamily creation in accordance with Equation 13 has been
compared with the selection of a maximum subset of sequences
(each representing a subfamily) with a pairwise sequence
identity below a given threshold. Both approaches give compar-
able results (see Appendix C), hence Equation 13 can be
considered a reasonable working assumption.

PSIC implementation detail III: the case of non-observed
amino acid types
The second difficulty is connected with the problem of amino
acid typesx which have not been observed at a given alignment
positionj at all. In this case, the algorithm outlined above will
result in n(a, j )eff 5 0 and it becomes impossible to take the
log likelihood ratio in Equation 2. This is not only a formal
difficulty but the amino acid typex may not be observed
owing to the possibly small number of sequences in the
alignment. This is a well known problem for profile methods
based on the log likelihood ratio and for HMM techniques.
Usually, it is solved with the so-called pseudocount approach
(Lawrenceet al., 1993; Tatusovet al., 1994; Bruno, 1996;
Henikoff and Henikoff, 1996; Sjo¨landeret al., 1996; Altschul
et al., 1997). Generally, the PSIC approach for position-specific
weighting of occurrences of observed amino acid types may
be combined with any procedure of pseudocount evaluation.
We assume a small amount of virtual effective observations
nx which are distributed among the non-observed amino acid
types x in accordance with their database frequenciesqx.
Equation 3 for observed amino acid typesa is then changed to

n(a,i)eff
p(a,i) 5 (14)

Σ
b

n(b,i)eff 1 nx

The probabilities of non-observed amino acid typesx at
alignment positionj are estimated via

nx qx
p(x,i) 5 · (15)

Σ
b

n(b,i)eff 1 nx Σ
x

qx

We tested values in the range 0.3–10 fornx, the usual default
value was 0.3. This PSIC version was used in the first part of
the Results section.

To exclude the computation of pseudocounts as a possible
source of performance differences in the comparison with the
PSI-BLAST routine (Altschulet al., 1997), we developed also
a version with a pseudocount function as described by Henikoff
and Henikoff (1996). This PSIC routine was used in test
calculations presented in the second part of the Results section.

Results
Performance comparison with PairWise and HMMs
Our profile extraction method was applied to the problem of
protein fold recognition. Good test cases are such sequence
families which contain a sufficient number of PDB structures
as well as many examples with non-trivial sequence variations,
especially with small sequence identity. We used multiple align-
ments for 10 large and divergent families. Eight alignments were
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Table I. Comparison of profile and HMM methods in a fold family assignment experiment

Learning sequences PairWise HMM PSIC

With known Without known Not optimized Optimized
3D structure 3D structure

Acid proteases 16 109 51 50 52 55
Sh2 domain 5 125 17 17 17 17
Sh3 domain 8 98 23 23 23 23
Lysozymes 6 63 62 62 270 270
Globin 17 453 82 74 85 86
Cysteine knots 1 50 1 1 6 6
Four helix bundle 7 20 11 11 11 12
Lim domain 2 127 3 3 2 3
TIM barrela 15 387 47 36 87 90
Immunoglobulina 43 457 225 221 228 228

The first two columns characterize the learning set of sequences used for deriving the profile [taken from 3d_ali (Pascarellaet al., 1996) except for cysteine
knots and the lim domain]. Each set is composed of (1) sequences with known 3D structure in the Brookhaven Protein Data Bank (PDB) and (2) other
protein sequences taken from sequence databases (mostly SWISS-PROT) which are highly similar to the proteins with known structure. The remaining
columns contain numbers of PDB sequences ranked before the first false-positive recognized with the respective method. This number includes also sequences
of the training set if their score was sufficiently high. As a rule, all training structures have been found in addition to other proteins. The only exceptions with
non-recognized training sequences have been observed for PairWise and HMM in some cases of non-trivial similarities (see text).
aSearch results for manual division of the set of sequences in the multiple alignment into subfamilies. Data for the automatic clustering are described in the
text.

taken from the 3d_ali (Pascarellaet al., 1996) database (TIM
barrel fold, immunoglobulin type family, globins, acid proteases,
four helix bundles, lysozymes, sh2 domains and sh3 domains).
We studied also the lim domains and the cysteine knot family.
Alignment positions with gaps for the majority of sequences
were discarded.

