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PSIC: profile extraction from sequence alignments with
position-specific counts of independent observations
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Sequence weighting techniques are aimed at balancing sequence to denote the degree of independence of this sequenc

redundant observed information from subsets of similar  from the others in the multiple alignment. In its most drastic
sequences in multiple alignments. Traditional approaches form, additional similar sequences are discarded from the set
apply the same weight to all positions of a given sequence, of sequences studied, i.e. their weight is assigned to zero and
hence equal efficiency of phylogenetic changes is assumed only highly different (‘independent’) sequences remain for
along the whole sequence. This restrictive assumption is subsequent analysis (Heringd al, 1992; Hobohmet al.,

not required for the new method PSIC (position-specific  1992: Neuwaldet al, 1995, 1997).

independent counts) described in this paper. The number  \ore elegant techniques use the full sequence information.
of independent observations (counts) of an amino acid type The diverse techniques described in the literature are of two
at a given alignment position is calculated from the overall types, evolutionary tree-based or sequence distance-based
similarity of the sequences that share the amino acid type Tree-pased approaches assume that the sequences in th
at this position with the help of statistical concepts. This  mytiple alignment have a common evolutionary origin and
approach allows the fast computation of position-specific  4re g result of divergent evolution and that an evolutionary
sequence weights even for alignments containing hundreds ee (or a set of alternative trees) can be constructed from
of sequences. The PSIC approach has been applied 10 saqyence, taxonomic or additional information (Altsobial,
profile extraction and to the fold family assignment of 1989; Thompsoret al, 1994). The distance-based methods
protein sequences with known structures. Our method was (Vingron and Sibbald, 1993; Gerstegt al, 1994; Henikoff

shown to be very productive in finding distantly related .4 Henikoff. 1994) avoid the problems of tree topoloay and
sequences and more powerful than Hidden Markov Models y ) b pology

or the profile methods in WiseTools and PSI-BLAST in
many cases. The profile extraction routine is available on
the WWW (http://www.bork.embl-heidelberg.de/PSIC or
http://www.imb.ac.ru/PSIC).
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related at all. Sequence weights are calculated from a matrix of
pairwise sequence—sequence similarities (Vingron and Sibbald,
1993) or from the amino acid type diversity observed at each

alignment position (Henikoff and Henikoff, 1994). Therefore,
Csuch methods are applicable also to alignments of short
gequences (‘motifs’) or very distantly related proteins.

All variants of the sequence weighting approach described

above have in common that a single sequence weight is applied
) to all sequence positions, i.e. the efficiency of phylogenetic

Introduction changes is believed to be identical at every alignment position,

Sets of similar sequences can be characterized by a multipR assumption which is obviously not true. Bruno (1996) has
sequence alignment within common sequence domains (in tH&roposed a calculation scheme within a tree-based approach
case of protein families) or just a small sequence regiorthatassigns position-specific weights to each sequence position.
(motif). These alignments are used for the extraction of profile$iowever, even with simplifying approximations, the calcula-
or scoring matrices which subsequently find application intion costs of this technique are large and restrict its applicability
searches for other remotely homologous proteins (Bork antb exemplary alignments, i.e. frequent usage in large-scale
Gibson, 1996). applications with genomic data is not practical.