Family members were searched in the PDB database (as of
August 1997) with the commercial Bioaccelerator software Pro-
filesearch using the Smith–Waterman algorithm. The gap ini-
tialization–gap extension model was used (gap opening score
4.00, gap extension score 0.05). Scores were normalized with
the empirical model of Pearson (1995). The correctness of family
assignments was checked manually by comparison with the
CATH (Orengoet al., 1997) or SCOP (Murzinet al., 1995)
databases.

The same test exercises were carried out with the WiseTools
[the program PairWise was reported to be the best profile extrac-
tion method (Thompsonet al., 1994; Birneyet al., 1996)] and
with the Hidden Markov Model (HMM) method [programs
hmmb and hmmsw (Eddyet al., 1995)]. For clarity, it should be
emphasized that each method was tested with the same align-
ments of protein sequence families. Since the capacity of Pair-
Wise is limited to 500 sequences, we used always only the first
batch of 500 sequences in each alignment for profile extraction.
Since the results for PairWise profiles searches depend greatly
on parameters such as gap opening and gap extension penalties
and the number of gap positions not taken into account, we
optimized these parameters. In the case of HMM, we used the
default parameters of the program.

For every method, we counted the number of correctly recog-
nized PDB sequences with a score higher than that of the first
false positive. The results are shown in Table I. For the method
presented in this paper, we report both non-optimized (default
value of 0.3 fornx) and optimized [best value fornx in a few
(ø5) trials]data.Generally, noneof the four techniques identifies
all the family members. Hence there is still a lot of work to be
done to improve the sensitivity of sequence search methods.
At the same time, various methods sometimes pick different
sequences, i.e. they appear trained for different features of the

391

protein family (examples are given below with the notes for
sequence families). It should be noted that, as a rule, all training
protein structures have been recognized by the respective
methods. Exceptions with non-recognition of training sequences
havebeenobserved forPairWiseandHMMinsomecasesofnon-
trivial similarities with globins and TIM-barrels (see below).

The method described in this paper performs well compared
with PairWise or HMMs. In particular, PSIC recognized all
training structures in all tests. Even the non-optimized version
yields best results in six out of 10 tested families. This is especi-
ally remarkable since parameter optimization was carried out in
all applications of the PairWise algorithm.

In the case of sh2 and sh3 domains, all methods tested can
detect only close homologues in PDB.

There is a considerable difference in predictive power for
lysozymes between PairWise and HMMs on the one hand and
PSIC on the other. Obviously, PairWise and HMM profiles do
not recognize a whole subfamily that is highly represented in
the PDB. This subfamily consists of many close homologues,
mainly mutants of T4 lysozyme (an object of extensive muta-
tional studies in structural biology). Thus, the large difference
in numbers of recognized proteins reflects this database bias.

For globins, our method is the only one which can recognise
all globins in the PDB based on the 3d_ali alignment. Two other
details are of interest: none of the methods except ours can
recognize the sequence of colicin in spite of the fact that it
was included in 3d_ali alignment (1col was one of the training
structures). Phycocyanin has a high score in our method and
appears in the list after only six false positives (phycocyanin is
not included in 3d_ali alignmentofglobin fold family).Phycocy-
anin was not listed at all in the search protocols obtained with
the HMM- or PairWise-generated profiles.

In the case of the cysteine knot family, our method is the only
one that can detect the similarity between chorionic gonadotro-
pin and transforming growth factor-beta and also between the
two chains of chorionic gonadotropin.

All methods found only a set of close homologous sequences
of four-helix bundles included in the learning multiple
alignment.Othermore remote relativeswerenotdetected,except
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for the optimized PSIC which recognized also the sequence of
the protein 1buc.