Correlation among observation data cannot be ignored if it As a main new aspect in this paper, we present a simple
is sufficiently extensive. This generally accepted rule is importand fast computation approach (the PSIC approach) for the
ant for data treatment in multiple sequence alignments becausssignment of position-specific sequence weights within the
alignments frequently contain many similar (and even duplicsequence distance framework. For profile calculation, these
ated) sequences. A typical protein family in sequence databasesights do not have to be explicitly determined; instead,
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they are implicitly estimated in the form of position-specific w,. This equation is purely heuristic and does not rely on any
probabilities to observe each of the amino acid types (positionstatistical model of a protein family evolution. The notion of
specific independent counts, PSIC). In addition to an outlin@mino acid substitution matrices implicitly accepts that the
of possible further developments, we describe also a softwanmutation probabilities are identical at every position of protein
prototype incorporating the main new ideas. As an applicationfamily, an assumption which is somehow opposite to the basic
profiles derived from multiple alignments with this method idea of profile methods to derive position-specific scores.
are shown to be highly productive in detecting members of In the PAM model, the process of amino acid substitutions
protein fold families. They proved more powerful than HMM-, during protein evolution is modelled as a Markov process
PairWise- or PSI-BLAST-derived profiles (Thompsen al,, (Dayhoffet al, 1978). Theoretically, substitution matrices can
1994; Eddyet al, 1995; Birneyet al, 1996; Altschulet al,  be normalized to (raising a transition probability matrix to the
1997) in many cases. As another application, the PSIC methgobwer of) any evolutionary distance in PAMs. However, for
has been successfully used for the characterization of the postery long distances the probabilities of occurrence of amino
translational glycosylphosphatidylinositol-modification site acid types converge to the invariant distribution of Markov
(Eisenhabeket al., 1999). process. Since substitution probabilities in the PAM model are
For clarity, we want to emphasize that the sensitivity ofindependent of protein and position, the invariant distribution
profile techniques depends on several aspects, not just froof the process is just the amino acid composition of the protein
the treatment of observed residue frequencies. Profile extractiafatabank, i.e. the probability of observing a particular amino
methods face two difficulties: (1) the problem of interdepend-acid type at a given alignment position after infinitely long
ence between sequences and (2) the problem of a small numbmrolution coincides with the probability of finding this amino
of sequences. This paper addresses topic (1). Problem (2) wasid type in the sequence databank. Therefore, the PAM model
extensively studied in the framework of Bayesian statisticoof protein evolution is inefficient for detecting very remote
and found a solution in the concept of pseudocounts (Lawrencelationships in the world of proteins.
et al, 1993; Tatusowet al, 1994; Bruno, 1996; Henikoff and A more realistic model of sequence family evolution can
Henikoff, 1996; Sjtanderet al,, 1996; Altschulet al, 1997).  be constructed with the assumption that substitution probabili-
Additionally, the application of profiles for database searchesies are position-dependent. In this case, the invariant distribu-
depends also on (3) the treatment of gaps and (4) the type ¢ibn of Markov process at the particular positionis the
profile-sequence alignment method (Gribsket al, 1987; probability p(a,i) of observing amino acié at the positioni
Birney et al, 1996). Concerning aspects (2)—(4), we rely onafter infinitely long evolution. This probability is determined
published methodologies. by the environment of the residue in the 3D structure and by
A preliminary version of our method has already beenfunctional constraints. If the probabilities described above are
presented at the 2nd Annual International Conference oknown, the optimum equation (from a statistical viewpoint,
Computational Molecular Biology (RECOMB98; see Sunyaevsee Appendix A) for the profile matrix element is given by
et al, 1998). Here, we publish a more detailed and fullythe following log likelihood ratio (Kendall and Stuart, 1977;
formalized description of the methodical approach with newKarlin and Altschul, 1990; Lawrencet al., 1993):
technical improvements and more extensive comparisons with .
other available profile methods. Wa,i) = In p@.i)
a

Theory and methodical details . - . . .
) i whereq, is the default probability of observing amino aa&d
From alignments of related sequences to counts of independepy, example, in a database of proteins.

observations _ _ _ _ _ The estimation of(a,i) is a very difficult task since, as a
We consider an alignmemt = {S} involving N amino acid  rule, the number of sequences in the alignment is small and
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sequences (k = 1, 2, ...,N). The length of the alignment the sequences themselves cannot be considered independenfy

(i.e. the number of alignment positions) is denoted_b¥ach  (the independent evolution has not been sufficiently long for

sequences, = (Sw, Sx - - - S IS described as ab-tupel  every pair of sequences). Previous studies estimpiad) as

of amino acids (or gaps}y at the alignment positions  raw or weighted frequencies (Tatuset al, 1994; Altschul

(i=1,2,...,n). We define also a Kronecker symi®(a,i,k), et al, 1997) or with a maximum likelihood approach

which is equal to 1 if amino acid typa is observed at (Bruno, 1996).

alignment position in sequenc&, and equal to zero otherwise:  We suggest here a new, simple, empirical method for the
estimation of the probabilitiep(a,i). If all sequences were

o(a,i,k) = [

i (1) independent, the best estimator fifa,i) is the raw frequency,

0, otherwise. i.e. the numben(a,i) of observations of the amino acalat
The profile matrixW = {W(a,i)} represents the characteristic Positioni of the multiple alignment normalized by the total
features of the sequence set in the alignment region in forrfumber of sequencesd. Since the sequences may be strongly
of scores for the placement of amino acid typest alignment ~ dependent, we attempt to compute a normalized effective
positionsi. In traditional approaches (Gribskat al, 1987; humbem(a,i)es Of observations (i.e. the number of independent
Tatusovet al, 1994; Thompsormt al, 1994), the elements of ©Observations that carry the same amount of information as
the profile matrix are calculated by averaging scores from afvailable dependent ones) and to deternpi(i) as

1, IfSik =a,

amino acid substitution matri®(b,a): n(a,i)es
o _ p@i = —— (4)
Weai) = 5 wy 5 3(bii,kD(b,a) 2) > n(b,i)ess

where sequenc&, contributes to the profil&V with weight  The valuen(a,i)e is thought to depend on the overall similarity
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[ti g i f} {1 e I§ ggIL g '\;E&% at any alignment position# j for all sequences in the subset
Ay :L KCQQON- - - - FNHDTMY WY Ay can be estimated with the valli@, j )eq-posVia
\IFTCFVVGSD-LKDAHLTWEI )
LTCRVSNMVNADGLEVSWEH |(a1])eq-pos
LNCTFSD- - - SASQYFWWY P(Ay) =—— (8)
LRCKYSY SATPYLFWY m
j wherem < L — 1 is the number of alignment positions of the

sequences in subsé; excluding positionj and positions
with gaps.