For the lim domain family, our non-optimized method (but
not the optimized version) is slightly inferior to PairWise and
HMMs. It does not recognize the lim domain fragment with the
PDB code 1zfo.β-Ribbon cysteine-rich proteins which are as
cysteine-rich as lim domains appear as false positives in the
search output.

The TIM barrel family is one of the most divergent as well as
most abundant amongst protein families. There is a significant
difference between results of the method presented in this paper
and other two methods tested. This can probably be explained
by the fact that the learning multiple alignment consists of a set
of divergent subfamilies. PairWise and HMM programs are
unable to find some sequence subfamilies contained in the mul-
tiple alignment (PairWise did not find five learning structures,
1fcb, 1ald, 1wsy-A, 1did and 1xim; the HMM approach did not
recognize seven training structures, 1fcb, 6taa, 1wsy-A, 1did,
1pii, 1gox and 1xim). It should be emphasized that the low
performance of PairWise is not the result of a single false positive
in the upper part of the output list; all positions 48 and 50–66 in
the search protocol are wrong predictions. In contrast, our
method with position-specific weightings is capable of finding
some correct hits with no obvious similarity to any sequence of
the learning alignment. The large and extremely divergent TIM
barrel multiple alignment requires division into sequence sub-
families for application of the PSIC technique. We are pleased
to note that the profile’s predictive power does not change signi-
ficantly whether the subdivison is made manually in accordance
with CATH (Orengoet al., 1997) or automatically as described
in the PSIC implementation detail I section above (87 versus 84
recognized structures for the non-optimized version of the PSIC
program).

All three methods recognize many immunoglobulin-like pro-
teins such as HLA (chain M) proteins, CD4 proteins and some
other related subfamilies. In the case of several distantly related
subfamilies, only one or few of the methods can detect them. For
example, PairWise finds the vascular cell adhesion molecules
(structures 1vsc-A and 1vca) but not HMM or PSIC (neither
non-optimized nor optimized versions). The human class I histo-
compatibility antigen structures 1hla-A and 1hhg-A have been
registered by PSIC and HMM but not by PairWise. The human
class II histocompatibility antigen structure 1dlh-A was found
by all methods except for PSIC. However, a huge amount of
immunoglobulin fold proteins that are more divergent from
immunoglobulins was not detected at all. It should be noted
that, resembling the case of TIM barrels, the alignment of the
immunoglobulins consists of many subgroups of highly similar
sequences forcing the PSIC algorithm to divide into subfamilies.
Here, the automatic scheme is less powerful than the manual
sequence family determination. After 198 correct hits, two false-
positives appear in the output list (two structures 1ahh and 1ahi,
of the 7α-hydroxysteroid dehydrogenase) followed by another
24 correct structures.

Performance comparison with PSI-BLAST

During this work, the PSI-BLAST program with an automatic
and fast profile generation procedure (Altschulet al., 1997)
became generally available. We want to emphasize that PSI-
BLAST calculates profile matrix elements in a two-step pro-
cedure: first, uniform (non-position-specific) sequence weights
are calculated from the sequence alignment with the algorithm
of Henikoff and Henikoff (1994). The observed frequencies of
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Table II. Comparison of PSI-BLAST and PSIC methods in a fold family
assignment experiment

Profile PSI-BLAST PSI-BLAST PSIC
Alignment PSI-BLAST Smith–Waterman Smith–Waterman

2ohx 41 32 40
3sdh 300 318 318
1aoz 24 26 26
2mta 14 20 21
1hur 68 63 63
1etp 17 41 50
1ten 7 12 17
1rec 97 98 98
2hvp 107 111 107
1bbt 18 63 68
2trx 28 27 27
1raa 25 25 25
2cmd 27 27 27
4gcr 14 14 12
1hsq 47 62 62
3chy 32 34 36
1cid 5 5 5
1hpm 18 20 20
1tin 28 28 28
1xer 33 33 33

Representative proteins from the SCOP database were selected from
families with many subfamilies and for which PSI-BLAST finds non-trivial
homologues in the first iteration. We list data for searches with (1) the PSI-
BLAST profile and the PSI-BLAST alignment routine, (2) the PSI-BLAST
profile and the Smith–Waterman alignment procedure [as implemented in
SearchWise on the Bioaccelarator (Birneyet al., 1996)] and (3) the PSIC-
generated profile and the Smith–Waterman routine. Since the dispersion of
the PSIC profile matrix values is about 30% of that from the PSI-BLAST
profile matrix, the gap penalty parameters were changed to 30% of the
standard values in the former case.

amino acid types at each alignment position are weighted by
these sequence-specific (but not position-specific) weights.
Second, these frequencies are complemented with position-
specific pseudocounts based on the amino acid type variability
at this alignment position. Thus, PSIC differs in a major way
from PSI-BLAST by its position-specificandsequence-specific
weighting of observed frequencies of amino acid types.

Resultsof20comparable fold recognition testsofPSI-BLAST
and PSIC generated profiles are presented in Table II (status of
PDB as of July 1998). We selected representative proteins from
the SCOP database from families with many subfamilies and for
which PSI-BLAST finds non-trivial homologues in the first
iteration. In this step, we extracted both the computed multiple
alignment and the PSI-BLAST-generated profile from the pro-
gram. Since the accuracy of the alignment procedure influences
the search results, we list data for database searches under the
following conditions:

(1) the PSI-BLAST profile and the PSI-BLAST alignment
routine;

(2) the PSI-BLAST profile and the Smith–Waterman alignment
procedure (as implemented in ‘profilesearch’ on the mas-
sively parallel Bioaccelarator machine);

(3) the PSIC-generated profile and the Smith–Waterman
routine.

Since the dispersion of the PSIC profile matrix values is about
30% of that from the PSI-BLAST profile matrix, the gap penalty
parameters have just been changed to 30% of the standard values
in the former case.

As in the case of Table II, the number of correctly recognized
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sequences before the first false positive is listed. Surprisingly,
PSI-BLAST profiles with the PSI-BLAST alignment routine
find more correct sequences than the same profiles with the
Smith–Waterman technique in the cases of 2ohx, 1hur and 2trx.
The implementations of the PSI-BLAST and of the Smith–
Waterman alignment procedures do not allow the introduction
of a completely comparable set of parameters. In all other cases,
the Smith–Waterman routine was at least as or often even clearly
more powerful than the PSI-BLAST alignment routine with the
same PSI-BLAST-generated profile, as would be expected.

Our results in Table II indicate that, as a tendency, PSIC
profiles have a greater recognition potential than PSI-BLAST
profiles (larger values for 2ohx, 2mta, 1etp, 1ten, 1bbt and 3chy).
This is especially remarkable since the speed of profile genera-
tion is comparable for both techniques. Only in the cases of 2hvp
and 4gcr were PSIC profiles less successful. A detailed analysis
showed that a slight increase in the gap-open parameter changed
the PSIC profile’s performance to that of the PSI-BLAST level.
Similarly to the tests in the previous section, most hits where
found both with PSI-BLAST and PSIC. Sometimes PSI-BLAST
and PSIC complement each other in their predictive power; for
example, the calpain structures 1aj5 and 1alv have been detected
with PSI-BLAST only or the sarcoplasmic protein 2sas is recog-
nized by PSIC alone (for searching with the recoverin 1rec
profile).

Discussion
The method described in this paper is a statistical and heuristic
approach giving weights as a function of both sequence and
alignment position to amino acid type occurrences. It amounts
mostly to down-weighting columns of identities in a set of
sequences when many positions are totally conserved in this
set. In many cases, this should not lead to an outcome that is
dramatically different from that obtained with more traditional
methods, but our approach has the advantage of being independ-
ent of any phylogenetic assumption in addition to having small
computational costs with an improved predictive power. These
advantages are offset by a somewhat higher sensitivity to mis-
alignments. Clearly, the profile values at a given alignment
position are influenced by the rest of the alignment via Equation
8 and large errors there will influence the outcome of Equation
10. However, this effect may not be dramatic, as exemplified by
the data in the second part of the Results section since the
generally poor multiple alignments produced with the PSI-
BLAST routine could be successfully used for predictions with
the PSIC method.