On the other hand, if the sé&; were a set ofn(a, | )es
randomly aligned independent Bernoulli sequences (given the
amino acid compositiondy} in the sequence databade,is
any of the amino acid types), the probabilRyA,) would be
equal to

- om e
x  HE=

P(Ay) = 3 qpier ()
KV )eqpos =3 b

The central idea of the PSIC approach is to equate the right
sides in Equations 8 and 9, i.e. the frequency of identical
positions in a given alignment and the probability of identical
alignment positions for random sequences in order to define

Fig. 1. Relationship between the effective number of amino acid type the ?f.fe.CtiVe numben(a, j )ess Of Observati0n$ £ position- )
observations and the overall similarity of sequences. To compute the specific independent counts). Thus, the solution of the equation
effective number of valine¥ at positionj in accordance with @)
Equations 8-10, we compute the number of conserved positions in the &, ] )eg-pos .
subalignmenty;. - = Z Q@ et (10)

m b

of the sequences having the common amino acid &ypethe  for n(a, j)er is an estimate for the number of independent
alignment position considered. The idea is that the observatioobservations of amino acid tyeat positionj in the alignment

of amino acid typea at the given alignment position in a A and can be applied in Equations 3 and 4. The val@aeg] )
subset of sequences provides less new information comparekfined in this way agrees well with intuitive requirements:
with a single observation o [implying a smallern(a,i)e, For very similar (identical) sequences, it is close (equal) to 1,
the more similar the sequences in the subset are. The procedwrbereas for a subsét,; of divergent sequences(a, j)es is
outlined below complies with all intuitive requirements but much larger than 1.

does not pretend to be mathematically rigorous. It may appear difficult to solve Equation 10 with respect to
Algorithm for the determination of position-specific n(a, j)err, but a simple recursive, binary search procedure can
independent counts easily help since the solution is enclosed between 1 and

n(a, j)ops @and the sum on the right-hand side decreases mono-
tonously withn(a, j)esf. The solutionx is assumed to be the
midpoint of a test interval (which is [1n(a, j)opd at the
beginning of the recursion) and the right-hand sdmis
" calculated. IfZ is larger than the left-hand side of Equation

. B . 10, the lower half of the interval is used as test interval for
(@, JJobs = kzlé(a,J,k) ®) the next recursion level. Otherwise, the upper half is taken.

. . This procedure is continued until the length of the test interval
In general, not all of these observations are independent. The smaller than a user-defined epsilon (we used)1the value

more similar the sequences in the subsg@re to each other,  is'than considered the solution fofa, j)es. The calculated
the closen(a, j)ess Should be to unity (as in the case of identical valuesn(a, j o for all 20 amino acid types enter Equation

sequences idy). As a suitable similarity measure with_in the 4 for the computation of the probabilitigga, j) which in turn
subsetA;, we propose the numb(@, j)eq.pos OF identical  ggrye for the computation of the profile values in accordance
allgnment pOSItIOﬂS (not Includlng;) within the SubseAaj. with Equation 3. After having obtainen(a,j), the explicit

Let us assume that a subggf of sequences in the alignment
A has the same amino acid typeat the alignment positiop

(L =j =< L). In this case (Figure 1), the number of observed
occurrences of amino acid tymeat positionj is

L N weight wy, of sequences, at positionj can be calculated (see
(@ eg-pos= 2 | 2. [] 3@ j.K3(bii,K (6) Appgendﬂl(< B). | Seatp J (
=LA b k=l ) N The profile matrixW(a, j) having the dimensionality 20
where the two summations are over all alignment positiongimes the number of alignment positions can be used in the
i # j and all amino acid typeb, respectively. The term traditional way for calculating scores of alignments of protein
N sequences with the given profile (Gribsketwal,, 1987). Any
[ 3(a j.k)d(b.i.K (7)  scheme for gap treatment (Birneyal., 1996) or pseudocount
k=1 heuristics (Lawrenceet al, 1993; Tatusovet al, 1994;

equals unity if every sequence with amino acid tygeat  Bruno, 1996; Henikoff and Henikoff, 1996; 3gmderet al,,
position j (i.e. s = a) has the same amino acid type at 1996; Altschulet al,, 1997) can be combined with the PSIC
positioni and to zero in all other cases. methodology.