We found that, in most cases, less than 10% of the hit lists
from various profile methods are mutually exclusive but the
potential of different techniques to recognize additional hits
might sometimes be of practical importance.

It should also be noted that, instead of producing a single
profile for several sequence subfamilies by the combination rule
(11), it might be more efficient to create one profile for each
subfamily and to integrate the search results only. In this case,
the PSIC approach may serve as a quantitative measure to find
the point where subfamily division can be useful. We observed
also that our automatic sequence clustering procedures build
profiles with generally reduced predictive power compared with
those from manual subfamily divisions since the latter incorpor-
ate more biological sense although the effect is dependent on
the sequence family studied.

We want to add a few thoughts on possible future develop-
ments. In spite of many years of research effort, there is not yet
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a good statistical model of protein family evolution even with
the assumption of independent positions. We tried to incorporate
statistical concepts into the problem of sequence weighting and
profile extraction. However, this attempt is far from a complete
solution of the problem and our method is more empirical than
statistical at some points.

The notion of ‘independent counts’ is fundamental for our
approach. Sequences are independent if one sequence does not
carry information about the others in the alignment and vice
versa. In such a case, the probability of observing amino acida
atanyalignmentposition is justqa, i.e. theconditionalprobability
p(a,i) is equal to thea priori probabilityqa. The probability of
observing amino acida at a given alignment position totallyN
times (inN sequences) is justqa

N. For instance, this is true for
randomlychosenandrandomlyalignedsequences.Thus,n(a,i)eff
calculated with Equation 10 is the real number of observations
in the case of independent sequences.

The approach as outlined in the Theory section can be easily
generalized. Independent sequences might be even more pre-
cisely defined as belonging to the same family but having under-
gone very long independent (divergent or convergent) evolution.
In this case, we can define position-dependent amino acid prob-
abilities p(a,i) characterizing the sequence family. Then the
probability of observing the amino acid typeaat a given position
in N independent sequences isp(a,i)N. Equation 9 might be
rewritten as

1
P(Aaj) 5 Σ

L

i 5 1
Σ

b

P(a,i)n(a, j )eff (16)
L

where i runs over all alignment positions. This equation can
be solved by an iterative procedure with starting values from
Equation 10. Although derived with more general assumptions,
the new profiles computed with Equation 16 have about the same
predictive power in the fold family collection experiment as the
simpler version Equation 10 as we observed in test calculations
(data not shown). A more detailed analysis shows that the value
n(a, j )eff does not change much for most alignment positions
since it is linearly related to {log[p(a, j )]} –1 in the iteration but
not to p(a, j ) itself.

It should be noted that the general idea of the PSIC algorithm
is independent of the specific similarity measure as introduced
with Equations 6–9 or 16 and that other similarity measures
might be introduced.

To conclude, the PSIC approach with position-specific
sequence weights is an important step forward towards a
statistically sound method of sequence weighting and profile
extraction from multiple alignments.

Availability of the program

The profile extraction routine can be accessed via the Internet at
two identical mirror sites: http://www.bork.embl-heidelberg.de/
PSIC and http://www.imb.ac.ru/PSIC (the latter URL may be
difficult to access from outside Russia). Interested readers may
also contact the authors by E-mail:
sunyaev@embl-heidelberg.de or eisenhab@embl-heidelberg.de.
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Sjölander,K., Karplus,K., Brown,M., Hughey,R., Krogh,A., Mian,I.S. and

Haussler,D. (1996)Comput. Appl. Biosci., 12, 327–345.
Sunyaev, S.R., Rodchenkov, I.V., Eisenhaber, F. and Kuznetsov,E.N. (1998)

in Proceedings of the 2nd Annual International Conference on Computers
in Molecular Biolology(RECOMB98), pp. 258–264.