The probabilityP(A) of finding the same amino acid type ~ The PSIC approach has been implemented in a computer
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program in the C-programming language. The computatiomwhere the function inK) is the largest integer smaller than
time was found negligibly small on standard UNIX work- This equation takes into account the alignment lerig(lalso

stations. via m) as well as the number of groups of highly different
PSIC implementation detail I: the case of very divergent ~ Seduences in the alignment (via the number of subfanfijes
sequences If the thresholdt, is exceeded, the number of subfamiligs

is incremented by one and the profile computation is restarted.
Subfamily creation in accordance with Equation 13 has been
mpared with the selection of a maximum subset of sequences
(each representing a subfamily) with a pairwise sequence
{dentity below a given threshold. Both approaches give compar-

I(8, })eq.pos = O (there may be no identical positions among able results (see Appendix C), hence Equation 13 can be

the sequences in the alignment sub&gtexcept for position cons@ered a reasgnable VYOfk'”g assumption.

j), i.e.n(a, j )i cannot be estimated with Equation 6 owing to PSIC |mp_lementat|on detail 1ll: the case of non-observed

the lack of data (absence of similar and intermediate sequencegnino acid types

If this happens for only a few alignment position§egulated The second difficulty is connected with the problem of amino
with a user-defined thresholt}), we approximaten(a, j)e;  acid typesk which have not been observed at a given alignment
with the smallest integer larger thanfa, j) &> [we used the positionj at all. In this case, the algorithm outlined above will
value 4; another possibility would be the valuéga, j)qpd- result inn(a, j)er = O and it becomes impossible to take the
Otherwise, it is necessary to subdivide the sequence family ifog likelihood ratio in Equation 2. This is not only a formal
alignmentA into R subfamiliesA, and to compute(a, j)eas  difficulty but the amino acid typex may not be observed

Two types of difficulties arise in practical applications of this
algorithm. The first problem is encountered in the case of very.
divergent sequences in the alignmekit The valuen(a, j)ess
approaches its maximum(a, j) g for 1(a, j)eq-pos = 1 In
accordance with Equation 6. It may also happen tha

a sum over subfamilies: owing to the possibly small number of sequences in the
R alignment. This is a well known problem for profile methods
n(@ et = D i@, )err (11) based on the log likelihood ratio and for HMM techniques.

r-1 Usually, it is solved with the so-called pseudocount approach

The PSIC software allows one to subdivide the set ofLawrenceet al, 1993; Tatusowet al, 1994; Bruno, 1996;
sequences into subfamilies manually in accordance with addiHenikoff and Henikoff, 1996; Sjanderet al, 1996; Altschul
tional information, for example, from a structural databaseetal. 1997). Generally, the PSIC approach for position-specific
such as CATH (Orenget al, 1997) or SCOP (Murziret al, ~ Weighting of occurrences of observed amino acid types may

1995). In this case, the parametgiis assumed constant and Pe combined with any procedure of pseudocount evaluation.
set equal to 1% of the alignment length. We assume a small amount of virtual effective observations

PSIC implementation detail Il: automatic subfamily division ' which are distributed among the non-observed amino acid
P ' y types x in accordance with their database frequendgs

We have also developed a simple clustering procedure bas?:‘guation 3 for observed amino acid types then changed to
on pairwise sequence identity as a distance measure to group

the sequences into subfamilies automatically. In the following, _ n(@i)est
we describe in detail an iterative algorithm for the determination p(ai) = , (14)
of both the numbeR of sequence sets and the threshiglth Z n(o,est + Ny

b

dependence on the input sequence alignment. o ) _
If R = 1 (at the beginning of the iteration), all sequencesThe probabilities of non-observed amino acid typesat

form one set. In the case & > 1, we determine as a first alignment positiorj are estimated via

step R sequences (for a subdivision inf® sequence sets)

: . n
serving as cluster centers. R = 2, the two most distant p(X,i) = X % (15)
sequences are selected. Fer> 2, the cluster centers are Z n(b,i)esr + Ny Z 0y
determined in an iterative manner: TRth cluster center is b ”

the sequence having the largest sum of distances {®t&  \ye tested values in the range 0.3-10 figrthe usual default
previously selected clusters. The remaining sequences a{@ye was 0.3. This PSIC version was used in the first part of
assigned to the nearest cluster center. the Results section.

_The threshold, can be determined with the following con- 14 exclude the computation of pseudocounts as a possible
siderations. Tha priori numbem of events(a, j)eq-pos= 0€aN  source of performance differences in the comparison with the

be calculated as PSI-BLAST routine (Altschukt al, 1997), we developed also
) \m a version with a pseudocount function as described by Henikoff
No=(M+ 1) > qf@oss (1 -> qB(a’”obs) (12)  and Henikoff (1996). This PSIC routine was used in test
b b calculations presented in the second part of the Results section.

The valueny depends weakly on the number of alignment
positionsm and reaches its maximum§® at n(a, j Jobs = 3 Results

sequences fanup to about 100 and @@, ] )obs = 4 SEQUENCES  pertarmance comparison with PairWise and HMMs

for m<1000. In addition to thea priori expected events . . .
1@, | equpos = O for each subfamily, we allow(a, j )eq.pos = O Our proflle extraction method was applied to the problem of
to happen for a user-defined fractidp of all alignment protein fOId. recognition. Goqd_ test cases are such sequence
positions (for examplet, = 0.01). Thus, we calculate the families which contain a sufﬂment number of PDB structures
thresholdt, as as weI_I as many examples W|th.non-_tr|V|aI sequence variations,
especially with small sequence identity. We used multiple align-
to = int(NI'™*R + 1) + int(t, L + 1) (13) mentsfor 10 large and divergent families. Eight alignments were
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Table I. Comparison of profile and HMM methods in a fold family assignment experiment

Learning sequences PairWise HMM PSIC

With known Without known Not optimized Optimized

3D structure 3D structure
Acid proteases 16 109 51 50 52 55
Sh2 domain 5 125 17 17 17 17
Sh3 domain 8 98 23 23 23 23
Lysozymes 6 63 62 62 270 270
Globin 17 453 82 74 85 86
Cysteine knots 1 50 1 1 6 6
Four helix bundle 7 20 11 11 11 12
Lim domain 2 127 3 3 2 3
TIM barreP 15 387 47 36 87 90
Immunoglobulii 43 457 225 221 228 228

The first two columns characterize the learning set of sequences used for deriving the profile [taken from 3d_ali (PetsagréB®6) except for cysteine

knots and the lim domain]. Each set is composed of (1) sequences with known 3D structure in the Brookhaven Protein Data Bank (PDB) and (2) other
protein sequences taken from sequence databases (mostly SWISS-PROT) which are highly similar to the proteins with known structure. The remaining
columns contain numbers of PDB sequences ranked before the first false-positive recognized with the respective method. This number includeEedso seq
of the training set if their score was sufficiently high. As a rule, all training structures have been found in addition to other proteins. The dioigsexdtp
non-recognized training sequences have been observed for PairWise and HMM in some cases of non-trivial similarities (see text).

aSearch results for manual division of the set of sequences in the multiple alignment into subfamilies. Data for the automatic clustering atendéeeribe

text.

taken from the 3d_ali (Pascarek# al, 1996) database (TIM protein family (examples are given below with the notes for
barrelfold, immunoglobulin type family, globins, acid proteases,sequence families). It should be noted that, as a rule, all training
four helix bundles, lysozymes, sh2 domains and sh3 domainsprotein structures have been recognized by the respective
We studied also the lim domains and the cysteine knot familymethods. Exceptions with non-recognition of training sequences
Alignment positions with gaps for the majority of sequenceshave been observed for PairWise and HMM in some cases of non-
were discarded. trivial similarities with globins and TIM-barrels (see below).
Family members were searched in the PDB database (as of The method described in this paper performs well compared
August 1997) with the commercial Bioaccelerator software Prowith PairWise or HMMs. In particular, PSIC recognized all
filesearch using the Smith—Waterman algorithm. The gap initraining structures in all tests. Even the non-optimized version
tialization—gap extension model was used (gap opening scorgelds best results in six out of 10 tested families. This is especi-
4.00, gap extension score 0.05). Scores were normalized withlly remarkable since parameter optimization was carried out in
the empirical model of Pearson (1995). The correctness of familgll applications of the PairWise algorithm.
assignments was checked manually by comparison with the In the case of sh2 and sh3 domains, all methods tested can
CATH (Orengoet al, 1997) or SCOP (Murziret al, 1995) detect only close homologues in PDB.
databases. There is a considerable difference in predictive power for
The same test exercises were carried out with the WiseToolgsozymes between PairWise and HMMs on the one hand and
[the program PairWise was reported to be the best profile extrad?SIC on the other. Obviously, PairWise and HMM profiles do
tion method (Thompsoat al, 1994; Birneyet al,, 1996)] and  not recognize a whole subfamily that is highly represented in
with the Hidden Markov Model (HMM) method [programs the PDB. This subfamily consists of many close homologues,
hmmb and hmmsw (Eddst al,, 1995)]. For clarity, it should be mainly mutants of T4 lysozyme (an object of extensive muta-
emphasized that each method was tested with the same aligiienal studies in structural biology). Thus, the large difference
ments of protein sequence families. Since the capacity of Paiin numbers of recognized proteins reflects this database bias.
Wise is limited to 500 sequences, we used always only the first For globins, our method is the only one which can recognise
batch of 500 sequences in each alignment for profile extractiorall globins in the PDB based on the 3d_ali alignment. Two other
Since the results for PairWise profiles searches depend greattietails are of interest: none of the methods except ours can
on parameters such as gap opening and gap extension penaltiesognize the sequence of colicin in spite of the fact that it
and the number of gap positions not taken into account, wavas included in 3d_ali alignment (1col was one of the training
optimized these parameters. In the case of HMM, we used thgtructures). Phycocyanin has a high score in our method and
default parameters of the program. appears in the list after only six false positives (phycocyanin is
For every method, we counted the number of correctly recogrotincluded in 3d_alialignment of globin fold family). Phycocy-
nized PDB sequences with a score higher than that of the firgtnin was not listed at all in the search protocols obtained with
false positive. The results are shown in Table I. For the methothe HMM- or PairWise-generated profiles.
presented in this paper, we report both non-optimized (default In the case of the cysteine knot family, our method is the only
value of 0.3 forn,) and optimized [best value far, in a few  one that can detect the similarity between chorionic gonadotro-
(=5) trials] data. Generally, none of the four techniquesidentifiepin and transforming growth factor-beta and also between the
all the family members. Hence there is still a lot of work to betwo chains of chorionic gonadotropin.
done to improve the sensitivity of sequence search methods. All methods found only a set of close homologous sequences
At the same time, various methods sometimes pick differendf four-helix bundles included in the learning multiple
sequences, i.e. they appear trained for different features of thignment. Other more remote relatives were notdetected, except
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for the optimized PSIC which recognized also the sequence of _ _ _
the protein 1buc Table Il. Comparison of PSI-BLAST and PSIC methods in a fold family