Tatusov,R.L., Altschul,S.F. and Koonin,E.V. (1994)Proc. Natl Acad. Sci.
USA, 91, 12091–12095.

Thompson,J.D., Higgins,D.G. and Gibson,T.J. (1994)Comput. Appl. Biosci.,
10, 19–29.

Udenfriend,S. and Kodukula,K. (1995)Annu. Rev. Biochem., 64, 563–591.
Vingron,M. and Sibbald,P.R. (1993)Proc. Natl Acad. Sci. USA, 90, 8777–8781.

Received October 19, 1998; revised February 5, 1999; accepted February
19, 1999

Appendix A
The problem of sequence-profile comparison can be considered
in the framework of statistical hypothesis tests. For every
query sequenceS, the hypothesisH0 that this sequence belongs
to the family studied is tested against the alternativeH1 that
this sequence is just taken from a databank by chance.
With the assumption of independent sequence positions, the
likelihood L0 of the sequenceS being a family member is
given by

L0 ~ Π
L

i 5 1

p(si|i) (17)

The termp(si|i) is the conditional probability for the amino
acid typesi at the alignment positioni of the protein family
considered. The product is taken over all alignment positions.
The likelihoodL1 that the sequenceS is assigned to the family
by chance is given by
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L1 ~ Π
L

i 5 1

q(si) (18)

whereq(si) is the general frequency of the amino acidsi in
the database.

In accordance with the Neyman–Person lemma (Kendall
and Stuart, 1977), the log likelihood ratio testT is the optimum
decision criterion between hypothesesH0 and H1 with the
lowest possible type II error while the type I error is fixed:

p(si|s)
T 5 Σ

L

i 5 1

log [ ] (19)
q(si)

Therefore, the optimum profile element must be chosen as (3).

Appendix B
Finally, we want to derive an explicit equation for the sequence
weighting that has implicitly found application in this profile
extraction approach. The weight for amino acida observed at
position j in a subsetAaj of sequencesSk (k 5 1, . . ., N) is
given by p(a,j) in Equation 4. Since this amino acid has
been observedn(a,j)obs times and the total weight can be
symmetrically distributed among alln(a,j)obs sequences, the
weight wjk of sequenceSk at positionj can be computed as

p(a,j)

n(a,j)eff

wjk 5 5

Σ
a

δ(a,j,k)

(20)
n(a,j)obs

n(a,j)obs

Σ
b

n(b,j)eff

It should be emphasized that, for the purpose of profile
computation, the weights do not actually have to be calculated.
Equation 20 is given here for convenience and comparison
with other sequence weighting methods.

Appendix C
It is interesting to compare subfamily creation in accordance
with Equation 14 with the selection of a maximum subset of
sequences (each representing a subfamily) with a pairwise
sequence identity below a given threshold. As an independent
test example, we used the set of glycosylphosphatidylinositol
(GPI)-attachment site sequence segments, an extremely
divergent set of protein sequence pieces with many subsets of
high sequence identity. GPI anchoring to membranes is a
common post-translational modification for extracellular
eukaryotic proteins with diverse structure and functionality
(Udenfriend and Kodukula, 1995). From SWISS-PROT (rel.
35), we extracted sequences of 38 protozoan and 99 metazoan
proteins with known GPI-attachment and propeptide cleavage
site (ω-site) and with a C-terminal propeptide length of 17–
31 amino acids. The sequence segments consisting of positions
betweenω – 15 andω 1 25 were aligned at theω position
without any gaps. Using the thresholdt0 as in Equation 13,
we obtained five protozoan and 44 metazoan families. If the
maximum subset of non-homologous sequence segments with
less than 30% pairwise sequence identity is searched (Heringa
et al., 1992; Hobohmet al., 1992), 14 protozoan and 44
metazoan sequences remain from the original set. Hence the
number of subfamilies has the same order of magnitude in
both approaches.
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