For the lim domain family, our non-optimized method (but assignment expeniment

not the optimized version) is slightly inferior to PairWise and profile PSI-BLAST PSI-BLAST PSIC
HMMs. It does not recognize the lim domain fragment with theAlignment PSI-BLAST Smith-Waterman ~ Smith—Waterman
PDB code 1zfof-Ribbon cysteine-rich proteins which are as
. . . f i . ohx 41 32 40

cysteine-rich as lim domains appear as false positives in théSolh 300 318 318
search output. 1a07 24 26 26

The TIM barrel family is one of the most divergent as well as2mta 14 20 21
most abundant amongst protein families. There is a significarihur 68 63 63
difference between results of the method presented in this pap%‘?gﬁ l; g f?
and other two methods tested. This can probably be explainegﬁec 97 08 98
by the fact that the learning multiple alignment consists of a sethvp 107 111 107
of divergent subfamilies. PairWise and HMM programs arelbbt 18 63 68
unable to find some sequence subfamilies contained in the muft™ 28 27 27
. . Lo . . . . raa 25 25 25
tiple alignment (PairWise did not find five learning structures,,.q 27 27 27
1fcb, 1ald, 1wsy-A, 1did and 1xim; the HMM approach did not 4gcr 14 14 12
recognize seven training structures, 1fcb, 6taa, 1wsy-A, 1didihsq 47 62 62
1pii, 1gox and 1xim). It should be emphasized that the low3chy 32 34 36
performance of PairWise is not the result of a single false positivéﬁ'gm 1% 2% 250
in the upper part of the output list; all positions 48 and 50—66 i 28 28 28
the search protocol are wrong predictions. In contrast, outxer 33 33 33

method with position-specific weightings is capable of finding _ _
some correct hits with no obvious similarity to any sequence o epresentative proteins from the SCOP database were selected from

. . . amilies with many subfamilies and for which PSI-BLAST finds non-trivial
the 'eam'”g allgn.ment. The Iarge a”d _extre_mely divergent Tl omologues in the first iteration. We list data for searches with (1) the PSI-
barrel multiple alignment requires division into sequence SUbBLAST profile and the PSI-BLAST alignment routine, (2) the PSI-BLAST
families for application of the PSIC technique. We are pleasedrofile and the Smith-Waterman alignment procedure [as implemented in
to note that the profile’s predictive power does not change signisea“’h"\’c'}lSe O?Ithe %'Oﬁccse'a_r z‘o\;\/(B"mya'" 1996)] g.”d (3)hth‘é.PS'CT .

. P . . enerated profile and the Smith—Waterman routine. Since the dispersion o
flc_:antly whether the subdivison is made ma_nua“y In accor_danc%e PSIC profile matrix values is about 30% of that from the PSI-BLAST
W'th CATH (Qrengoet aI.,. 1997) or automatlcally as described profile matrix, the gap penalty parameters were changed to 30% of the
in the PSIC implementation detail | section above (87 versus 84tandard values in the former case.
recognized structures for the non-optimized version of the PSIC
program). . . . . .

All three methods recognize many immunoglobulin-like pro-2mino acid types at each alignment position are weighted by
teins such as HLA (chain M) proteins, CD4 proteins and soméhese sequence-specific (but not position-specific) weights.
other related subfamilies. In the case of several distantly relatedecond, these frequencies are complemented with position-
subfamilies, only one or few of the methods can detect them. FotPecific pseudocounts based on the amino acid type variability
example, PairWise finds the vascular cell adhesion moleculed! this alignment position. Thus, PSIC differs in a major way
(structures 1vsc-A and 1vca) but not HMM or PSIC (neitherffom PSI-BLAST by its position-specif@ndsequence-specific
non-optimized nor optimized versions). The human class | histo€ighting of observed frequencies of amino acid types.
compatibility antigen structures 1lhla-A and 1hhg-A have been Resultsof 20 Comparab_lefold recognition tests of PSI-BLAST
registered by PSIC and HMM but not by PairWise. The humarfnd PSIC generated profiles are presented in Table Il (status of
class Il histocompatibility antigen structure 1dlh-A was found DB as of July 1998). We selected representative proteins from
by all methods except for PSIC. However, a huge amount othe SCOP database from families with many subfamilies and for
immunoglobulin fold proteins that are more divergent fromWhich PSI-BLAST finds non-trivial homologues in the first
immunoglobulins was not detected at all. It should be notedt€ration. In this step, we extracted both the computed multiple
that, resembling the case of TIM barrels, the alignment of thélignment and the PSI-BLAST-generated profile from the pro-
immunoglobulins consists of many subgroups of highly similardram. Since the accuracy of the alignment procedure influences
sequences forcing the PSIC algorithm to divide into subfamiliesth® search results, we list data for database searches under the

Here, the automatic scheme is less powerful than the manu#llowing conditions:

sequence family determination. After 198 correct hits, two false(1) the PSI-BLAST profile and the PSI-BLAST alignment
positives appear in the output list (two structures 1ahh and 1ahi, = roytine:

of the 7u-hydroxysteroid dehydrogenase) followed by another(2) the PSI-BLAST profile and the Smith—Waterman alignment
24 correct structures. procedure (as implemented in ‘profilesearch’ on the mas-

Performance comparison with PSI-BLAST sively parallel Bioaccelarator machine);

During this work, the PSI-BLAST program with an automatic ©) :gﬁtinPeSIC-generated profile and the Smith-Waterman
and fast profile generation procedure (Altscletlal, 1997) '

became generally available. We want to emphasize that PS&ince the dispersion of the PSIC profile matrix values is about
BLAST calculates profile matrix elements in a two-step pro-30% of that from the PSI-BLAST profile matrix, the gap penalty
cedure: first, uniform (non-position-specific) sequence weightparameters have just been changed to 30% of the standard values
are calculated from the sequence alignment with the algorithrin the former case.

of Henikoff and Henikoff (1994). The observed frequencies of As in the case of Table Il, the number of correctly recognized
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Position-specific counts of independent observations

sequences before the first false positive is listed. Surprisingla good statistical model of protein family evolution even with
PSI-BLAST profiles with the PSI-BLAST alignment routine the assumption of independent positions. We tried to incorporate
find more correct sequences than the same profiles with th&tatistical concepts into the problem of sequence weighting and
Smith—Waterman technique in the cases of 2ohx, 1hur and 2tryprofile extraction. However, this attempt is far from a complete
The implementations of the PSI-BLAST and of the Smith—solution of the problem and our method is more empirical than
Waterman alignment procedures do not allow the introductiorstatistical at some points.

of a completely comparable set of parameters. In all other cases, The notion of ‘independent counts’ is fundamental for our

the Smith—Waterman routine was at least as or often even clearpproach. Sequences are independent if one sequence does not

more powerful than the PSI-BLAST alignment routine with the carry information about the others in the alignment and vice

same PSI-BLAST-generated profile, as would be expected. versa. In such a case, the probability of observing aminoacid
Our results in Table 1l indicate that, as a tendency, PSIGitanyalignmentpositionisjust, i.e.the conditional probability

profiles have a greater recognition potential than PSI-BLASTp(a,i) is equal to thea priori probability g,. The probability of

profiles (larger values for 20hx, 2mta, 1etp, 1ten, 1bbt and 3chypbserving amino acid at a given alignment position totally

This is especially remarkable since the speed of profile generdimes (inN sequences) is justy. For instance, this is true for

tionis comparable for both techniques. Only in the cases of 2hvpandomly chosen and randomly aligned sequences. mtajg

and 4gcr were PSIC profiles less successful. A detailed analysgalculated with Equation 10 is the real number of observations

showed that a slight increase in the gap-open parameter changedhe case of independent sequences.

the PSIC profile’s performance to that of the PSI-BLAST level. The approach as outlined in the Theory section can be easily

Similarly to the tests in the previous section, most hits whergyeneralized. Independent sequences might be even more pre-o

found both with PSI-BLAST and PSIC. Sometimes PSI-BLAST cisely defined as belonging to the same family but having under-

and PSIC complement each other in their predictive power; fogone very long independent (divergent or convergent) evolution.

example, the calpain structures 1aj5 and lalv have been detectetthis case, we can define position-dependent amino acid prob-

with PSI-BLAST only or the sarcoplasmic protein 2sas is recog-abilities p(a,i) characterizing the sequence family. Then the

nized by PSIC alone (for searching with the recoverin lreqrobability of observing the amino acid typat a given position

profile). in N independent sequencesp&,i)N. Equation 9 might be
rewritten as

Discussion

The method described in this paper is a statistical and heuristic 1

approach giving weights as a function of both sequence and P(Ay) =— Z Z P(a,i)"@ Der (16)
alignment position to amino acid type occurrences. It amounts L5

mostly to down-weighting columns of identities in a set of

sequences when many positions are totally conserved in thignere runs over all alignment positions. This equation can

set. In many cases, this should not lead to an outcome that |5, splved by an iterative procedure with starting values from

dramatically different from that obtained with more traditional Equation 10. Although derived with more general assumptions

methods, but our approach has the advantage of being indepenfls new profiles computed with Equation 16 have about the same

ent of any phylogenetic assumption in addition to having smallyregictive power in the fold family collection experiment as the

computational costs with an improved predictive power. Thesgjmper version Equation 10 as we observed in test calculations

advantages are offset by a somewnhat higher sensitivity to Mi§yata not shown). A more detailed analysis shows that the value

ahgp_ments. _Clearly, the profile values a; a glven.allgnmgnh(a'j)eff does not change much for most alignment positions

position are influenced by Fhe rest of the alignment via EquatioRjnce it is linearly related to {logi(a, j)]} X in the iteration but

8 and large errors there will influence the outcome of Equation, ot 1o p(a, j) itselr.

10. However, this effect may not be dramatic, as exemplified by |t should be noted that the general idea of the PSIC algorithm

the data in the second part of the Results section since thg jndependent of the specific similarity measure as introduced

generally poor multiple alignments produced with the PSl-yith Equations 6-9 or 16 and that other similarity measures

BLAST routine could be successfully used for predictions Wlthmight be introduced.

the PSIC method. _ . To conclude, the PSIC approach with position-specific
We found that, in most cases, less than 10% of the hit “St%equence weights is an important step forward towards a

from various profile methods are mutually exclusive but thegtatistically sound method of sequence weighting and profile
potential of different techniques to recognize additional hitsgytraction from multiple alignments.

might sometimes be of practical importance.

It should also be noted that, instead of producing a singl -
profile for several sequence subfamilies by the combination rulgvailability of the program
(11), it might be more efficient to create one profile for eachThe profile extraction routine can be accessed via the Internet at
subfamily and to integrate the search results only. In this caséyo identical mirror sites: http://www.bork.embl-heidelberg.de/
the PSIC approach may serve as a quantitative measure to filt6IC and http://www.imb.ac.ru/PSIC (the latter URL may be
the point where subfamily division can be useful. We observedlifficult to access from outside Russia). Interested readers may
also that our automatic sequence clustering procedures buiklso contact the authors by E-mail:

profiles with generally reduced predictive power compared witrsunyaev@embl-heidelberg.de or eisenhab@embl-heidelberg.de.

those from manual subfamily divisions since the latter incorpor-
ate more biological sense although the effect is dependent ofcknowledgements

the sequence famlly studied. . The authors are grateful to P.Bork for continuous support during this
We want to add a few thoughts on possible future developgork and to H.Hegyi, C.Ponting and J.Schultz for technical advice, for an

ments. In spite of many years of research effort, there is not yettroduction to the HMM programs and for example multiple alignments.
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Appendix A

The problem of sequence-profile comparison can be consider
in the framework of statistical hypothesis tests. For every
query sequencs, the hypothesisij that this sequence belongs

given by )
Lo > [ p(sl) 17)

i=1

The termp(s]i) is the conditional probability for the amino

acid types at the alignment position of the protein family

considered. The product is taken over all alignment position

The likelihoodL, that the sequenc®is assigned to the family
by chance is given by
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andit should be emphasized that, for the purpose of profile

L
Ly [ a(s)
i=1
where q(s) is the general frequency of the amino agdn
the database.

In accordance with the Neyman—Person lemma (Kendall
and Stuart, 1977), the log likelihood ratio tdsis the optimum
decision criterion between hypotheskg and H; with the
lowest possible type Il error while the type | error is fixed:

(18)

. p(sls)
T=Slog |[——
2 1% a(s)

i=1

(19)

Therefore, the optimum profile element must be chosen as (3).

Appendix B

Finally, we want to derive an explicit equation for the sequence
weighting that has implicitly found application in this profile
extraction approach. The weight for amino aeidbserved at
positionj in a subset, of sequences§ (k = 1, ...,N) is
given by p(a,j) in Equation 4. Since this amino acid has
been observedi(a).ns times and the total weight can be
symmetrically distributed among afi(a,j),ns SEquences, the
weightw;, of sequences at positionj can be computed as

R
p(aj) a N(a,j)obs
Wy = — = (20)
n(@j)obs S n(b,j)er

computation, the weights do not actually have to be calculated.
Equation 20 is given here for convenience and comparison

It is interesting to compare subfamily creation in accordance
with Equation 14 with the selection of a maximum subset of

sequences (each representing a subfamily) with a pairwise
sequence identity below a given threshold. As an independent
test example, we used the set of glycosylphosphatidylinositol
(GPI)-attachment site sequence segments, an extremely
divergent set of protein sequence pieces with many subsets of 5
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¥1igh sequence identity. GPI anchoring to membranes is a

common post-translational modification for extracellular
eukaryotic proteins with diverse structure and functionality
denfriend and Kodukula, 1995). From SWISS-PROT (rel.

), we extracted sequences of 38 protozoan and 99 metazoan
proteins with known GPIl-attachment and propeptide cleavage
site (-site) and with a C-terminal propeptide length of 17—

we obtained five protozoan and 44 metazoan families. If the
maximum subset of non-homologous sequence segments with
less than 30% pairwise sequence identity is searched (Heringa
et al, 1992; Hobohmet al, 1992), 14 protozoan and 44
metazoan sequences remain from the original set. Hence the
number of subfamilies has the same order of magnitude in

Joth approaches.
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